Academic literature on the topic 'Charge carriers dynamic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Charge carriers dynamic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Charge carriers dynamic"
Katayama, Kenji, Tatsuya Chugenji, and Kei Kawaguchi. "Charge Carrier Trapping during Diffusion Generally Observed for Particulate Photocatalytic Films." Energies 14, no. 21 (October 26, 2021): 7011. http://dx.doi.org/10.3390/en14217011.
Full textDu, Luchao, Xiaoping Shi, Menghan Duan, and Ying Shi. "Pressure-Induced Tunable Charge Carrier Dynamics in Mn-Doped CsPbBr3 Perovskite." Materials 15, no. 19 (October 8, 2022): 6984. http://dx.doi.org/10.3390/ma15196984.
Full textMoore, Kalani, Lynette Keeney, Clive Downing, Michele Conroy, and Ursel Bangert. "Charge Carriers in Dynamic Ferroelectric Domain Walls." Microscopy and Microanalysis 26, S2 (July 30, 2020): 1140–41. http://dx.doi.org/10.1017/s1431927620017079.
Full textDu, Sichao, Juxin Yin, Hao Xie, Yunlei Sun, Tao Fang, Yu Wang, Jing Li, et al. "Auger scattering dynamic of photo-excited hot carriers in nano-graphite film." Applied Physics Letters 121, no. 18 (October 31, 2022): 181104. http://dx.doi.org/10.1063/5.0116720.
Full textKUZEMSKY, A. L. "BOUND AND SCATTERING STATES OF ITINERANT CHARGE CARRIERS IN COMPLEX MAGNETIC MATERIALS." International Journal of Modern Physics B 18, no. 23n24 (October 10, 2004): 3227–66. http://dx.doi.org/10.1142/s0217979204026391.
Full textFrolov, I. V., O. A. Radaev, and V. A. Sergeev. "Investigation of the dynamic parameters of electroluminescence in different parts of the spectrum in local regions of the light-emitting heterostructure." Journal of Physics: Conference Series 2086, no. 1 (December 1, 2021): 012083. http://dx.doi.org/10.1088/1742-6596/2086/1/012083.
Full textUratani, Hiroki. "(Invited) Simulating Dynamic Excitons Via Quantum Molecular Dynamics: A Case Study in Lead Halide Perovskites." ECS Meeting Abstracts MA2022-01, no. 13 (July 7, 2022): 904. http://dx.doi.org/10.1149/ma2022-0113904mtgabs.
Full textKim, Sun-Kyo, and Yong-Seog Kim. "Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers." Journal of Applied Physics 126, no. 3 (July 21, 2019): 035704. http://dx.doi.org/10.1063/1.5109089.
Full textPfeiffer, Carl. "Semiconductor 1/f noise from dynamic coupling of charge carriers and lattice." Journal of Applied Physics 90, no. 7 (October 2001): 3653–55. http://dx.doi.org/10.1063/1.1388020.
Full textBRYKSIN, V. V., and P. KLEINERT. "DYNAMIC MAGNETOELECTRIC AND CHARGE-HALL EFFECTS IN THE RASHBA–DRESSELHAUS MODEL." International Journal of Modern Physics B 20, no. 29 (November 20, 2006): 4937–46. http://dx.doi.org/10.1142/s0217979206035680.
Full textDissertations / Theses on the topic "Charge carriers dynamic"
Grigioni, I. "DEVELOPMENT OF PHOTOCATALYTIC MATERIALS FOR SOLAR LIGHT CONVERSION INTO FUELS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/333066.
Full textBöhme, Christoph. "Dynamics of spin-dependent charge carrier recombination." [S.l.] : [s.n.], 2003. http://archiv.ub.uni-marburg.de/diss/z2003/0183.
Full textYamamoto, Shunsuke. "Charge Carrier Dynamics in Polymer Solar Cells." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157616.
Full textSolowan, Hans-Michael [Verfasser], and Ulrich T. [Akademischer Betreuer] Schwarz. "Charge carrier dynamics in InGaN quantum wells: stimulated emission depletion and lateral charge carrier motion." Freiburg : Universität, 2016. http://d-nb.info/1119452694/34.
Full textD'Souza, Arvind Inacib. "Picosecond dynamics of charged carriers in amorphous semiconductors /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260135357755.
Full textLambright, Scott. "Ultrafast Charge Carrier Dynamics in Au/Semiconductor Nanoheterostructures." Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1404741549.
Full textRueda, Delgado Diana Paola. "Charge carrier dynamics and interfaces in perovskite solar cells." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667466.
Full textLas perovskitas organometálicas de haluros para celdas solares son un tipo de semiconductor híbrido que recientemente ha atrapado la atención de la comunidad científica debido a su excelente desempeño y atractivas propiedades ópticas. Desde entonces, han sido utilizadas en celdas solares, LEDs y lasers, a pesar de que los mecanismos por los cuales se obtienen tan buenos desempeños no son completamente conocidos. Con esta disertación se presenta un estudio sobre las características ópticas de la perovskitas para su utilización en celdas solares de películas delgadas. Debido a su delgado grosor, la morfología de la capa es sensible a los parámetros de fabricación. De manera que se optimiza el proceso de fabricación tratando de mejorar sus características. Entre los retos que presentan las perosvkitas para su implementación, la falta de estabilidad durante su funcionamiento es uno de los más relevantes. Entonces en este dissertationo se estudian también las razones por las que se presenta pérdidas de estabilidad. Para esto se utilizan entrecapas, que introducen cambios en la interfaz de la perovksite con la capa extractora de electrones, y con el propósito inicial de reducir la histéresis en la curva de corriente-voltaje. Además de reducirlo, estabilizan la potencia extraída de la celda solar bajo iluminación. Los efectos de la degradación en las características de las celdas solares nos permiten identificar sus orígenes y presentar propuestas para evitar o retardar los daños a la capa de perovskita. Teniendo esto en cuenta, podemos establecer que el problema de la estabilidad no radica sólo dentro de la perovskita, pero también en el contacto entre las capas y en el transporte de carga dentro de la celda solar de perovskita. El control cuidadoso de estas interfaces, entonces, permite la obtención de un rendimiento estable y una vida larga del dispositivo.
Organometallhalogenid-Perowskite sind hybride Halbleiter, die in jüngster Zeit aufgrund ihrer hervorragenden Halbleitereingeschaften und attraktiven optischen Eigenschaften die Aufmerksamkeit der Wissenschaft auf sich gezogen haben. Seitdem wurde die exzellente Eignung dieser Materialklasse für verschiedenste opto-elektrische Anwendungen wie z.B. Solarzellen, LEDs und Lasern unter Beweis gestellt. Die physikalischen Mechanismen, die die Grundlage für diese einzigartigen, qualitativ Hochwertigen Eigenschaften bilden, sind jedoch noch weitgehend unbekannt. Dieses Manuskript stellt eine Studie über die optischen Eigenschaften von Perowskitfilmen für den Einsatz in Dünnschichtsolarzellen dar, die mit dem Spin-Coating-Verfahren hergestellt wurden. Aufgrund des geringen Dicken der Perowskitschichten ist deren Morphologie empfindlich gegenüber kleinen Variationen der Fertigungsparameter. Deshalb muss der Herstellungsprozess durch Feinjustierung dieser Parameter optimiert werden, um hocheffiziente Solarzellen herzustellen. Eine der größten Herausforderungen für die Kommerzialisierung der Perowskitphotovoltaik ist neben der Herstellung durch die mangelnde Stabilität des Wirkungsgerades während des Betriebs gegeben. Daher werden in der vorliegenden Arbeit zusätzlich die Gründe für diese Stabilitätsverluste untersucht. Zu diesem Zweck werden zusätzliche Nanoschichten zwischen der Perowskit- und der Elektronenextraktionsschicht appliziert, die nicht nur eine Reduzierung der Hysterese in der Strom-Spannungskurve bewirken, sondern die Leistung der Solarzelle unter Sonneneinstrahlung stabilisieren. Der Vergleich der Stabilität von Solarzellen mit und ohne zusätzlichen Zwischenschichten ermöglicht Rückschlüsse auf die Ursache der Degradationsmechanismen. Ein Hauptresultat dieser Stabilitäts- bzw. Degradationsstudie ist die Tatsache, dass ein Großteil des beobachteten Effizienzverlustes nicht durch die Perowskitdegradation innerhalb des Filmes, sondern vielmehr durch die Instabilität der Grenzflächen des Perowskits mit den Extraktionsschichten zustande kommt. Die Grenzflächendegradation erzeugt eine Barriere für den Ladungstransport durch die Erhöhung der lokalen „Trap-Dichte“. Basierend auf dieser Erkenntnis eröffnet die sorgfältige Modifikation der Grenzflächen innerhalb der Solarzelle vielfältige Möglichkeiten, um eine stabile Betriebsleistung der Solarzelle über längere Zeiten durch Vermeidung bzw. Verzögerung der Degradation zu erzielen
Gilmore, Rachel Hoffman. "Charge carrier dynamics in lead sulfide quantum dot solids." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/115015.
Full textCataloged from PDF version of thesis. "February 2018." Handwritten on title page: [September 2017].
Includes bibliographical references (pages 105-117).
Quantum dots, also called semiconductor nanocrystals, are an interesting class of materials because their band gap is a function of the quantum dot size. Their optical properties are not determined solely by the atomic composition, but may be engineered. Advances in quantum dot synthesis have enabled control of the ensemble size dispersity and the creation of monodisperse quantum dot ensembles with size variations of less than one atomic layer. Quantum dots have been used in a variety of applications including solar cells, light-emitting diodes, photodetectors, and thermoelectrics. In many of these applications, understanding charge transport in quantum dot solids is crucial to optimizing efficient devices. We examine charge transport in monodisperse, coupled quantum dot solids using spectroscopic techniques explained by hopping transport models that provide a complementary picture to device measurements. In our monodisperse quantum dot solids, the site-to-site energetic disorder that comes from size dispersity and the size-dependent band gap is very small and spatial disorder in the quantum dot superlattice often has a greater impact on charge transport. In Chapter 2, we show that improved structural order from self-assembly in monodisperse quantum dots reduces the interparticle spacing and has a greater impact than reduced energetic disorder on increasing charge carrier hopping rates. In Chapter 3, we present temperature-dependent transport measurements that demonstrate again that when energetic disorder is very low, structural changes will dominate the dynamics. We find increasing mobility with decreasing temperature that can be explained by a 1-2 Å contraction in the edge-to-edge nearest neighbor quantum dot spacing. In Chapter 4, we study optical states that are 100-200 meV lower in energy than the band gap. Because we work with monodisperse quantum dots, we are able to resolve this trap state separately from the band edge state and study its optical properties. We identify the trap state as dimers that form during synthesis and ligand exchange when two bare quantum dot surfaces fuse. The findings of this thesis point to the importance of minimizing the structural disorder of the coupled quantum dot solid in addition to the energetic disorder to optimize charge carrier transport.
by Rachel Hoffman Gilmore.
Ph. D.
Peckus, Domantas. "Ultrafast exciton and charge carrier dynamics in nanostructured molecular layers." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2013~D_20131220_150447-81409.
Full textDėl savo unikalių savybių organiniai puslaidininkiai gali būti plačiai pritaikyti įvairiuose optoelektroniniuose prietaisuose: organiniuose šviestukuose, organiniuose lazeriuose, organiniuose tranzistoriuose ir organiniuose šviesos elementuose. Visi šie pritaikymai yra galimi dėl organinių molekulių laidumo. Nepaisant didelių organinių puslaidininkių perspektyvų, jie vis dar yra nukonkuruojami neorganinių puslaidininkių. Pagrindinis šių tezių tikslas yra detaliai ištirti eksitonų ir krūvininkų dinamikos procesus grynuose organiniuose puslaidininkiuose ir jų mišiniuose su fulereno dariniais. Buvo matuoti organiniai ir silicio organiniai puslaidininkiai: poli-di-n-heksilsilanas (PDHS), polifluoreno dariniai F8BT ir PSF-BT, merocianinas MD376. Mišiniuose naudoti fulerenai buvo C60 ir jo darinys PCBM. Tyrimams buvo naudoti ultraspartūs skirtuminės sugerties, fluorescencijos ir integralinės fotosrovės matavimai. PDHS tyrimai atskleidė, kad neorganinės matricos sumažina nespindulinį relaksacijos kanalą. PDHS nanokompozitai gali būti naudojami polimero fluorescencijos savybių: stabilumo, kvantinio našumo pagerinimui. Polifluorenų F8BT ir PSF-BT grynų plėvelių tyrimų metu nustatyti eksitonų-eksitonų anihiliacijos ir eksitonų migracijos skirtumai. Vidumolekulinės krūvio pernašos būsenos formavimasis buvo pasiūlytas PSF-BT grynoms plėvelėms. Pristatyta ilgi gyvuojančių krūvininkų porų formavimosi schema PSF-BT/PCBM mišiniuose. Krūvio pernašos būsenų formavimasis buvo ištirtas... [toliau žr. visą tekstą]
Strothkämper, Christian [Verfasser]. "Charge Carrier Dynamics in Thin Film Solar Cells / Christian Strothkämper." Berlin : Freie Universität Berlin, 2013. http://d-nb.info/1037725832/34.
Full textBooks on the topic "Charge carriers dynamic"
Perednya, Dmitriy, Aleksandr Belyaev, and Oleg Filimonov. Dynamic aspects of the managerial culture of the internal affairs bodies of Russia. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1872859.
Full textGruzdev, Vladimir, Sergey Suslov, Vladimir Kosinskiy, and Mariya Hrustaleva. Changes in the composition and structure of the components of the landscapes of the forest zone in the conditions of technogenesis. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1850657.
Full textBorzyh, Stanislav. Urban evolution. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1841828.
Full textBarbera, Filippo, Roberto Paladini, and Marco Vedovato. Venice Original E-commerce dell’artigianato artistico e tradizionale veneziano. Venice: Fondazione Università Ca’ Foscari, 2022. http://dx.doi.org/10.30687/978-88-6969-615-2.
Full textShuford, Kevin L. Quantum control of charge carrier dynamics in layered semiconductor heterostructures. 2003.
Find full textDicker, Gerald. Photogeneration & Dynamics of Charge Carriers in the Conjugated Polymer Poly (3-hexylthiophene). Delft Univ Pr, 2004.
Find full textPonseca, Carlito S. Chapter 11 Charge Carrier Dynamics in Organometal Halide Perovskite Probed by Time-Resolved Electrical Measurements. InTechOpen, 2016.
Find full textGlazov, M. M. Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.
Full textGlazov, M. M. Electron Spin Precession Mode Locking and Nuclei-Induced Frequency Focusing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0009.
Full textGlazov, M. M. Strong Coupling of Electron and Nuclear Spins: Outlook and Prospects. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0011.
Full textBook chapters on the topic "Charge carriers dynamic"
Giesecke, Johannes. "Dynamics of Charge Carriers." In Springer Theses, 25–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06157-3_3.
Full textScheibenzuber, Wolfgang G. "Dynamics of Charge Carriers and Photons." In GaN-Based Laser Diodes, 55–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24538-1_6.
Full textRavaioli, U., T. A. van der Straaten, and G. Kathawala. "Implicit Water Simulations of Non-Equilibrium Charge Transport in Ion Channels." In Nonequilibrium Carrier Dynamics in Semiconductors, 205–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36588-4_46.
Full textOhkita, Hideo. "Charge Carrier Dynamics in Polymer Solar Cells." In Organic Solar Cells, 123–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9113-6_6.
Full textPethig, R. "Hopping Charge Carriers in Molecular Crystals and Biopolymers: The Fröhlich Connection." In Energy Transfer Dynamics, 257–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71867-0_25.
Full textPerfetti, Luca, Tobias Kampfrath, Martin Wolf, and Christian Frischkorn. "Ultrafast Charge-Carrier Dynamics in Low-Dimensional Solids." In Ultrafast Phenomena XV, 612–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_197.
Full textMizoguchi, Kenji. "Microscopic and Anisotropic Dynamics of Spin Carriers with/without Charge." In Springer Proceedings in Physics, 70–84. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-68470-1_6.
Full textNoguchi, Yutaka, Yuya Tanaka, Yukimasa Miyazaki, Naoki Sato, Yasuo Nakayama, and Hisao Ishii. "Displacement Current Measurement for Exploring Charge Carrier Dynamics in Organic Semiconductor Devices." In Physics of Organic Semiconductors, 119–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654949.ch5.
Full textAkimov, Alexey V., and Oleg V. Prezhdo. "Nonradiative Relaxation of Charge Carriers in GaN-InN Alloys: Insights from Nonadiabatic Molecular Dynamics." In Photoinduced Processes at Surfaces and in Nanomaterials, 189–200. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1196.ch009.
Full textChang, Kiseok, Ryan A. Murdick, Tzong-Ru T. Han, Fei Yuan, and Chong-Yu Ruan. "Light-Induced Charge Carrier Dynamics at Nanostructured Interfaces Investigated by Ultrafast Electron Diffractive Photovoltammetry." In Lecture Notes in Nanoscale Science and Technology, 311–47. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8148-5_13.
Full textConference papers on the topic "Charge carriers dynamic"
Barone, C., F. Romeo, and S. Pagano. "Dynamic behaviors of the charge carriers investigated by means of noise spectroscopy." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578882.
Full textTataronis, J. A., George C. Papen, and B. E. A. Saleh. "Transient optical phase conjugation in dynamic media." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.mf14.
Full textHutchings, D. C., C. B. Park, and A. Miller. "Modeling of cross–well carrier transport in a multiple quantum well pin structure." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mff2.
Full textAlley, Thomas G., Richard A. Myers, and S. R. J. Brueck. "An Ion Exchange Model for Extended-Duration Thermal Poling of Bulk Fused Silica." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.btuc.2.
Full textKim, Y. H., F. Li, and S. W. Cheong. "Dynamics of charge carriers in cuprates." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.836135.
Full textSooriyagoda, Rishmali, Herath P. Piyathilaka, Kevin T. Zawilski, Peter G. Schunemann, and Alan D. Bristow. "Charge Carrier and Lattice Carrier Dynamics from Temperature-Dependent Terahertz Spectroscopy." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.fm4c.6.
Full textStrohmair, Simone, Amrita Dey, Yu Tong, Lakshminarayana Polavarapu, Bernhard J. Bohn, and Jochen Feldmann. "Spin Polarization Dynamics of Free Charge Carriers in CsPbI3 Nanocrystals." In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.016.
Full textYadav, Sushma, Ajeet Singh Singh, Sameer Sapra Sapra, and Nadja Bigall. "Surface Dependent Charge Carrier Dynamics in Core/Shell Nanoplatelets." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.139.
Full textDurrant, James. "Charge carrier dynamics in organic and perovskite solar cells." In 3rd International Conference on Perovskite and Organic Photovoltaics and Optoelectronics. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.iperop.2019.081.
Full textLiu, Maning, Mohamed Abodya, Weisi Dai, Tokuhisa Kawawaki, Ai Shimazaki, Ryota Sato, Masaki Saruyama, Toshiharu Teranishi, Atsushi Wakamiya, and Yasuhiro Tachibana. "Photo-Induced Charge Carrier Dynamics of Metal Halide Perovskite." In 2022 29th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2022. http://dx.doi.org/10.23919/am-fpd54920.2022.9851264.
Full textReports on the topic "Charge carriers dynamic"
Klopf, John. Ultrafast Carrier Dynamics Measured by the Transient Change in the Reflectance of InP and GaAs Film. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/920104.
Full textHan, Sung Su. Mean carrier transport properties and charge collection dynamics of single-crystal, natural type IIa diamonds from ion-induced conductivity measurements. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10185688.
Full textSoloviev, Vladimir, Andrii Bielinskyi, and Viktoria Solovieva. Entropy Analysis of Crisis Phenomena for DJIA Index. [б. в.], June 2019. http://dx.doi.org/10.31812/123456789/3179.
Full textCarpita, Nicholas C., Ruth Ben-Arie, and Amnon Lers. Pectin Cross-Linking Dynamics and Wall Softening during Fruit Ripening. United States Department of Agriculture, July 2002. http://dx.doi.org/10.32747/2002.7585197.bard.
Full textNechaev, V., Володимир Миколайович Соловйов, and A. Nagibas. Complex economic systems structural organization modelling. Politecnico di Torino, 2006. http://dx.doi.org/10.31812/0564/1118.
Full textSoloviev, Vladimir, Oleksandr Serdiuk, Serhiy Semerikov, and Arnold Kiv. Recurrence plot-based analysis of financial-economic crashes. [б. в.], October 2020. http://dx.doi.org/10.31812/123456789/4121.
Full textBelkin, Shimshon, Sylvia Daunert, and Mona Wells. Whole-Cell Biosensor Panel for Agricultural Endocrine Disruptors. United States Department of Agriculture, December 2010. http://dx.doi.org/10.32747/2010.7696542.bard.
Full text