Journal articles on the topic 'Charge carrier concentration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Charge carrier concentration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kallenowsky, T., H. Koi, H. Boudriot, O. Oettel, and H. A. Schneider. "Microinhomogeneities of Charge Carrier Concentration in GaAs." Crystal Research and Technology 26, no. 8 (1991): 987–92. http://dx.doi.org/10.1002/crat.2170260805.
Full textSouquet, Jean-Louis, Marcio Luis Ferreira Nascimento, and Ana Candida Martins Rodrigues. "Charge carrier concentration and mobility in alkali silicates." Journal of Chemical Physics 132, no. 3 (January 21, 2010): 034704. http://dx.doi.org/10.1063/1.3271154.
Full textSchütt, H. J., D. Wienß, and M. Doß. "Charge carrier concentration in glasses. dependence on composition." Ionics 1, no. 3 (May 1995): 257–61. http://dx.doi.org/10.1007/bf02426027.
Full textHamdan, N. "The role of charge carrier concentration in Tl-1234." Physica B: Condensed Matter 284-288 (July 2000): 1093–94. http://dx.doi.org/10.1016/s0921-4526(99)02443-6.
Full textMoser, M., L. P. Scheller, and N. H. Nickel. "Charge carrier transport in boron doped poly-Si." Canadian Journal of Physics 92, no. 7/8 (July 2014): 705–8. http://dx.doi.org/10.1139/cjp-2013-0563.
Full textJuška, Gytis, Kristijonas Genevičius, Kęstutis Arlauskas, Ronald Österbacka, and Henrik Stubb. "Features of charge carrier concentration and mobility inπ-conjugated polymers." Macromolecular Symposia 212, no. 1 (April 2004): 209–18. http://dx.doi.org/10.1002/masy.200450820.
Full textКарамов, Д. Д., А. Н. Лачинов, C. А. Пшеничнюк, А. А. Лачинов, A. Ф. Галиев, А. Р. Юсупов, and С. Н. Салазкин. "Допирование несопряженного полимера органическим соединением с двумя устойчивыми энергетическими состояниями." Журнал технической физики 91, no. 5 (2021): 874. http://dx.doi.org/10.21883/jtf.2021.05.50702.285-20.
Full textКарамов, Д. Д., А. Н. Лачинов, C. А. Пшеничнюк, А. А. Лачинов, A. Ф. Галиев, А. Р. Юсупов, and С. Н. Салазкин. "Допирование несопряженного полимера органическим соединением с двумя устойчивыми энергетическими состояниями." Журнал технической физики 91, no. 5 (2021): 874. http://dx.doi.org/10.21883/jtf.2021.05.50702.285-20.
Full textMirzaraimov, Jakhongir Zokirzhanovich, and Sherzod Akhmadovich Makhmudov. "INVESTIGATION OF THE CARRIER LIFETIME IN NEUTRON-DOPED SILICON DEPENDING ON THE CONCENTRATION OF THE INITIAL BORON." Scientific Reports of Bukhara State University 4, no. 4 (August 28, 2020): 57–61. http://dx.doi.org/10.52297/2181-1466/2020/4/4/2.
Full textTomozawa, Minoru, and Dong-Wook Shin. "Charge carrier concentration and mobility of ions in a silica glass." Journal of Non-Crystalline Solids 241, no. 2-3 (November 1998): 140–48. http://dx.doi.org/10.1016/s0022-3093(98)00760-1.
Full textJuška, G., N. Nekrašas, K. Genevičius, J. Stuchlik, and J. Kočka. "Relaxation of photoexited charge carrier concentration and mobility in μc-Si:H." Thin Solid Films 451-452 (March 2004): 290–93. http://dx.doi.org/10.1016/j.tsf.2003.11.053.
Full textRausch, Elisabeth, Benjamin Balke, Torben Deschauer, Siham Ouardi, and Claudia Felser. "Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds." APL Materials 3, no. 4 (April 2015): 041516. http://dx.doi.org/10.1063/1.4916526.
Full textZemek, J., P. Jiricek, B. Lesiak, and A. Jablonski. "Elastic electron backscattering from silicon surfaces: effect of charge-carrier concentration." Surface and Interface Analysis 36, no. 8 (August 2004): 809–11. http://dx.doi.org/10.1002/sia.1770.
Full textTao, Jing, Jingyi Chen, Jun Li, Leanne Mathurin, Jin-Cheng Zheng, Yan Li, Deyu Lu, et al. "Reversible structure manipulation by tuning carrier concentration in metastable Cu2S." Proceedings of the National Academy of Sciences 114, no. 37 (August 30, 2017): 9832–37. http://dx.doi.org/10.1073/pnas.1709163114.
Full textFishchuk, Ivan I., Andrey Kadashchuk, Volodymyr N. Poroshin, and Heinz Bässler. "Charge-carrier and polaron hopping mobility in disordered organic solids: Carrier-concentration and electric-field effects." Philosophical Magazine 90, no. 9 (March 21, 2010): 1229–44. http://dx.doi.org/10.1080/14786430903341394.
Full textYU, J., X. F. SUN, Y. Y. XU, and H. ZHANG. "PROPERTIES OF Y1-XSRXBA2-XLAXCU3OY CARRIER COMPENSATION SYSTEM." International Journal of Modern Physics B 21, no. 18n19 (July 30, 2007): 3160–62. http://dx.doi.org/10.1142/s0217979207044081.
Full textRao, Arun D., M. G. Murali, Arul Varman Kesavan, and Praveen C. Ramamurthy. "Experimental investigation of charge transfer, charge extraction, and charge carrier concentration in P3HT:PBD-DT-DPP:PC70BM ternary blend photovoltaics." Solar Energy 174 (November 2018): 1078–84. http://dx.doi.org/10.1016/j.solener.2018.09.072.
Full textMALIK, MD ABDUL, V. D. REDDY, P. VENUGOPAL REDDY, D. R. SAGAR, and PRANKISHAN. "CHARGE TRANSPORT IN GERMANIUM-SUBSTITUTED MAGNESIUM FERRITES." Modern Physics Letters B 08, no. 16 (July 10, 1994): 947–58. http://dx.doi.org/10.1142/s0217984994000959.
Full textSingh, CP, PK Shukla, and SL Agrawal. "Ion transport studies in PVA:NH4CH3COO gel polymer electrolytes." High Performance Polymers 32, no. 2 (March 2020): 208–19. http://dx.doi.org/10.1177/0954008319898242.
Full textFoertig, A., A. Baumann, D. Rauh, V. Dyakonov, and C. Deibel. "Charge carrier concentration and temperature dependent recombination in polymer-fullerene solar cells." Applied Physics Letters 95, no. 5 (August 3, 2009): 052104. http://dx.doi.org/10.1063/1.3202389.
Full textWerner, A., M. Kunst, and T. D. Moustakas. "Influence of the impurity concentration on charge carrier dynamics in GaAs films." Applied Physics Letters 56, no. 16 (April 16, 1990): 1558–60. http://dx.doi.org/10.1063/1.103152.
Full textMarkov, O. I. "On optimization of the charge carrier concentration in a cooling thermoelectric branch." Technical Physics 50, no. 6 (June 2005): 805–6. http://dx.doi.org/10.1134/1.1947363.
Full textKratochvílová, I., J. Šebera, B. Paruzel, J. Pfleger, P. Toman, E. Marešová, Š. Havlová, et al. "Electronic functionality of Gd-bisphthalocyanine: Charge carrier concentration, charge mobility, and influence of local magnetic field." Synthetic Metals 236 (February 2018): 68–78. http://dx.doi.org/10.1016/j.synthmet.2018.01.007.
Full textRibeiro Junior, Luiz Antonio, Wiliam Ferreira da Cunha, Antonio Luciano de Almeida Fonseca, Ricardo Gargano, and Geraldo Magela e Silva. "Concentration effects on intrachain polaron recombination in conjugated polymers." Physical Chemistry Chemical Physics 17, no. 2 (2015): 1299–308. http://dx.doi.org/10.1039/c4cp04514a.
Full textToman, Petr, Miroslav Menšík, Wojciech Bartkowiak, and Jiří Pfleger. "Modelling of the charge carrier mobility in disordered linear polymer materials." Physical Chemistry Chemical Physics 19, no. 11 (2017): 7760–71. http://dx.doi.org/10.1039/c6cp07789g.
Full textSchütt, H. J., and E. Gerdes. "Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility." Journal of Non-Crystalline Solids 144 (January 1992): 14–20. http://dx.doi.org/10.1016/s0022-3093(05)80378-3.
Full textJohns, Robert W., Michelle A. Blemker, Michael S. Azzaro, Sungyeon Heo, Evan L. Runnerstrom, Delia J. Milliron, and Sean T. Roberts. "Charge carrier concentration dependence of ultrafast plasmonic relaxation in conducting metal oxide nanocrystals." Journal of Materials Chemistry C 5, no. 23 (2017): 5757–63. http://dx.doi.org/10.1039/c7tc00600d.
Full textKim, Sung Hyun. "Control of the Charge Carrier Concentration and Hall Mobility in PEDOT:PSS Thermoelectric Films." Bulletin of the Korean Chemical Society 38, no. 12 (November 17, 2017): 1460–64. http://dx.doi.org/10.1002/bkcs.11327.
Full textSonnenberg, K., and A. Altmann. "Variation of free charge carrier concentration in doped GaAs studied by phase microscopy." Materials Science and Engineering: B 28, no. 1-3 (December 1994): 481–84. http://dx.doi.org/10.1016/0921-5107(94)90110-4.
Full textScardamaglia, Mattia, Claudia Struzzi, Silvio Osella, Nicolas Reckinger, Jean-François Colomer, Luca Petaccia, Rony Snyders, David Beljonne, and Carla Bittencourt. "Tuning nitrogen species to control the charge carrier concentration in highly doped graphene." 2D Materials 3, no. 1 (January 6, 2016): 011001. http://dx.doi.org/10.1088/2053-1583/3/1/011001.
Full textDravid, V. P., H. Zhang, and Y. Y. Wang. "Inhomogeneity of charge carrier concentration along the grain boundary plane in oxide superconductors." Physica C: Superconductivity 213, no. 3-4 (August 1993): 353–58. http://dx.doi.org/10.1016/0921-4534(93)90452-v.
Full textZhang, Xuning, Shiqing Bi, Jiyu Zhou, Shuai You, Huiqiong Zhou, Yuan Zhang, and Zhiyong Tang. "Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination." Journal of Materials Chemistry C 5, no. 36 (2017): 9376–82. http://dx.doi.org/10.1039/c7tc02646c.
Full textJournal, Baghdad Science. "Temperature Dependence of Hall Mobility AndCarrier Concentration of pb0.55S0.45 Films." Baghdad Science Journal 6, no. 1 (March 1, 2009): 129–34. http://dx.doi.org/10.21123/bsj.6.1.129-134.
Full textPankratov, Evgeny L., and Elena A. Bulaeva. "On variation of charge carrier mobility under influence of mismatch-induced stress in a heterostructure." Multidiscipline Modeling in Materials and Structures 14, no. 1 (March 5, 2018): 77–90. http://dx.doi.org/10.1108/mmms-04-2017-0016.
Full textOehlschläger, Felix, Sandrine Juillaguet, Hervé Peyre, Jean Camassel, and Peter J. Wellmann. "Photoluminescence-Topography of the p-Type Doped SiC Wafers for Determination of Doping Inhomogeneity." Materials Science Forum 615-617 (March 2009): 259–62. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.259.
Full textYezer, Benjamin A., Aditya S. Khair, Paul J. Sides, and Dennis C. Prieve. "Determination of charge carrier concentration in doped nonpolar liquids by impedance spectroscopy in the presence of charge adsorption." Journal of Colloid and Interface Science 469 (May 2016): 325–37. http://dx.doi.org/10.1016/j.jcis.2016.02.014.
Full textCui, Xiaoyan, Tingjing Hu, Huangyu Wu, Junkai Zhang, Lihua Yang, Xin Zhong, Xiaoxin Wu, et al. "Charge Carrier Transport Behavior and Dielectric Properties of BaF2:Tb3+ Nanocrystals." Nanomaterials 10, no. 1 (January 16, 2020): 155. http://dx.doi.org/10.3390/nano10010155.
Full textEndrődi, B., J. Mellár, Z. Gingl, C. Visy, and C. Janáky. "Reasons behind the improved thermoelectric properties of poly(3-hexylthiophene) nanofiber networks." RSC Adv. 4, no. 98 (2014): 55328–33. http://dx.doi.org/10.1039/c4ra09037c.
Full textKinemuchi, Yoshiaki, Chihiro Ito, Hisashi Kaga, Tomohiro Aoki, and Koji Watari. "Thermoelectricity of Al-doped ZnO at different carrier concentrations." Journal of Materials Research 22, no. 7 (July 2007): 1942–46. http://dx.doi.org/10.1557/jmr.2007.0244.
Full textRodrigues, Bruno P., Heike Ebendorff-Heidepriem, and Lothar Wondraczek. "Decoupling mobility and charge carrier concentration in AgR-AgPO3 glasses (R = Cl, Br, I)." Solid State Ionics 334 (June 2019): 99–104. http://dx.doi.org/10.1016/j.ssi.2019.02.009.
Full textHerms, M., G. Irmer, J. Monecke, and O. Oettel. "Determination of the charge carrier concentration across growth striations inn‐GaAs by Raman spectroscopy." Journal of Applied Physics 71, no. 1 (January 1992): 432–35. http://dx.doi.org/10.1063/1.350673.
Full textTritt, T. M., D. J. Gillespie, A. C. Ehrlich, and G. X. Tessema. "Charge-Density-Wave Carrier Concentration in NbSe3as a Function of Magnetic Field and Temperature." Physical Review Letters 61, no. 15 (October 10, 1988): 1776–79. http://dx.doi.org/10.1103/physrevlett.61.1776.
Full textTritt, T. M., A. C. Ehrlich, D. J. Gillespie, and G. X. Tessema. "Effect of an applied magnetic field on the charge-density-wave carrier concentration inNbSe3." Physical Review B 43, no. 9 (March 15, 1991): 7254–62. http://dx.doi.org/10.1103/physrevb.43.7254.
Full textLevin, E. M., R. Hanus, J. Cui, Q. Xing, T. Riedemann, T. A. Lograsso, and K. Schmidt-Rohr. "Phase analysis and determination of local charge carrier concentration in eutectic Mg2Si–Si alloys." Materials Chemistry and Physics 158 (May 2015): 1–9. http://dx.doi.org/10.1016/j.matchemphys.2015.03.017.
Full textYakimov, E. B. "Estimation of the Maximum Nonequilibrium Charge-Carrier Concentration in GaN Under Electron-Beam Irradiation." Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 12, no. 5 (September 2018): 1000–1004. http://dx.doi.org/10.1134/s1027451018050373.
Full textGamarts, A. E. "Determination of the Charge Carrier Concentration in Lead Selenide Polycrystalline Layers Using Reflectance Spectra." Semiconductors 39, no. 6 (2005): 636. http://dx.doi.org/10.1134/1.1944851.
Full textRodrigues, Ana Candida Martins, Marcio Luis Ferreira Nascimento, Caio Barca Bragatto, and Jean-Louis Souquet. "Charge carrier mobility and concentration as a function of composition in AgPO3–AgI glasses." Journal of Chemical Physics 135, no. 23 (December 21, 2011): 234504. http://dx.doi.org/10.1063/1.3666835.
Full textStröm, C., S. G. Eriksson, J. Albertsson, and N. Winzek. "The influence of composition on polymorphism, structure and charge carrier concentration in TL-2201." Physica C: Superconductivity 235-240 (December 1994): 539–40. http://dx.doi.org/10.1016/0921-4534(94)91493-1.
Full textNovikov, S. V., and A. V. Vannikov. "Dipole trap model and concentration dependence of charge carrier mobility in disordered organic matrices." Chemical Physics 187, no. 3 (October 1994): 289–95. http://dx.doi.org/10.1016/0301-0104(94)89011-0.
Full textMüller, R., U. Künecke, A. Thuaire, M. Mermoux, M. Pons, and P. Wellmann. "Investigation of the charge carrier concentration in highly aluminum doped SiC using Raman scattering." physica status solidi (c) 3, no. 3 (March 2006): 558–61. http://dx.doi.org/10.1002/pssc.200564148.
Full text