To see the other types of publications on this topic, follow the link: Charge transport.

Journal articles on the topic 'Charge transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Charge transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bochkova, T. M. "Charge transport in bismuth orthogermanate crystals." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 2 (June 30, 2011): 170–74. http://dx.doi.org/10.15407/spqeo14.02.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gray, H. B., and J. Halpern. "Distant charge transport." Proceedings of the National Academy of Sciences 102, no. 10 (February 28, 2005): 3533. http://dx.doi.org/10.1073/pnas.0501035102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

NG, C. Y., H. W. LAU, T. P. CHEN, O. K. TAN, and V. S. W. LIM. "DISSIPATION OF CHARGES IN SILICON NANOCRYSTALS EMBEDDED IN SiO2 DIELECTRIC FILMS: AN ELECTROSTATIC FORCE MICROSCOPY STUDY." International Journal of Nanoscience 04, no. 04 (August 2005): 709–15. http://dx.doi.org/10.1142/s0219581x05003541.

Full text
Abstract:
In this paper, we report a mapping of charge transport in silicon nanocrystals ( nc - Si ) embedded in SiO 2 dielectric films with electrostatic force microscopy (EFM). By using contact EFM mode, positive and negative charges can be deposited on nc - Si . We found that the charge diffusion from the charged nc - Si to the surrounding neighboring uncharged nc - Si is the dominant mechanism during charge decay. A longer decay time was observed for a wider area of stored charge (i.e. 3 charged spots) due to the diffusion of charges being blocked by the surrounding charged nc - Si . This result is consistent with the increase of charge cloud size during the charge decay and the lower charge change percentage for 3 charged spots.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Chi, Xia Wang, Kai Wu, Chuanhui Cheng, Chuang Wang, Yuwei Fu, and Zaiqin Zhang. "Space charge and trap energy level characteristics of SiC wide bandgap semiconductor." AIP Advances 12, no. 3 (March 1, 2022): 035017. http://dx.doi.org/10.1063/5.0085118.

Full text
Abstract:
Charge carrier transport and accumulation in silicon carbide (SiC) wide bandgap semiconductors caused by the defect and impurity are likely to lead to serious performance degradation and failure of the semiconductor materials, and the high temperature effect makes the charge behaviors more complex. In this paper, charge carrier transport and accumulation in semi-insulating vanadium doped 4H–SiC crystal materials and the correlated temperature effect were investigated. Attempts were made to address the effect of deep trap levels on carrier transport. A combination of pulsed electro-acoustic direct space charge probing, an electrical conduction·current experiment, and x-ray diffraction measurement was employed. Space charge quantities including trap depth and trap density were extracted. The results show hetero-charge accumulation at adjacent electrode interfaces under a moderate electrical stress region (5–10 kV/mm). The charge carrier transports along the SiC bulk and is captured by the deep traps near the electrode interfaces. The deep trap energy levels originating from the vanadium dopant in SiC crystals are critical to carrier transport, providing carrier trapping sites for charges. This paper could promote the understandings of the carrier transport dynamic and trap energy level characteristic of SiC crystal materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Sanvitto, D. "Observation of Charge Transport by Negatively Charged Excitons." Science 294, no. 5543 (September 27, 2001): 837–39. http://dx.doi.org/10.1126/science.1064847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arkhipov, V. I., D. V. Khramchenkov, A. I. Rudenko, and G. M. Sessler. "Space-charge dispersive transport in corona-charged dielectrics." Journal of Electrostatics 31, no. 1 (November 1993): 21–26. http://dx.doi.org/10.1016/0304-3886(93)90045-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szuromi, Phil. "Opening charge transport pathways." Science 371, no. 6527 (January 21, 2021): 358.5–359. http://dx.doi.org/10.1126/science.371.6527.358-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heimel, Georg, and Jean-Luc Brédas. "Reflections on charge transport." Nature Nanotechnology 8, no. 4 (March 17, 2013): 230–31. http://dx.doi.org/10.1038/nnano.2013.42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rossnagel, S. M., and H. R. Kaufman. "Charge transport in magnetrons." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (July 1987): 2276–79. http://dx.doi.org/10.1116/1.574434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boon, Elizabeth M., and Jacqueline K. Barton. "Charge transport in DNA." Current Opinion in Structural Biology 12, no. 3 (June 2002): 320–29. http://dx.doi.org/10.1016/s0959-440x(02)00327-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Collett, Howard M. "1986 Transport charge survey." Hospital Aviation 5, no. 6 (June 1986): 12–14. http://dx.doi.org/10.1016/s0740-8315(86)80235-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Collett, Howard M. "1987 Transport charge survey." Hospital Aviation 6, no. 6 (June 1987): 18–19. http://dx.doi.org/10.1016/s0740-8315(87)80071-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Collett, Howard M. "1988 Transport charge survey." Hospital Aviation 7, no. 6 (June 1988): 18–19. http://dx.doi.org/10.1016/s0740-8315(88)80103-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Collett, Howard M. "1989 Transport charge survey." Hospital Aviation 8, no. 6 (June 1989): 19–20. http://dx.doi.org/10.1016/s0740-8315(89)80097-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gill, J. C., and H. H. Wills. "Charge-density wave transport." Contemporary Physics 27, no. 1 (January 1986): 37–59. http://dx.doi.org/10.1080/00107518608210997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ladik, J. J., and Y. J. Ye. "Charge Transport in Biopolymers." physica status solidi (b) 205, no. 1 (January 1998): 3–10. http://dx.doi.org/10.1002/(sici)1521-3951(199801)205:1<3::aid-pssb3>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Peterson, G. A., B. J. McCartin, W. J. Tanski, and R. E. LaBarre. "Charge confinement in heterojunction acoustic charge transport devices." Applied Physics Letters 55, no. 13 (September 25, 1989): 1330–32. http://dx.doi.org/10.1063/1.101646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Avron, Joseph E., Ruedi Seiler, and Barry Simon. "Charge deficiency, charge transport and comparison of dimensions." Communications in Mathematical Physics 159, no. 2 (January 1994): 399–422. http://dx.doi.org/10.1007/bf02102644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Druzhinin, A. A. "Peculiarities of charge carriers transport in submicron Si-Ge whiskers." Functional materials 22, no. 1 (April 20, 2015): 27–33. http://dx.doi.org/10.15407/fm22.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Hongliang, Vitor Brasiliense, Jingshan Mo, Long Zhang, Yang Jiao, Zhu Chen, Leighton O. Jones, et al. "Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors." Journal of the American Chemical Society 143, no. 7 (February 12, 2021): 2886–95. http://dx.doi.org/10.1021/jacs.0c12664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Masterov, V. F., F. S. Nasredinov, N. P. Seregin, and P. P. Seregin. "Effective atomic charges and charge transport in superconductor lattices." Physics of the Solid State 39, no. 12 (December 1997): 1895–99. http://dx.doi.org/10.1134/1.1130195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sato, Hisaya, Hidenori Hirai, and Jun-Mo Son. "Preparation of Charge Transport Polymers." Journal of Synthetic Organic Chemistry, Japan 59, no. 4 (2001): 372–76. http://dx.doi.org/10.5059/yukigoseikyokaishi.59.372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hersam, M. C., and R. G. Reifenberger. "Charge Transport through Molecular Junctions." MRS Bulletin 29, no. 6 (June 2004): 385–90. http://dx.doi.org/10.1557/mrs2004.120.

Full text
Abstract:
AbstractIn conventional solid-state electronic devices, junctions and interfaces play a significant if not dominant role in controlling charge transport. Although the emerging field of molecular electronics often focuses on the properties of the molecule in the design and understanding of device behavior, the effects of interfaces and junctions are often of comparable importance. This article explores recent work in the study of metal–molecule–metal and semiconductor–molecule–metal junctions. Specific issues include the mixing of discrete molecular levels with the metal continuum, charge transfer between molecules and semiconductors, electron-stimulated desorption, and resonant tunneling. By acknowledging the consequences of junction/interface effects, realistic prospects and limitations can be identified for molecular electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
24

Pelster, R., G. Nimtz, and B. Weßling. "Mesoscale charge transport in polyaniline." Journal de Physique II 4, no. 4 (April 1994): 549–53. http://dx.doi.org/10.1051/jp2:1994145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Karahka, Markus Leopold, and Hans Jürgen Kreuzer. "Charge transport along proton wires." Biointerphases 8, no. 1 (December 2013): 13. http://dx.doi.org/10.1186/1559-4106-8-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wu, Chung-Chih, Wei-Guang Liu, Wen-Yi Hung, Tsung-Li Liu, Yu-Ting Lin, Hao-Wu Lin, Ken-Tsung Wong, et al. "Spiroconjugation-enhanced intermolecular charge transport." Applied Physics Letters 87, no. 5 (August 2005): 052103. http://dx.doi.org/10.1063/1.2001140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Roth, Siegmar, Hartmut Bleier, and Wojciech Pukacki. "Charge transport in conducting polymers." Faraday Discussions of the Chemical Society 88 (1989): 223. http://dx.doi.org/10.1039/dc9898800223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tyutnev, Andrey P., Vladimir S. Saenko, Evgenii D. Pozhidaev, and Vladislav A. Kolesnikov. "Charge carrier transport in polyvinylcarbazole." Journal of Physics: Condensed Matter 18, no. 27 (June 23, 2006): 6365–77. http://dx.doi.org/10.1088/0953-8984/18/27/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Stajic, Jelena. "Decoupling charge and heat transport." Science 355, no. 6323 (January 26, 2017): 363.11–365. http://dx.doi.org/10.1126/science.355.6323.363-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gritsenko, V. A., and A. A. Gismatulin. "Charge transport mechanism in La:HfO2." Applied Physics Letters 117, no. 14 (October 5, 2020): 142901. http://dx.doi.org/10.1063/5.0021779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wolter, Mario, Marcus Elstner, and Tomáš Kubař. "Charge transport in desolvated DNA." Journal of Chemical Physics 139, no. 12 (September 28, 2013): 125102. http://dx.doi.org/10.1063/1.4821594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Delaney, Sarah, and Jacqueline K. Barton. "Long-Range DNA Charge Transport." Journal of Organic Chemistry 68, no. 17 (August 2003): 6475–83. http://dx.doi.org/10.1021/jo030095y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jan van der Molen, Sense, and Peter Liljeroth. "Charge transport through molecular switches." Journal of Physics: Condensed Matter 22, no. 13 (March 17, 2010): 133001. http://dx.doi.org/10.1088/0953-8984/22/13/133001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Storchak, V., J. H. Brewer, and G. D. Morris. "Charge transport in solid nitrogen." Philosophical Magazine B 72, no. 2 (August 1995): 241–49. http://dx.doi.org/10.1080/13642819508239078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Morishima, Yotaro. "Charge transport in polymer films." Kobunshi 35, no. 3 (1986): 252–55. http://dx.doi.org/10.1295/kobunshi.35.252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Islamov, D. R., T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin. "Charge transport in amorphous Hf0.5Zr0.5O2." Applied Physics Letters 106, no. 10 (March 9, 2015): 102906. http://dx.doi.org/10.1063/1.4914900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Majumdar, Dipanwita, and Shyamal Kumar Saha. "Charge Transport in Polypyrrole Nanotubes." Journal of Nanoscience and Nanotechnology 15, no. 12 (December 1, 2015): 9975–81. http://dx.doi.org/10.1166/jnn.2015.11708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Roth, S., S. Blumentritt, M. Burghard, C. M. Fischer, G. Philipp, and C. Müller-Schwanneke. "Charge transport in LB microsandwiches." Synthetic Metals 86, no. 1-3 (February 1997): 2415–18. http://dx.doi.org/10.1016/s0379-6779(97)81182-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sluchanko, N., V. Glushkov, S. Demishev, M. Kondrin, M. Ignatov, A. Pronin, A. Volkov, et al. "Charge transport anisotropy in SmB6." Physica B: Condensed Matter 312-313 (March 2002): 331–32. http://dx.doi.org/10.1016/s0921-4526(01)01116-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ignatov, M. I., A. V. Bogach, S. V. Demishev, V. V. Glushkov, A. V. Levchenko, Yu B. Paderno, N. Yu Shitsevalova, and N. E. Sluchanko. "Anomalous charge transport in CeB6." Journal of Solid State Chemistry 179, no. 9 (September 2006): 2805–8. http://dx.doi.org/10.1016/j.jssc.2006.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Salleo, Alberto. "Charge transport in polymeric transistors." Materials Today 10, no. 3 (March 2007): 38–45. http://dx.doi.org/10.1016/s1369-7021(07)70018-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vigil, A. J., A. W. Hull, L. P. Solie, M. J. Miller, R. J. Kansy, and D. A. Fleisch. "Applications of acoustic charge transport." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 40, no. 5 (September 1993): 488–95. http://dx.doi.org/10.1109/58.238100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mason, Nadya, and Martin Stehno. "No charge for spin transport." Nature Physics 9, no. 2 (January 13, 2013): 67–68. http://dx.doi.org/10.1038/nphys2529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Reedijk, J. A., H. C. F. Martens, S. M. C. van Bohemen, O. Hilt, H. B. Brom, and M. A. J. Michels. "Charge transport in doped polythiophene." Synthetic Metals 101, no. 1-3 (May 1999): 475–76. http://dx.doi.org/10.1016/s0379-6779(98)01231-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Coropceanu, Veaceslav, Jérôme Cornil, Demetrio A. da Silva Filho, Yoann Olivier, Robert Silbey, and Jean-Luc Brédas. "Charge Transport in Organic Semiconductors." Chemical Reviews 107, no. 4 (April 2007): 926–52. http://dx.doi.org/10.1021/cr050140x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zabet-Khosousi, Amir, and Al-Amin Dhirani. "Charge Transport in Nanoparticle Assemblies." Chemical Reviews 108, no. 10 (October 8, 2008): 4072–124. http://dx.doi.org/10.1021/cr0680134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Genereux, Joseph C., and Jacqueline K. Barton. "Mechanisms for DNA Charge Transport." Chemical Reviews 110, no. 3 (March 10, 2010): 1642–62. http://dx.doi.org/10.1021/cr900228f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chang, Dong Wook, and Jong-Beom Baek. "Charge transport in graphene oxide." Nano Today 17 (December 2017): 38–53. http://dx.doi.org/10.1016/j.nantod.2017.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ginger, D. S., and N. C. Greenham. "Charge transport in semiconductor nanocrystals." Synthetic Metals 124, no. 1 (October 2001): 117–20. http://dx.doi.org/10.1016/s0379-6779(01)00444-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Albrecht, Tim, Alexei Kornyshev, and Thomas Bjørnholm. "Charge transport in nanoscale junctions." Journal of Physics: Condensed Matter 20, no. 37 (August 6, 2008): 370301. http://dx.doi.org/10.1088/0953-8984/20/37/370301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography