To see the other types of publications on this topic, follow the link: Charge transport materials.

Journal articles on the topic 'Charge transport materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Charge transport materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Grushevskaya, Halina. "Charge transport in Weyl 2D materials." Advanced Materials Proceedings 3, no. 2 (2018): 68–74. http://dx.doi.org/10.5185/amp.2018/980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ortmann, Frank, Karsten Hannewald, and Friedhelm Bechstedt. "Charge Transport in Guanine-Based Materials." Journal of Physical Chemistry B 113, no. 20 (2009): 7367–71. http://dx.doi.org/10.1021/jp901029t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Novikov, S. V. "Hopping charge transport in organic materials." Russian Journal of Electrochemistry 48, no. 4 (2012): 388–400. http://dx.doi.org/10.1134/s1023193512030081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lizunova, Mariya A., Cristiane Morais Smith, and Jasper van Wezel. "Visualizing topological transport in charge ordered materials." Journal of Physics: Conference Series 1189 (March 2019): 012015. http://dx.doi.org/10.1088/1742-6596/1189/1/012015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nelson, Jenny, Joe J. Kwiatkowski, James Kirkpatrick, and Jarvist M. Frost. "Modeling Charge Transport in Organic Photovoltaic Materials." Accounts of Chemical Research 42, no. 11 (2009): 1768–78. http://dx.doi.org/10.1021/ar900119f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ezquerra, Tiberio A., Mareck Kulescza, Carlos Santa Cruz, and Francisco J. Baltá-Calleja. "Charge transport in polyethylene-graphite composite materials." Advanced Materials 2, no. 12 (1990): 597–600. http://dx.doi.org/10.1002/adma.19900021209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wallace, Jason U., Ralph H. Young, Ching W. Tang, and Shaw H. Chen. "Charge-retraction time-of-flight measurement for organic charge transport materials." Applied Physics Letters 91, no. 15 (2007): 152104. http://dx.doi.org/10.1063/1.2798592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stolar, Monika, and Thomas Baumgartner. "Organic n-type materials for charge transport and charge storage applications." Physical Chemistry Chemical Physics 15, no. 23 (2013): 9007. http://dx.doi.org/10.1039/c3cp51379c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ulanski, Jacek. "Charge-carrier transport in heterogeneous conducting materials: Polymer + charge-transfer complex." Synthetic Metals 41, no. 3 (1991): 923–30. http://dx.doi.org/10.1016/0379-6779(91)91528-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qiu, Ming, Weiwei Pei, Qiuchen Lu, Zhuo Li, Yuanzuo Li, and Jianping Liang. "DFT Characteristics of Charge Transport in DBTP-Based Hole Transport Materials." Applied Sciences 9, no. 11 (2019): 2244. http://dx.doi.org/10.3390/app9112244.

Full text
Abstract:
To improve the hole-transport ability and photoelectric properties of perovskite solar cells, the ground-state geometry, frontier molecular orbital, and mobility of two organic molecules were investigated using density functional theory (DFT) with the Marcus hopping model. The absorption spectra were calculated using time-dependent DFT. The result indicated that the increase in the conjugated chain and change in the substituted group location from meta to para cause low mobility, which has a negative effect on the hole-transporting ability.
APA, Harvard, Vancouver, ISO, and other styles
11

Blaise, Guy. "Charge localization and transport in disordered dielectric materials." Journal of Electrostatics 50, no. 2 (2001): 69–89. http://dx.doi.org/10.1016/s0304-3886(00)00027-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Juška, Gytis, Kęstutis Arlauskas, and Kristijonas Genevičius. "Charge carrier transport and recombination in disordered materials." Lithuanian Journal of Physics 56, no. 3 (2016): 182–89. http://dx.doi.org/10.3952/physics.v56i3.3367.

Full text
Abstract:
In this brief review the methods for investigation of charge carrier transport and recombination in thin layers of disordered materials and the obtained results are discussed. The method of charge carrier extraction by linearly increasing voltage (CELIV) is useful for the determination of mobility, bulk conductivity and density of equilibrium charge carriers. The extraction of photogenerated charge carriers (photo-CELIV) allows one to independently investigate relaxation of both the mobility and density of photogenerated charge carriers. The extraction of injected charge carriers (i-CELIV) is
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Huashan, Taishan Zhu, Nicola Ferralis, and Jeffrey C. Grossman. "Charge Transport in Highly Heterogeneous Natural Carbonaceous Materials." Advanced Functional Materials 29, no. 38 (2019): 1904283. http://dx.doi.org/10.1002/adfm.201904283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Novikov, Sergey V. "Hopping transport of charge carriers in nanocomposite materials." physica status solidi (c) 1, no. 1 (2004): 160–63. http://dx.doi.org/10.1002/pssc.200303630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jaiswal, Manu, and Reghu Menon. "Polymer electronic materials: a review of charge transport." Polymer International 55, no. 12 (2006): 1371–84. http://dx.doi.org/10.1002/pi.2111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Parthasarathy, G., C. Shen, A. Kahn, and S. R. Forrest. "Lithium doping of semiconducting organic charge transport materials." Journal of Applied Physics 89, no. 9 (2001): 4986–92. http://dx.doi.org/10.1063/1.1359161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zolotaryuk, A. V., St Pnevmatikos, and A. V. Savin. "Charge transport by solitons in hydrogen-bonded materials." Physical Review Letters 67, no. 6 (1991): 707–10. http://dx.doi.org/10.1103/physrevlett.67.707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kryszewski, Marian, and Jeremiasz Jeszka. "Charge carrier transport in heterogeneous conducting polymer materials." Macromolecular Symposia 194, no. 1 (2003): 75–86. http://dx.doi.org/10.1002/masy.200390107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lin, Kun-Han, Antonio Prlj, Liang Yao, et al. "Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials." Chemistry of Materials 31, no. 17 (2019): 6605–14. http://dx.doi.org/10.1021/acs.chemmater.9b00438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Simon, Ulrich. "Charge Transport in Nanoparticle Arrangements." Advanced Materials 10, no. 17 (1998): 1487–92. http://dx.doi.org/10.1002/(sici)1521-4095(199812)10:17<1487::aid-adma1487>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ladik, J. J., and Y. J. Ye. "Charge Transport in Biopolymers." physica status solidi (b) 205, no. 1 (1998): 3–10. http://dx.doi.org/10.1002/(sici)1521-3951(199801)205:1<3::aid-pssb3>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Matoliukstyte, A., E. Burbulis, J. V. Grazulevicius, V. Gaidelis, and V. Jankauskas. "Carbazole-containing enamines as charge transport materials for electrophotography." Synthetic Metals 158, no. 11 (2008): 462–67. http://dx.doi.org/10.1016/j.synthmet.2008.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sworakowski, J., K. Janus, S. Nespurek, and M. Vala. "Local states in organic materials: charge transport and localization." IEEE Transactions on Dielectrics and Electrical Insulation 13, no. 5 (2006): 1001–15. http://dx.doi.org/10.1109/tdei.2006.1714923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sworakowski, Janus, Nespurek, and Vala. "Local states in organic materials: charge transport and localization." IEEE Transactions on Dielectrics and Electrical Insulation 13, no. 5 (2006): 1001–15. http://dx.doi.org/10.1109/tdei.2006.247825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yu, Jianguo, Kevin M. Rosso, and Jun Liu. "Charge Localization and Transport in Lithiated Olivine Phosphate Materials." Journal of Physical Chemistry C 115, no. 50 (2011): 25001–6. http://dx.doi.org/10.1021/jp204188g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Leopold, A., M. Grasruck, U. Hofmann, M. A. Kol’chenko, and S. J. Zilker. "Length scales of charge transport in organic photorefractive materials." Applied Physics Letters 76, no. 13 (2000): 1644–46. http://dx.doi.org/10.1063/1.126122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pisula, Wojciech, Matthias Zorn, Ji Young Chang, Klaus Müllen, and Rudolf Zentel. "Liquid Crystalline Ordering and Charge Transport in Semiconducting Materials." Macromolecular Rapid Communications 30, no. 14 (2009): 1179–202. http://dx.doi.org/10.1002/marc.200900251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Grozema, Ferdinand C., and Laurens D. A. Siebbeles. "Mechanism of charge transport in self-organizing organic materials." International Reviews in Physical Chemistry 27, no. 1 (2008): 87–138. http://dx.doi.org/10.1080/01442350701782776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sibatov, R. T., and V. V. Uchaikin. "Dispersive transport of charge carriers in disordered nanostructured materials." Journal of Computational Physics 293 (July 2015): 409–26. http://dx.doi.org/10.1016/j.jcp.2015.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cresti, Alessandro, Norbert Nemec, Blanca Biel, et al. "Charge transport in disordered graphene-based low dimensional materials." Nano Research 1, no. 5 (2008): 361–94. http://dx.doi.org/10.1007/s12274-008-8043-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Albrecht, Tim, Alexei Kornyshev, and Thomas Bjørnholm. "Charge transport in nanoscale junctions." Journal of Physics: Condensed Matter 20, no. 37 (2008): 370301. http://dx.doi.org/10.1088/0953-8984/20/37/370301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tyutnev, Andrey P., Vladimir S. Saenko, Evgenii D. Pozhidaev, and Vladislav A. Kolesnikov. "Charge carrier transport in polyvinylcarbazole." Journal of Physics: Condensed Matter 18, no. 27 (2006): 6365–77. http://dx.doi.org/10.1088/0953-8984/18/27/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jan van der Molen, Sense, and Peter Liljeroth. "Charge transport through molecular switches." Journal of Physics: Condensed Matter 22, no. 13 (2010): 133001. http://dx.doi.org/10.1088/0953-8984/22/13/133001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Long, Xiaowen Zhan, Y. T. Cheng, and Mona Shirpour. "Charge Transport in Electronic–Ionic Composites." Journal of Physical Chemistry Letters 8, no. 21 (2017): 5385–89. http://dx.doi.org/10.1021/acs.jpclett.7b02267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Brisendine, Joseph M., Sivan Refaely-Abramson, Zhen-Fei Liu, et al. "Probing Charge Transport through Peptide Bonds." Journal of Physical Chemistry Letters 9, no. 4 (2018): 763–67. http://dx.doi.org/10.1021/acs.jpclett.8b00176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pshenichnyuk, Ivan A., Pedro B. Coto, Susanne Leitherer, and Michael Thoss. "Charge Transport in Pentacene–Graphene Nanojunctions." Journal of Physical Chemistry Letters 4, no. 5 (2013): 809–14. http://dx.doi.org/10.1021/jz400025q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bässler, Heinz. "Charge transport in random organic photoconductors." Advanced Materials 5, no. 9 (1993): 662–65. http://dx.doi.org/10.1002/adma.19930050915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Roy, V. A. L., Ella Lai-Ming Wong, Ben Chi-Bun Ko, et al. "Ambipolar Charge Transport in DNA Molecules." Advanced Materials 20, no. 7 (2008): 1258–62. http://dx.doi.org/10.1002/adma.200701179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

NG, C. Y., H. W. LAU, T. P. CHEN, O. K. TAN, and V. S. W. LIM. "DISSIPATION OF CHARGES IN SILICON NANOCRYSTALS EMBEDDED IN SiO2 DIELECTRIC FILMS: AN ELECTROSTATIC FORCE MICROSCOPY STUDY." International Journal of Nanoscience 04, no. 04 (2005): 709–15. http://dx.doi.org/10.1142/s0219581x05003541.

Full text
Abstract:
In this paper, we report a mapping of charge transport in silicon nanocrystals ( nc - Si ) embedded in SiO 2 dielectric films with electrostatic force microscopy (EFM). By using contact EFM mode, positive and negative charges can be deposited on nc - Si . We found that the charge diffusion from the charged nc - Si to the surrounding neighboring uncharged nc - Si is the dominant mechanism during charge decay. A longer decay time was observed for a wider area of stored charge (i.e. 3 charged spots) due to the diffusion of charges being blocked by the surrounding charged nc - Si . This result is
APA, Harvard, Vancouver, ISO, and other styles
40

Arkhipov, V. I., D. V. Khramchenkov, A. I. Rudenko, and G. M. Sessler. "Space-charge dispersive transport in corona-charged dielectrics." Journal of Electrostatics 31, no. 1 (1993): 21–26. http://dx.doi.org/10.1016/0304-3886(93)90045-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Volnyanskii, M. D., A. Yu Kudzin, S. N. Plyaka, and Z. Balasme. "Charge transport in PbMoO4 crystals." Physics of the Solid State 46, no. 11 (2004): 2012–14. http://dx.doi.org/10.1134/1.1825541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Heimel, Georg, and Jean-Luc Brédas. "Reflections on charge transport." Nature Nanotechnology 8, no. 4 (2013): 230–31. http://dx.doi.org/10.1038/nnano.2013.42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jackson, Nicholas E., Brett M. Savoie, Lin X. Chen, and Mark A. Ratner. "A Simple Index for Characterizing Charge Transport in Molecular Materials." Journal of Physical Chemistry Letters 6, no. 6 (2015): 1018–21. http://dx.doi.org/10.1021/acs.jpclett.5b00135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Oberhofer, Harald, Karsten Reuter, and Jochen Blumberger. "Charge Transport in Molecular Materials: An Assessment of Computational Methods." Chemical Reviews 117, no. 15 (2017): 10319–57. http://dx.doi.org/10.1021/acs.chemrev.7b00086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lipparini, Filippo, and Benedetta Mennucci. "Embedding effects on charge-transport parameters in molecular organic materials." Journal of Chemical Physics 127, no. 14 (2007): 144706. http://dx.doi.org/10.1063/1.2786459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Park, So Jeong, Su Geun Ji, and Jin Young Kim. "Inorganic charge transport materials for high reliable perovskite solar cells." Ceramist 23, no. 2 (2020): 145–65. http://dx.doi.org/10.31613/ceramist.2020.23.2.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Juška, G. "Bipolar transport of charge carriers in blends of organic materials." Lithuanian Journal of Physics 46, no. 2 (2006): 217–21. http://dx.doi.org/10.3952/lithjphys.46209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Novikov, S. V. "Fast Charge Transport in Nanocomposite Polymer Materials Containing J-Aggregates." Molecular Crystals and Liquid Crystals 426, no. 1 (2005): 81–88. http://dx.doi.org/10.1080/15421400590890750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ogden, Sean P., Juan Borja, Joel L. Plawsky, T. M. Lu, Kong Boon Yeap, and William N. Gill. "Charge transport model to predict intrinsic reliability for dielectric materials." Journal of Applied Physics 118, no. 12 (2015): 124102. http://dx.doi.org/10.1063/1.4931425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nikitenko, V. R., H. von Seggern, and H. Bässler. "Non-equilibrium transport of charge carriers in disordered organic materials." Journal of Physics: Condensed Matter 19, no. 13 (2007): 136210. http://dx.doi.org/10.1088/0953-8984/19/13/136210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!