Academic literature on the topic 'Charge density waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Charge density waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Charge density waves"

1

Aperis, Alexandros, Panagiotis Kotetes, Eleftherios Papantonopoulos, George Siopsis, Petros Skamagoulis, and Georgios Varelogiannis. "Holographic charge density waves." Physics Letters B 702, no. 2-3 (2011): 181–85. http://dx.doi.org/10.1016/j.physletb.2011.06.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maki, Kazumi. "Breakable charge density waves." Physica B+C 143, no. 1-3 (1986): 59–63. http://dx.doi.org/10.1016/0378-4363(86)90054-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maki, Kazumi, and Attila Virosztek. "Impurity pinning of charge-density waves and spin-density waves." Physical Review B 39, no. 13 (1989): 9640–42. http://dx.doi.org/10.1103/physrevb.39.9640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maki, Kazumi, and Attila Virosztek. "Electromechanical properties of charge density waves and spin density waves." Synthetic Metals 29, no. 2-3 (1989): 371–76. http://dx.doi.org/10.1016/0379-6779(89)90924-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van Smaalen, Sander. "Incommensurate charge order and charge-density waves." Acta Crystallographica Section A Foundations and Advances 72, a1 (2016): s97. http://dx.doi.org/10.1107/s2053273316098569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Calandra, Matteo. "Charge density waves go nano." Nature Nanotechnology 10, no. 9 (2015): 737–38. http://dx.doi.org/10.1038/nnano.2015.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daemen, L. L., and A. W. Overhauser. "Superconductivity and charge-density waves." Physical Review B 40, no. 1 (1989): 124–28. http://dx.doi.org/10.1103/physrevb.40.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, Stuart, and George Grüner. "Charge and Spin Density Waves." Scientific American 270, no. 4 (1994): 50–56. http://dx.doi.org/10.1038/scientificamerican0494-50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khan, H. R. "Charge density waves in solids." Journal of the Less Common Metals 169, no. 2 (1991): 375. http://dx.doi.org/10.1016/0022-5088(91)90083-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goodenough, John B. "Comments on charge density waves." Journal of Solid State Electrochemistry 15, no. 2 (2010): 285–91. http://dx.doi.org/10.1007/s10008-010-1096-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Charge density waves"

1

Whitley, William George. "Charge density waves and superconductivity in U6Fe." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22031.

Full text
Abstract:
U6Fe has the highest superconducting transition temperature TSC ~ 4 K out of all of the U-based compounds. Unusually, the Pauli limit (1:84TSC = 7:36 T) is less than the observed critical field for both the a and c axes in this tetragonal material. Neither Pauli or usual BCS orbital limit is apparently respected. In order to explain why superconductivity exceeds the Pauli limit, it must be considered that either the superconducting state is unaffected by paramagnetic effects, or there is a large amount of spin-orbit scattering. Superconductivity is in the dirty limit for typical samples of U6F
APA, Harvard, Vancouver, ISO, and other styles
2

Lezoualc'h, Mahé. "Study of charge density waves in transition metal dichalcogenides." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASP016.

Full text
Abstract:
Dans cette thèse, nous avons exploré les propriétés et le comportement des ondes de densité de charge (ODC) dans les dichalcogénures de métaux de transition. En particulier, nous nous sommes intéressés aux différents paramètres qui pourraient influencer, modifier ou nous permettre de contrôler ces phases d'ODC. Ainsi, nous avons examiné l'adsorption atomique, l'intercalation (dopage) et les changements de phases. Grâce à une approche combinant modélisation théorique et collaboration avec des équipes expérimentales, des progrès majeurs ont été accomplis dans la compréhension de la modulabilité
APA, Harvard, Vancouver, ISO, and other styles
3

Bates, Wilfred Mark. "Pattern formation in models of charge density waves." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31189.

Full text
Abstract:
We investigate the phenomenon of phase organization in charge density waves. Coppersmith and Littlewood [87] have argued that charge density waves become organized into a "minimally stable" state when subject to a pulsed driving force. They have also proposed that the pulse duration memory effect, observed by Fleming and Schneemeyer [86], is evidence for this self organizing behaviour.<br>We review the microscopic origins of charge density waves, experimental results, and theoretical models of charge density waves. We also review theories of complex systems, and, in particular, the phase organ
APA, Harvard, Vancouver, ISO, and other styles
4

Yi, Tianyou. "Modeling of dynamical vortex states in charge density waves." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00768237.

Full text
Abstract:
Formation of charge density waves (CDW) is a symmetry breaking phenomenon found in electronic systems, which is particularly common in quasi-one-dimensional conductors. It is widely observed from highly anisotropic materials to isotropic ones like the superconducting pnictides. The CDW is seen as a sinusoidal deformation of coupled electronic density and lattice modulation; it can be also viewed as a crystal of singlet electronic pairs. In the CDW state, the elementary units can be readjusted by absorbing or rejecting pairs of electrons. Such a process should go via topologically nontrivial co
APA, Harvard, Vancouver, ISO, and other styles
5

Malliakas, Christos D. "Charge density waves and structural modulations in polytelluride compounds." Diss., Connect to online resource - MSU authorized users, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Edkins, Stephen David. "Visualising the charge and Cooper pair density waves in cuprates." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9888.

Full text
Abstract:
The study of cuprate high-temperature superconductors has undergone a recent resurgence due to the discovery of charge order in several families of cuprate materials. While its existence is now well established, little is known about its microscopic origins or its relationship to high-temperature superconductivity and the pseudogap. The aim of the research presented in this thesis is to address these questions. In this thesis I will report on the use of spectroscopic-imaging scanning tunnelling microscopy (SI-STM) to visualise the short-ranged charge density wave (CDW) in Bi₂Sr₂CaCu₂O₈₊ₓ and N
APA, Harvard, Vancouver, ISO, and other styles
7

Latt, Kyaw Zin. "Manipulation of Molecular Charge Density Waves and Molecular Transport Systems." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1557418915977344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rai, Ram C. "ELECTRO-OPTICAL STUDIES OF CHARGE-DENSITY-WAVE MATERIALS." UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_diss/427.

Full text
Abstract:
A searched for narrow-band-noise (NBN) modulations of the infrared transmission in blue bronze has been performed. No modulations were observed, giving an upper limits for NBN changes in the absorption coefficient of )2000/(/3.0.andlt;.cmNBN. The implication of these results on proposed CDW properties and NBN mechanisms are discussed. An infrared microscope with a capability of doing both reflectance and transmission measurements has been integrated into the previous electro-transmission system with tunable diode lasers. Electro-optic experiments were done using the microscope for the studies
APA, Harvard, Vancouver, ISO, and other styles
9

Eaglesham, D. J. "Charge density waves and their phase transitions in the transition metal chalcogenides." Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Phelps, John Miles. "A study of transport properties of charge density waves in niobium triselenide." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.717027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Charge density waves"

1

Hutiray, Gyula, and Jenö Sólyom, eds. Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

P, Gorʹkov L., and Grüner George, eds. Charge density waves in solids. North-Holland, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tilman, Butz, ed. Nuclear spectroscopy on charge density wave systems. Kluwer Academic Publishers, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Visscher, Mark Ivar. Transport in mesoscopic charge density wawe systems. Delft Univ. Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Butz, Tilman. Nuclear Spectroscopy on Charge Density Wave Systems. Springer Netherlands, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Edkins, Stephen. Visualising the Charge and Cooper-Pair Density Waves in Cuprates. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65975-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Okamoto, Junichi. Theoretical study of charge density waves in transition metal materials. [publisher not identified], 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1915-, Jeffrey George A., Piniella Juan F, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. The application of charge density research to chemistry and drug design. Plenum Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jeffrey, George A. The Application of Charge Density Research to Chemistry and Drug Design. Springer US, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

W, Boswell Frank, and Bennett J. Craig, eds. Advances in the cyrstallographic and microstructural analysis of charge density wave modulated crystals. Kluwer Academic Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Charge density waves"

1

Zong, Alfred. "Charge Density Waves." In Springer Theses. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81751-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lakshmi, T. V., and K. N. Shrivastava. "Multivalued charge-density waves." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aubry, Serge. "Bipolaronic Charge Density Waves." In NATO ASI Series. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5961-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Escribe-Filippini, C., J. P. Pouget, R. Currat, B. Hennion, and J. Marcus. "Neutron studies of the blue bronzes K0.3MoO3 and Rb0.3MoO3." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Janovec, V., and V. Dvořák. "Multidomain structures of incommensurate phases in CDW states of 2H-TaSe2." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Travaglini, G., and P. Wachter. "CDW phase mode investigation in the FIR in K0.3MaO3 and band structure calculation." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Butaud, P., P. Segransan, C. Berthier, and A. Meerschaut. "93Nb NMR study of CDW in (NbSe4)10/3I single crystal." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Núñez Regueiro, M., J. Lopez Castillo, and C. Ayache. "Thermal conductivity of layered dichalcogenides." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zawadowski, A., I. Tüttõ, S. E. Barnes, P. F. Tua, and J. Ruvalds. "Microscopic theory of interaction of CDW with impurities." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stokes, J. P., Mark O. Robbins, S. Bhattacharya, and R. A. Klemm. "Broadband noise in orthorhombic TaS3." In Charge Density Waves in Solids. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13913-3_222.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Charge density waves"

1

Virosztek, A., and K. Maki. "Electromechanical effecr in charge density waves." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MATSUURA, T., K. INAGAKI, S. TANDA, T. TSUNETA, and Y. OKAJIMA. "TRANSPORT MEASUREMENT FOR TOPOLOGICAL CHARGE DENSITY WAVES." In Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bardeen, John. "Depinning of Charge-Density-Waves by Quantum Tunneling." In Proceedings of Nobel Symposium 73. CO-PUBLISHED WITH PHYSICA SCRIPTA, THE ROYAL SWEDISH ACADEMY OF SCIENCES, 1989. http://dx.doi.org/10.1142/9789814541152_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zong, Alfred, Anshul Kogar, and Nuh Gedik. "Phase competition and light-induced ordering in charge density waves." In Ultrafast Phenomena and Nanophotonics XXV, edited by Markus Betz and Abdulhakem Y. Elezzabi. SPIE, 2021. http://dx.doi.org/10.1117/12.2577936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tomic, S., A. Omerzu, N. Biskup, K. Maki, J. M. Fabre, and K. Bechgaard. "Collective charge response in incommensurate and commensurate spin density waves." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sciaini, Germán, Maximilian Eichberger, Hanjo Schäfer, et al. "Femtosecond Electron Diffraction for the Study of Charge Density Waves." In International Conference on Ultrafast Structural Dynamics. OSA, 2012. http://dx.doi.org/10.1364/icusd.2012.it3d.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomson, Mark D., Kaneez Rabia, Fanqi Meng, Maxim Bykov, Sander van Smaalen, and Harmut G. Roskos. "Non-Equilibrium dynamics of charge-density-wave phase modes in K0.3MoO3." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ravy, Sylvain, C. Lauhé, T. Huber, et al. "Incommensurate charge-density-waves as seen by time-resolved x-ray diffraction." In Aperiodic 2018 ("9th Conference on Aperiodic Crystals"). Iowa State University, Digital Press, 2018. http://dx.doi.org/10.31274/aperiodic2018-180810-66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Verberck, B. "Orientational Charge Density Waves and the Metal-Insulator Transition in Polymerized KC60." In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thomson, M. D., F. Meng, K. Rabia, S. van Smaalen, and H. G. Roskos. "Coherent Coupled-Mode Phonon Emission in a Photoexcited Charge-Density-Wave System." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8873891.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Charge density waves"

1

Sneddon, L. Sliding Charge Density Waves and Related Problems. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada186720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coleman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough, and Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5901839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thomson, R. E. Scanning tunneling microscopy of charge density wave structure in 1T- TaS sub 2. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5130392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coleman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough, and Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10122090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomson, Ruth Ellen. Scanning tunneling microscopy of charge density wave structure in 1T- TaS2. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10158007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coleman, R. V., W. W. McNairy, and C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS sub 2 at 300 K. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5879904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coleman, R. V., W. W. McNairy, and C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS{sub 2} at 300 K. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10122082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Creager, W. N. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/6112541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Orbeta, Aniceto Jr, Anna Rita Vargas, and Aubrey Tabuga. Learning from Labor Market Outcome Changes Overtime: A Study of a Panel of 4Ps Beneficiaries. Philippine Institute for Development Studies, 2023. http://dx.doi.org/10.62986/dp2023.41.

Full text
Abstract:
This study analyzes the dynamic labor market outcomes of 4Ps beneficiaries, utilizing panel data from three waves of a Randomized Controlled Trial (RCT) cohort (2011, 2013, and 2017). Employing the categorization of Tabuga et al. (2021), labor market states were classified into stable, improving, worsening, and chronic categories. The study focused on four key labor market outcomes: work status, permanent work, full-time employment based on work hours, and full-time employment based on the desire for additional work. Ordered logistic regression was used to identify the correlates of these outc
APA, Harvard, Vancouver, ISO, and other styles
10

Burkholder, JoAnn, Ellen Allen, Carol Kinder, Stacie Flood, and Wendy Wright. Natural resource condition assessment: Cape Lookout National Seashore. National Park Service, 2017. https://doi.org/10.36967/2240259.

Full text
Abstract:
The two major goals of this report were to (i) inventory the natural resources of Cape Lookout National Seashore (CALO, or the seashore, or Cape Lookout NS) along the Outer Banks of North Carolina, including synthesis of available information and collection of geospatial data layers and maps; and (ii) develop a set of indicators, quantitative insofar as possible, for natural resource conditions that can be tracked over time. The natural resources that were evaluated included climate, air quality, geology and soils, groundwater, surface water, terrestrial, wetland, and aquatic biota, and specie
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!