To see the other types of publications on this topic, follow the link: Charge density waves.

Journal articles on the topic 'Charge density waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Charge density waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aperis, Alexandros, Panagiotis Kotetes, Eleftherios Papantonopoulos, George Siopsis, Petros Skamagoulis, and Georgios Varelogiannis. "Holographic charge density waves." Physics Letters B 702, no. 2-3 (2011): 181–85. http://dx.doi.org/10.1016/j.physletb.2011.06.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maki, Kazumi. "Breakable charge density waves." Physica B+C 143, no. 1-3 (1986): 59–63. http://dx.doi.org/10.1016/0378-4363(86)90054-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maki, Kazumi, and Attila Virosztek. "Impurity pinning of charge-density waves and spin-density waves." Physical Review B 39, no. 13 (1989): 9640–42. http://dx.doi.org/10.1103/physrevb.39.9640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maki, Kazumi, and Attila Virosztek. "Electromechanical properties of charge density waves and spin density waves." Synthetic Metals 29, no. 2-3 (1989): 371–76. http://dx.doi.org/10.1016/0379-6779(89)90924-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van Smaalen, Sander. "Incommensurate charge order and charge-density waves." Acta Crystallographica Section A Foundations and Advances 72, a1 (2016): s97. http://dx.doi.org/10.1107/s2053273316098569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Calandra, Matteo. "Charge density waves go nano." Nature Nanotechnology 10, no. 9 (2015): 737–38. http://dx.doi.org/10.1038/nnano.2015.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daemen, L. L., and A. W. Overhauser. "Superconductivity and charge-density waves." Physical Review B 40, no. 1 (1989): 124–28. http://dx.doi.org/10.1103/physrevb.40.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, Stuart, and George Grüner. "Charge and Spin Density Waves." Scientific American 270, no. 4 (1994): 50–56. http://dx.doi.org/10.1038/scientificamerican0494-50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khan, H. R. "Charge density waves in solids." Journal of the Less Common Metals 169, no. 2 (1991): 375. http://dx.doi.org/10.1016/0022-5088(91)90083-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goodenough, John B. "Comments on charge density waves." Journal of Solid State Electrochemistry 15, no. 2 (2010): 285–91. http://dx.doi.org/10.1007/s10008-010-1096-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maki, Kazumi, and Attila Virosztek. "Microwave conductivity of pinned spin-density waves and charge-density waves." Physical Review B 39, no. 4 (1989): 2511–15. http://dx.doi.org/10.1103/physrevb.39.2511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Joyes, P., R. J. Tarento, and L. Bergomi. "Variational study of spin-density waves and charge-density waves inC60geometry." Physical Review B 48, no. 7 (1993): 4855–59. http://dx.doi.org/10.1103/physrevb.48.4855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Riera, J., and D. Poilblanc. "Coexistence of charge-density waves, bond-order waves, and spin-density waves in quasi-one-dimensional charge-transfer salts." Physical Review B 62, no. 24 (2000): R16243—R16246. http://dx.doi.org/10.1103/physrevb.62.r16243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gill, J. C. "Transport Properties of Charge-Density Waves." Physica Scripta T25 (January 1, 1989): 51–57. http://dx.doi.org/10.1088/0031-8949/1989/t25/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Schlenker, C., J. Dumas, C. Escribe-Filippini, and M. Boujida. "Charge Density Waves: Pinning and Dynamics." Physica Scripta T29 (January 1, 1989): 55–61. http://dx.doi.org/10.1088/0031-8949/1989/t29/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Grüner, G. "The dynamics of charge-density waves." Reviews of Modern Physics 60, no. 4 (1988): 1129–81. http://dx.doi.org/10.1103/revmodphys.60.1129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fisher, B., J. Genossar, L. Patlagan, and G. M. Reisner. "Sliding charge density waves in manganites?" Journal of Magnetism and Magnetic Materials 322, no. 9-12 (2010): 1239–42. http://dx.doi.org/10.1016/j.jmmm.2009.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matsuura, T., J. Hara, K. Inagaki, M. Tsubota, T. Hosokawa, and S. Tanda. "Melted discommensuration of charge density waves." Physica B: Condensed Matter 460 (March 2015): 30–33. http://dx.doi.org/10.1016/j.physb.2014.11.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Koo, Je Huan, Jae Yoon Jeong, and Guangsup Cho. "Transportation of pinned charge density waves." Solid State Communications 149, no. 3-4 (2009): 142–45. http://dx.doi.org/10.1016/j.ssc.2008.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tucker, J. R. "Dynamics of sliding charge density waves." Physica B+C 143, no. 1-3 (1986): 19–23. http://dx.doi.org/10.1016/0378-4363(86)90044-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fleming, R. M. "Moving charge-density waves in K0.30MoO3." Synthetic Metals 13, no. 1-3 (1986): 241–53. http://dx.doi.org/10.1016/0379-6779(86)90074-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Onoda, M., H. Fujishita, Y. Matsuda, and M. Sato. "Charge density waves in MonO3n−1." Synthetic Metals 19, no. 1-3 (1987): 947–52. http://dx.doi.org/10.1016/0379-6779(87)90481-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Voit, Johannes. "Magnetic properties of charge density waves." Synthetic Metals 29, no. 2-3 (1989): 365–70. http://dx.doi.org/10.1016/0379-6779(89)90923-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aruga, Tetsuya. "Charge-density waves on metal surfaces." Journal of Physics: Condensed Matter 14, no. 35 (2002): 8393–414. http://dx.doi.org/10.1088/0953-8984/14/35/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Grüner, G. "The Dynamics of Charge Density Waves." Physica Scripta 32, no. 1 (1985): 11–25. http://dx.doi.org/10.1088/0031-8949/32/1/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fisher, B., J. Genossar, L. Patlagan, et al. "Sliding charge-density waves in manganites." Nature Materials 9, no. 9 (2010): 688. http://dx.doi.org/10.1038/nmat2841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cox, Susan, J. Singleton, R. D. McDonald, A. Migliori, and P. B. Littlewood. "Sliding charge-density waves in manganites." Nature Materials 9, no. 9 (2010): 689. http://dx.doi.org/10.1038/nmat2842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

GAAL, R., A. BELEZNAY, and G. MIHALY. "Bolometric response of charge-density waves." Le Journal de Physique IV 03, no. C2 (1993): C2–361—C2–364. http://dx.doi.org/10.1051/jp4:1993272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

ROBINSON, A. L. "Charge Density Waves Seen in Potassium." Science 232, no. 4751 (1986): 713. http://dx.doi.org/10.1126/science.232.4751.713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Buker, Donald W. "Charge-density waves at intermediate coupling." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2107 (2009): 2041–52. http://dx.doi.org/10.1098/rspa.2008.0491.

Full text
Abstract:
An electron–phonon theory for a quasi-one-dimensional band of electrons forming a moving incommensurate charge-density wave (CDW) state at zero temperature is presented. A useful analytic expression for the energy gap as a function of electron–phonon coupling is found. The gap is quite a bit larger than the well-known weak-coupling result, even for modest coupling, where the mean-field approximation should still be valid. It is also shown that the form of the Hamiltonian implies that there is no spread at all in the wavevector of the CDW in the vicinity of 2 k F . Comparisons of theoretical an
APA, Harvard, Vancouver, ISO, and other styles
31

Fujita, Mitsutaka, Kazushige Machida, and Hiizu Nakanishi. "Charge Density Waves under Magnetic Fields." Journal of the Physical Society of Japan 54, no. 10 (1985): 3820–32. http://dx.doi.org/10.1143/jpsj.54.3820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rosso, A., E. Orignac, R. Chitra, and T. Giamarchi. "Coulombian disorder in Charge Density Waves." Journal de Physique IV (Proceedings) 131 (December 2005): 179–82. http://dx.doi.org/10.1051/jp4:2005131043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Visscher, M. I., and B. Rejaei. "Josephson Current through Charge Density Waves." Physical Review Letters 79, no. 22 (1997): 4461–64. http://dx.doi.org/10.1103/physrevlett.79.4461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Roshen, Waseem A. "Thermodynamic properties of charge-density waves." Physical Review B 31, no. 11 (1985): 7296–305. http://dx.doi.org/10.1103/physrevb.31.7296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Corberi, Federico, and Umberto Marini Bettolo Marconi. "(N) model for charge density waves." Physica A: Statistical Mechanics and its Applications 225, no. 3-4 (1996): 281–93. http://dx.doi.org/10.1016/0378-4371(95)00331-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mazumdar, S., S. N. Dixit, and A. N. Bloch. "Charge and Spin Density Waves in Charge-Transfer Solids." Molecular Crystals and Liquid Crystals 120, no. 1 (1985): 35–42. http://dx.doi.org/10.1080/00268948508075756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

LEE, KIMYEONG, and OLEG TCHERNYSHYOV. "NOVEL PHENOMENA IN CHARGED BOSE LIQUID." Modern Physics Letters A 13, no. 12 (1998): 987–94. http://dx.doi.org/10.1142/s0217732398001066.

Full text
Abstract:
We investigate charged Bose liquid immersed in uniform background charge at zero temperature. Novel phenomena, such as oscillatory shielding of external localized electric charge, rotons and charge density waves (charge stripes in two dimensions), occur in any dimensions. Oscillatory shielding is caused by mixing between scalar boson exchange and Coulomb interactions, which mediate opposite forces. On the other hand, rotons and charge density waves are due to attractive local self-interaction of bosons. Rotons can be regarded as a finite size charge density wave packet without any back flow. W
APA, Harvard, Vancouver, ISO, and other styles
38

Lehman, G. W. "Change in sound velocity due to sliding charge-density waves." Physical Review B 33, no. 10 (1986): 6946–53. http://dx.doi.org/10.1103/physrevb.33.6946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ghorayeb, A. M. "Modulated Structures Associated with Charge-Density Waves." Key Engineering Materials 155-156 (February 1998): 159–98. http://dx.doi.org/10.4028/www.scientific.net/kem.155-156.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

van Smaalen, S., P. Daniels, F. Galli, et al. "Charge-density waves in Er5Ir4Si10 type compounds." Journal de Physique IV 12, no. 9 (2002): 347–50. http://dx.doi.org/10.1051/jp4:20020434.

Full text
Abstract:
X-ray diffraction with synchrotron radiation has been used to study the phase transitions in compounds M5Ir4Si10 with M a rare-earth metal. For M = Er, Ho and Er0.84Lu0.16 phase transitions have been found towards a combined commensurate/incommensurate state, that locks into a commensurate state at lower temperatures. For M = Lu and Er0.66Lu0.34 there is a single transition towards a commensurate state. The results are interpreted in terms of commensurate structural transitions that induce incommensurate CDWs.
APA, Harvard, Vancouver, ISO, and other styles
41

Tucker, J. R. "Impurity pinning of sliding charge-density waves." Physical Review B 40, no. 8 (1989): 5447–59. http://dx.doi.org/10.1103/physrevb.40.5447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jian-cheng, Lin. "Charge-density waves scattered by single impurities." Journal of Physics C: Solid State Physics 20, no. 30 (1987): 4917–22. http://dx.doi.org/10.1088/0022-3719/20/30/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Voit, J. "Magnetic properties of charge-density waves: theory." Journal of Physics C: Solid State Physics 21, no. 17 (1988): L649—L654. http://dx.doi.org/10.1088/0022-3719/21/17/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Markovic, N., M. A. H. Dohmen, and H. S. J. van der Zant. "Transversely driven charge density waves in NbSe3." Le Journal de Physique IV 09, PR10 (1999): Pr10–65—Pr10–67. http://dx.doi.org/10.1051/jp4:19991016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Matsukawa, H., H. Miyake, M. Yumoto, and H. Fukuyama. "Macroscopic quantum tunneling of charge density waves." Le Journal de Physique IV 09, PR10 (1999): Pr10–161—Pr10–163. http://dx.doi.org/10.1051/jp4:19991041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Latyshev, Yu I., P. Monceau, A. P. Orlov, S. A. Brazovskii, and Th Fournier. "Interlayer tunnelling spectroscopy of charge density waves." Superconductor Science and Technology 20, no. 2 (2006): S87—S92. http://dx.doi.org/10.1088/0953-2048/20/2/s17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Miller, J. H., R. E. Thorne, W. G. Lyons, J. R. Tucker, and John Bardeen. "Dynamics of charge-density waves in orthorhombicTaS3." Physical Review B 31, no. 8 (1985): 5229–43. http://dx.doi.org/10.1103/physrevb.31.5229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Voitenko, A. I., and A. M. Gabovich. "Charge density waves in d-wave superconductors." Low Temperature Physics 36, no. 12 (2010): 1049–57. http://dx.doi.org/10.1063/1.3533237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zaitsev-Zotov, S. V., V. F. Nasretdinova, and V. E. Minakova. "Charge-density waves physics revealed by photoconduction." Physica B: Condensed Matter 460 (March 2015): 174–79. http://dx.doi.org/10.1016/j.physb.2014.11.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Parisi, Giorgio. "Charge density waves and the replica method." Journal de Physique I 3, no. 2 (1993): 579–84. http://dx.doi.org/10.1051/jp1:1993151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!