Academic literature on the topic 'Charge carrier transport and generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Charge carrier transport and generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Charge carrier transport and generation"
Wang, Ying, and Norman Herron. "Semiconductor nanocrystals in carrier-transporting polymers: Charge generation and charge transport." Journal of Luminescence 70, no. 1-6 (October 1996): 48–59. http://dx.doi.org/10.1016/0022-2313(96)00043-9.
Full textPranculis, Vytenis, Yingyot Infahsaeng, Zheng Tang, Andrius Devižis, Dimali A. Vithanage, Carlito S. Ponseca, Olle Inganäs, Arkady P. Yartsev, Vidmantas Gulbinas, and Villy Sundström. "Charge Carrier Generation and Transport in Different Stoichiometry APFO3:PC61BM Solar Cells." Journal of the American Chemical Society 136, no. 32 (July 25, 2014): 11331–38. http://dx.doi.org/10.1021/ja503301m.
Full textNaito, Hiroyoshi, Yoshikazu Ohsawa, and Shinya Mimura. "Bipolar transport and charge-carrier generation in polymethylphenylsilane thin films containing diphenoquinone." Applied Physics Letters 75, no. 3 (July 19, 1999): 376–78. http://dx.doi.org/10.1063/1.124380.
Full textYang, Y., J. Y. Lee, J. Kumar, A. K. Jain, S. K. Tripathy, H. Matsuda, S. Okada, and H. Nakanishi. "Photoinduced charge-carrier generation and transport in thin-film polydiacetylene single crystals." Synthetic Metals 50, no. 1-3 (August 1992): 439–46. http://dx.doi.org/10.1016/0379-6779(92)90197-q.
Full textTyutnev, A. P., V. S. Saenko, V. A. Kolesnikov, and E. D. Pozhidaev. "Generation and transport of charge carriers in polyvinylcarbazole." High Energy Chemistry 40, no. 1 (January 2006): 6–14. http://dx.doi.org/10.1134/s0018143906010024.
Full textKaul, H., and D. Haarer. "Charge Carrier Generation and Transport in Polyvinylcarbazole: A Model System for Polymeric Photoconductors." Berichte der Bunsengesellschaft für physikalische Chemie 91, no. 9 (September 1987): 845–52. http://dx.doi.org/10.1002/bbpc.19870910904.
Full textArmin, Ardalan, Pascal Wolfer, Paul E. Shaw, Mike Hambsch, Fatemeh Maasoumi, Mujeeb Ullah, Eliot Gann, et al. "Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells." Journal of Materials Chemistry C 3, no. 41 (2015): 10799–812. http://dx.doi.org/10.1039/c5tc02133b.
Full textPopov, V. P., and M. A. Ilnitsky. "Model of Nonuniform Channel for the Charge Carrier Transport in Nanoscale FETs." Advanced Materials Research 276 (July 2011): 59–65. http://dx.doi.org/10.4028/www.scientific.net/amr.276.59.
Full textLu, Ying-Bo, T. L. Yang, Z. C. Ling, Wei-Yan Cong, Peng Zhang, Y. H. Li, and Y. Q. Xin. "How does the multiple constituent affect the carrier generation and charge transport in multicomponent TCOs of In–Zn–Sn oxide." Journal of Materials Chemistry C 3, no. 29 (2015): 7727–37. http://dx.doi.org/10.1039/c5tc01256b.
Full textFurlan, J., Z. Gorup, F. Smole, and M. Topic. "Modeling charge-carrier transport and generation–recombination mechanisms in p+n+ a-Si tunnel junctions." Solar Energy Materials and Solar Cells 66, no. 1-4 (February 2001): 147–53. http://dx.doi.org/10.1016/s0927-0248(00)00167-7.
Full textDissertations / Theses on the topic "Charge carrier transport and generation"
Devižis, Andrius. "Charge carrier transport in conjugated polymer films revealed by ultrafast optical probing." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110222_154904-88738.
Full textKonjuguotieji polimerai kaip funkcinės medžiagos gali būti panaudoti įvairiuose prietaisuose: organiniuose šviestukuose, organiniuose lauko tranzistoriuose, organiniuose saulės elementuose. Šio darbo tikslas - nustatyti fotogeneruotų krūvininkų pernašos dėsningumus π – konjuguotuose polimeruose panaudojant naują žadinimo-zondavimo metodą pagrįstą išoriniu elektriniu lauku indukuota antrosios optinės harmonikos generacija. Pagrindinis dėmesys buvo skiriamas pernašos dinamikai. Molekulinių darinių fizikos laboratorijoje buvo įrengta matavimų schema ir įvertintas metodo tinkamumas krūvio pernašos tyrimams. Buvo atlikti krūvio pernašos matavimai trijuose skirtinguose konjuguotuosiuose polimeruose. Nustatyta, kad fotogeneruotų krūvininkų judris tuoj po sužadinimo yra daug didesnis lyginant su stacionaria judrio verte, o krūvio pernašos dinamiką lemia konjuguoto polimero struktūrinė hierarchija, krūvininkų judėjimas yra daugialypis, susidedantis iš greito judėjimo viena polimero grandine ar konjuguotais polimero grandinės segmentais ir lėto šokavimo tarp atskirų polimero grandinių Pirmą kartą detaliai išnagrinėta šviesa sugeneruotų krūvininkų pernašos dinamika konjuguotuose polimeruose. Darbo rezultatai suteikia žinių apie fundamentalius krūvininkų pernašos mechanizmus konjuguotuose polimeruose, kurios gali būti panaudotos kuriant organinius elektronikos prietaisus.
Fonari, Alexandr. "Theoretical description of charge-transport and charge-generation parameters in single-component and bimolecular charge-transfer organic semiconductors." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54323.
Full textPokhrel, Chandra Prasad. "Crystal growth and charge carrier transport in liquid crystals and other novel organic semiconductors." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1254234736.
Full textTitle from PDF t.p. (viewed April 1, 2010). Advisor: Brett Ellman. Keywords: Laser; Charge generation; Charge transport; Mobility; Trapping; Space charge; Hopping; Tunneling; Lattice vibration; Exciton; Polaron; HUMO; LUMO; Action Spectrum; Quantum efficiency; Crystal Growth; Liquid crystal; Disordered medium. Includes bibliographical references.
Ho, Carr Hoi Yi. "Toward better performing organic solar cells: impact of charge carrier transport and electronic interactions in bulk heterojunction blends /Ho Hoi Yi, Carr." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/359.
Full textLörtscher, Emanuel Marc. "Charge-carrier transport measurements through single molecules." Göttingen Cuvillier, 2006.
Find full textLimketkai, Benjie 1982. "Charge-carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43063.
Full textIncludes bibliographical references (p. 101-106).
Since the first reports of efficient luminescence and absorption in organic semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have attracted increasing interest. Organic semiconductors have proven to be a promising material set for novel optical and/or electrical devices. Not only do they have the advantage of tunable properties using chemistry, but organic semiconductors hold the potential of being fabricated cheaply with low temperature deposition on flexible plastic substrates, ink jet printing, or roll-to-roll manufacturing. These fabrication techniques are possible because organic semiconductors are composed of molecules weakly held together by van der Waals forces rather than covalent bonds. Van der Waals bonding eliminates the danger of dangling bond traps in amorphous or polycrystalline inorganic films, but results in narrower electronic bandwidths. Combined with spatial and energetic disorder due to weak intermolecular interactions, the small bandwidth leads to localization of charge carriers and electron-hole pairs, called excitons. Thus, the charge-carrier mobility in organic semiconductors is generally much smaller than in their covalently-bonded, highly-ordered crystalline semiconductor counterparts. Indeed, one major barrier to the use of organic semiconductors is their poor charge transport characteristics. Yet this major component of the operation of disordered organic semiconductor devices remains incompletely understood. This thesis analyzes charge transport and injection in organic semiconductor materials. A first-principles analytic theory that explains the current-voltage characteristics and charge-carrier mobility for different metal contacts and organic semiconductor materials over a wide range of temperatures, carrier densities, and electric field strengths will be developed.
(cont) Most significantly, the theory will enable predictive models of organic semiconductor devices based on physical material parameters that may be determined by experimental measurements or quantum chemical simulations. Understanding charge transport and injection through these materials is crucial to enable the rational design for organic device applications, and also contributes to the general knowledge of the physics of materials characterized by charge localization and energetic disorder.
by Benjie N. Limketkai.
Ph.D.
Limketkai, Benjie 1982. "Charge carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87446.
Full textDavies, Andrew Wynn. "Charge carrier transport in THM grown CdTe." Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/843369/.
Full textSchoefer, Sebastian. "High charge-carrier density transport studies in pBTTT." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610581.
Full textSmith, Christian W. "A study of charge carrier transport in graphene nanoribbons." Honors in the Major Thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1496.
Full textBachelors
Sciences
Physics
Books on the topic "Charge carrier transport and generation"
Schroeder, Dietmar. Modelling of interface carrier transport for device simulation. Wien: Springer-Verlag, 1994.
Find full textKrumbein, Ulrich. Simulation of carrier generation in advanced silicon devices. Konstanz: Hartung-Gorre, 1996.
Find full textYing-quan, Peng, ed. Charge carrier transport in organic semiconductor thin film devices. New York: Nova Science Publishers, 2008.
Find full textLipperheide, Reinhard, and Uwe Wille. The Thermoballistic Transport Model: A Novel Approach to Charge Carrier Transport in Semiconductors. Springer, 2016.
Find full textBook chapters on the topic "Charge carrier transport and generation"
Ruda, H. E., and Alexander Shik. "Generation, Recombination and Transport of Nonequilibrium Carriers in Polymer-Semiconductor Nanocomposites." In Charge Transport in Disordered Solids with Applications in Electronics, 307–37. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470095067.ch8.
Full textPeyrard, M., R. Boesch, and I. Kourakis. "Thermal Generation and Mobility of Charge Carriers in Collective Proton Transport in Hydrogen-Bonded Chains." In NATO ASI Series, 65–78. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3444-0_5.
Full textHanna, Jun-Ichi. "Charge Carrier Transport in Liquid Crystalline Semiconductors." In Liquid Crystalline Semiconductors, 39–64. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-2873-0_2.
Full textAnile, A. M., S. Pennisi, and M. Trovato. "Extended Thermodynamics of Charge Carrier Transport in Semiconductors." In Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 23–32. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_4.
Full textOrtmann, Frank, Lars Matthes, Björn Oetzel, Friedhelm Bechstedt, and Karsten Hannewald. "Charge-Carrier Transport Through Guanine Crystals and Stacks." In High Performance Computing in Science and Engineering, Garching/Munich 2009, 529–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13872-0_44.
Full textRavaioli, U., T. A. van der Straaten, and G. Kathawala. "Implicit Water Simulations of Non-Equilibrium Charge Transport in Ion Channels." In Nonequilibrium Carrier Dynamics in Semiconductors, 205–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36588-4_46.
Full textvan der Laan, G. P., M. P. de Haas, J. M. Warman, D. M. de Leeuw, and J. Tsibouklis. "Charge-Carrier Generation and Migration in a Polydiacetylene Compound." In ACS Symposium Series, 316–27. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1994-0579.ch024.
Full textOpitz, Andreas, and Wolfgang Brütting. "Ambipolar Charge-Carrier Transport in Molecular Field-Effect Transistors." In Physics of Organic Semiconductors, 239–65. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654949.ch8.
Full textBässler, H. "Exciton and Charge Carrier Transport in Random Organic Solids." In Disorder Effects on Relaxational Processes, 485–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78576-4_18.
Full textHanna, Jun-Ichi, and Akira Ohno. "Charge-Carrier Transport and Its Modeling in Liquid Crystals." In Self-Organized Organic Semiconductors, 39–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470949122.ch3.
Full textConference papers on the topic "Charge carrier transport and generation"
Schreiber, Andreas, and Dietrich Haarer. "Charge carrier generation and transport in a binary donor-acceptor glass." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Stephen Ducharme, David H. Dunlap, and Robert A. Norwood. SPIE, 1999. http://dx.doi.org/10.1117/12.363891.
Full textSharma, Ashish, Sandra Zivanovic, Shravan R. Animilli, and Dentcho A. Genov. "Analytical Model of Thin-Film Silicon Solar Cell." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50793.
Full textAshraf, S. S. Z., D. Patel, and A. C. Sharma. "Charge carrier transport in bilayer graphene." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810234.
Full textEychmuller, Alexander, and Volker Noack. "Charge carrier transport in nanoporous ZnO electrodes." In International Symposium on Optical Science and Technology, edited by Jin Z. Zhang and Zhong L. Wang. SPIE, 2002. http://dx.doi.org/10.1117/12.451034.
Full textMartinelli, R. U., D. Z. Garbuzov, H. Lee, N. Morris, T. Odubanjo, G. C. Taylor, and J. C. Connolly. "Minority-carrier transport in InGaAsSb thermophotovoltaic diodes." In THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY. ASCE, 1997. http://dx.doi.org/10.1063/1.53276.
Full textMatsushima, Toshinori, Guang-He Jin, Yoshihiro Kanai, Tomoyuki Yokota, Seiki Kitada, Toshiyuki Kishi, and Hideyuki Murata. "Charge carrier injection and transport in organic thin films." In Photonic Devices + Applications, edited by Franky So and Chihaya Adachi. SPIE, 2008. http://dx.doi.org/10.1117/12.793969.
Full textKarachevtseva, Lyudmyla, Volodimir Onishchenko, Fiodor Sizov, Andriy Sukach, and Volodimir Teterkin. "Charge carrier transport in barrier in-macroporous silicon structures." In Integrated Optoelectronic Devices 2006, edited by Manijeh Razeghi and Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.644143.
Full textStephan, Jorg, and Ludwig Brehmer. "Simulation of charge carrier transport in disordered molecular solids." In International Symposium on Optical Science and Technology, edited by Christopher M. Lawson and Klaus Meerholz. SPIE, 2002. http://dx.doi.org/10.1117/12.452732.
Full textAnand Kumar, T., J. M. Mallikarjuna, and V. Ganesan. "Effect of Injection Timing on Fuel-Air Mixing and Combustion in a Direct Injection Stratified Charge SI Engine." In ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/jrc/ice2007-40047.
Full textBarabash, Y., V. Kharkyanen, M. Zabolotny, and T. Zabolotnaya. "Charge carrier generation in photosensitive amorphous molecular semiconductors." In SPIE Proceedings, edited by Oleg V. Angelsky. SPIE, 2006. http://dx.doi.org/10.1117/12.679952.
Full textReports on the topic "Charge carrier transport and generation"
Han, Sung Su. Mean carrier transport properties and charge collection dynamics of single-crystal, natural type IIa diamonds from ion-induced conductivity measurements. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10185688.
Full text