To see the other types of publications on this topic, follow the link: Charge-density-wave materials.

Journal articles on the topic 'Charge-density-wave materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Charge-density-wave materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fleming, R. M. "Low-frequency damping in charge-density wave materials." Synthetic Metals 19, no. 1-3 (March 1987): 983. http://dx.doi.org/10.1016/0379-6779(87)90491-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thorne, R. E., J. McCarten, D. A. DiCarlo, T. L. Adelman, and M. P. Maher. "Charge density wave pinning in NbSe3." Synthetic Metals 43, no. 3 (June 1991): 3935–40. http://dx.doi.org/10.1016/0379-6779(91)91712-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brazovskii, S., and S. Matveenko. "Solitons in charge density wave crystals." Synthetic Metals 43, no. 3 (June 1991): 4019–24. http://dx.doi.org/10.1016/0379-6779(91)91732-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cox, Susan, J. Singleton, R. D. McDonald, A. Migliori, and P. B. Littlewood. "Sliding charge-density wave in manganites." Nature Materials 7, no. 1 (December 2, 2007): 25–30. http://dx.doi.org/10.1038/nmat2071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Wen-Zheng, Chui-Lin Wang, Zhao-Bin Su, and Lu Yu. "Localized excitations in competing charge-density-wave and spin-density-wave systems." Synthetic Metals 56, no. 2-3 (April 1993): 3370–76. http://dx.doi.org/10.1016/0379-6779(93)90130-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wohlfeld, Krzysztof, Andrzej M. Oleś, and George A. Sawatzky. "Charge density wave in Sr14−xCaxCu24O41." physica status solidi (b) 247, no. 3 (March 2010): 668–70. http://dx.doi.org/10.1002/pssb.200983046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eckern, U., and A. Geier. "Microscopic theory of charge-density wave systems." Zeitschrift f�r Physik B Condensed Matter 65, no. 1 (March 1986): 15–27. http://dx.doi.org/10.1007/bf01308395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zettl, A., M. F. Hundley, and P. Parilla. "Magnetotransport studies in charge density wave conductors." Synthetic Metals 19, no. 1-3 (March 1987): 807–12. http://dx.doi.org/10.1016/0379-6779(87)90456-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sekine, Tomoyuki, Yoshinari Kiuchi, Mitsuru Izumi, Kunimitsu Uchinokura, Ryozo Yoshizaki, and Etsuyuki Matsuura. "Charge-density-wave phase transition in Nb3Te4." Synthetic Metals 19, no. 1-3 (March 1987): 875–80. http://dx.doi.org/10.1016/0379-6779(87)90468-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gabovich, A. M., A. I. Voitenko, J. F. Annett, and M. Ausloos. "Charge- and spin-density-wave superconductors." Superconductor Science and Technology 14, no. 4 (March 16, 2001): R1—R27. http://dx.doi.org/10.1088/0953-2048/14/4/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Walker, M. B. "A model for charge-density waves in TaTe4 and related materials." Canadian Journal of Physics 63, no. 1 (January 1, 1985): 46–49. http://dx.doi.org/10.1139/p85-007.

Full text
Abstract:
The proposed model assumes that charge-density waves are formed on equivalent, weakly interacting, one-dimensional columns. Various three-dimensional structures differing in the relative phasing of the charge-density waves on different columns are found, and the charge-density wave structures of TaTe4 and NbTe4 are interpreted in terms of these results.
APA, Harvard, Vancouver, ISO, and other styles
12

Matsuura, Toru, Taku Tsuneta, Katsuhiko Inagaki, and Satoshi Tanda. "Dynamics of charge density wave ring." Physica C: Superconductivity 426-431 (October 2005): 431–35. http://dx.doi.org/10.1016/j.physc.2005.02.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tabata, Y., T. Taniguchi, S. Kawarazaki, Y. Narumi, S. Kimura, Y. Tanaka, K. Katsumata, et al. "Spin density wave and charge density wave in the Kondo-lattice compound." Physica B: Condensed Matter 359-361 (April 2005): 260–62. http://dx.doi.org/10.1016/j.physb.2005.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Meier, William R., Bryan C. Chakoumakos, Satoshi Okamoto, Michael A. McGuire, Raphaël P. Hermann, German D. Samolyuk, Shang Gao, et al. "A Catastrophic Charge Density Wave in BaFe2Al9." Chemistry of Materials 33, no. 8 (March 15, 2021): 2855–63. http://dx.doi.org/10.1021/acs.chemmater.1c00005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kaur, Gurpreet, S. Mathi Jaya, and B. K. Panigrahi. "Phonon instability and charge density wave in U2Ti." Journal of Alloys and Compounds 730 (January 2018): 36–41. http://dx.doi.org/10.1016/j.jallcom.2017.09.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Eckern, Ulrich. "Relaxation processes in charge-density-wave systems." Journal of Low Temperature Physics 62, no. 5-6 (March 1986): 525–51. http://dx.doi.org/10.1007/bf00683409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Heinz, G., J. Parisi, V. Ya Pokrovskii, and A. Kittel. "Spatial structure formation in charge density wave systems." Synthetic Metals 104, no. 1 (June 1999): 61–71. http://dx.doi.org/10.1016/s0379-6779(99)00027-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Horovitz, B., R. Österbacka, and Z. V. Vardeny. "Multiple Fano effect in charge density wave systems." Synthetic Metals 141, no. 1-2 (March 2004): 179–83. http://dx.doi.org/10.1016/j.synthmet.2003.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Yiqin, M. Chung, T. N. O'Neal, and J. W. Brill. "Differential scanning calorimetry at charge-density-wave transitions." Synthetic Metals 46, no. 3 (March 1992): 307–16. http://dx.doi.org/10.1016/0379-6779(92)90356-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lopes, E. B., M. Almeida, A. Rötger, J. Dumas, and C. Schlenker. "Magnetothermopower of the charge density wave compound KMo6O17." Synthetic Metals 56, no. 2-3 (April 1993): 2599–604. http://dx.doi.org/10.1016/0379-6779(93)90004-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Degiorgi, L., and G. Grüner. "The electrodynamics of the charge density wave condensate." Synthetic Metals 56, no. 2-3 (April 1993): 2688–95. http://dx.doi.org/10.1016/0379-6779(93)90019-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Saint-Lager, M. C., P. Monceau, and M. Renard. "Non local properties in charge density wave transport." Synthetic Metals 29, no. 2-3 (March 1989): 279–88. http://dx.doi.org/10.1016/0379-6779(89)90912-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tucker, J. R., and W. G. Lyons. "A simple model for charge density wave dynamics." Synthetic Metals 29, no. 2-3 (March 1989): 399–406. http://dx.doi.org/10.1016/0379-6779(89)90928-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gupta, Ritu, K. P. Rajeev, and Z. Hossain. "Thermal transport studies on charge density wave materials LaPt2Si2 and PrPt2Si2." Journal of Physics: Condensed Matter 30, no. 47 (November 2, 2018): 475603. http://dx.doi.org/10.1088/1361-648x/aae766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Watson, Matthew D., Akhil Rajan, Tommaso Antonelli, Kaycee Underwood, Igor Marković, Federico Mazzola, Oliver J. Clark, et al. "Strong-coupling charge density wave in monolayer TiSe2." 2D Materials 8, no. 1 (October 17, 2020): 015004. http://dx.doi.org/10.1088/2053-1583/abafec.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gao, Shang, Felix Flicker, Raman Sankar, He Zhao, Zheng Ren, Bryan Rachmilowitz, Sidhika Balachandar, et al. "Atomic-scale strain manipulation of a charge density wave." Proceedings of the National Academy of Sciences 115, no. 27 (June 18, 2018): 6986–90. http://dx.doi.org/10.1073/pnas.1718931115.

Full text
Abstract:
A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer CDWs in 2H-NbSe2. Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer electronic states in any material where local strain or lattice symmetry breaking plays a role.
APA, Harvard, Vancouver, ISO, and other styles
27

Pradhan, B., B. K. Raj, and G. C. Rout. "Interplay of charge density wave and spin density wave in high-Tc superconductors." Physica C: Superconductivity 468, no. 23 (December 2008): 2332–35. http://dx.doi.org/10.1016/j.physc.2008.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, W. Z., K. L. Yao, and H. Q. Lin. "The charge density wave and spin density wave in interchain coupled alternate -conjugated organic ferromagnets." Journal of Physics: Condensed Matter 10, no. 6 (February 16, 1998): 1371–79. http://dx.doi.org/10.1088/0953-8984/10/6/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Coelho, Paula Mariel, Kinga Lasek, Kien Nguyen Cong, Jingfeng Li, Wei Niu, Wenqing Liu, Ivan I. Oleynik, and Matthias Batzill. "Monolayer Modification of VTe2 and Its Charge Density Wave." Journal of Physical Chemistry Letters 10, no. 17 (August 14, 2019): 4987–93. http://dx.doi.org/10.1021/acs.jpclett.9b01949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Terrasi, A., M. Marsi, H. Berger, F. Gauthier, L. Forro, G. Margaritondo, R. J. Kelley, and M. Onellion. "Incomplete charge-density-wave gap opening in orthorhombic Mo4O11." Zeitschrift für Physik B Condensed Matter 100, no. 4 (December 1996): 493–96. http://dx.doi.org/10.1007/s002570050152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Eremko, A. A. "On the Fröhlich charge density wave and Peierls transition." Zeitschrift für Physik B Condensed Matter 104, no. 4 (December 1997): 765–70. http://dx.doi.org/10.1007/s002570050524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fujita, M., M. Enoki, and K. Yamada. "Spin- and charge-density-wave orders in La1.87Sr0.13Cu0.99Fe0.01O4." Journal of Physics and Chemistry of Solids 69, no. 12 (December 2008): 3167–70. http://dx.doi.org/10.1016/j.jpcs.2008.06.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Seibold, G., F. Becca, F. Bucci, C. Castellani, C. Di Castro, and M. Grilli. "Spectral properties of incommensurate charge-density wave systems." European Physical Journal B 13, no. 1 (January 2000): 87–97. http://dx.doi.org/10.1007/s100510050013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Montambaux, G. "Mesoscopic charge density wave in a magnetic flux." European Physical Journal B 1, no. 3 (February 1998): 377–83. http://dx.doi.org/10.1007/s100510050197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mutka, H. "Influence of irradiation defects on charge‐density‐wave systems." Phase Transitions 11, no. 1-4 (January 1988): 221–39. http://dx.doi.org/10.1080/01411598808245487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fisher, B., J. Genossar, L. Patlagan, S. Kar-Narayan, X. Moya, D. Sánchez, P. A. Midgley, and N. D. Mathur. "The absence of charge-density-wave sliding in epitaxial charge-ordered Pr0.48Ca0.52MnO3films." Journal of Physics: Condensed Matter 22, no. 27 (June 17, 2010): 275602. http://dx.doi.org/10.1088/0953-8984/22/27/275602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bardeen, J. "Basis for tunneling theory of charge-density wave depinning." Zeitschrift f�r Physik B Condensed Matter 67, no. 4 (December 1987): 427–33. http://dx.doi.org/10.1007/bf01304109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brazovskii, S., and S. Matveenko. "Charge density wave structure near a side metal contact." Synthetic Metals 56, no. 2-3 (April 1993): 2696–701. http://dx.doi.org/10.1016/0379-6779(93)90020-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Preobrazhensky, V. B., and A. N. Taldenkov. "“Nearly-commensurate” charge-density wave in linear-chain compounds." Synthetic Metals 29, no. 2-3 (March 1989): 313–20. http://dx.doi.org/10.1016/0379-6779(89)90916-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Monceau, P. "Introduction to dynamical properties of charge density wave compounds." Synthetic Metals 43, no. 1-2 (June 1991): 3103–27. http://dx.doi.org/10.1016/0379-6779(91)91249-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Suzuki, Michi-To, and Hisatomo Harima. "Electronic band structures and charge density wave of." Physica B: Condensed Matter 359-361 (April 2005): 1180–82. http://dx.doi.org/10.1016/j.physb.2005.01.336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hovden, Robert, Suk Hyun Sung, Noah Schnitzer, Steve Novakov, Ismail El Baggari, Benjamin Savitzky, John Heron, and Lena Kourkoutis. "The Structure of Charge Density Wave Phase Transitions in Atomically Thin Materials." Microscopy and Microanalysis 26, S2 (July 30, 2020): 146–47. http://dx.doi.org/10.1017/s1431927620013574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Buker, D. W. "Non-quasiparticle corrections for a sliding charge-density wave." Journal of Physics: Condensed Matter 11, no. 25 (January 1, 1999): 4805–12. http://dx.doi.org/10.1088/0953-8984/11/25/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Galli, F., R. Feyerherm, R. W. A. Hendrikx, E. Dudzik, G. J. Nieuwenhuys, S. Ramakrishnan, S. D. Brown, S. van Smaalen, and J. A. Mydosh. "Coexistence of charge density wave and antiferromagnetism in Er5Ir4Si10." Journal of Physics: Condensed Matter 14, no. 20 (May 9, 2002): 5067–75. http://dx.doi.org/10.1088/0953-8984/14/20/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sinchenko, A. A., and P. Monceau. "Superconductor (Nb)–charge density wave (NbSe3) point-contact spectroscopy." Journal of Physics: Condensed Matter 15, no. 24 (June 6, 2003): 4153–59. http://dx.doi.org/10.1088/0953-8984/15/24/309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bondino, F., E. Magnano, E. Carleschi, M. Zangrando, F. Galli, J. A. Mydosh, and F. Parmigiani. "Electronic structure of the charge-density-wave compound Er5Ir4Si10." Journal of Physics: Condensed Matter 18, no. 24 (June 5, 2006): 5773–82. http://dx.doi.org/10.1088/0953-8984/18/24/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lei, Hechang, Kefeng Wang, and C. Petrovic. "Magnetic-field-tuned charge density wave in SmNiC2and NdNiC2." Journal of Physics: Condensed Matter 29, no. 7 (December 29, 2016): 075602. http://dx.doi.org/10.1088/1361-648x/aa520e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Smaalen, Sander van, Erwin J. Lam, and Jens Lüdecke. "Structure of the charge-density wave in (TaSe4)2I." Journal of Physics: Condensed Matter 13, no. 44 (October 19, 2001): 9923–36. http://dx.doi.org/10.1088/0953-8984/13/44/308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ibuka, Soshi, and Motoharu Imai. "Possibility of charge density wave transition in a SrPt2Sb2superconductor." Journal of Physics: Condensed Matter 28, no. 16 (March 29, 2016): 165702. http://dx.doi.org/10.1088/0953-8984/28/16/165702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zouadi, M., N. Habiballah, A. Arbaoui, M. Qjani, and J. Dumas. "Temperature effect on charge density wave-free carriers interaction." Molecular Crystals and Liquid Crystals 693, no. 1 (November 2, 2019): 76–81. http://dx.doi.org/10.1080/15421406.2020.1723913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography