Academic literature on the topic 'Charging Station'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Charging Station.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Charging Station"
Qin, Jianxin, Jing Qiu, Yating Chen, Tao Wu, and Longgang Xiang. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid." Sustainability 14, no. 24 (December 14, 2022): 16797. http://dx.doi.org/10.3390/su142416797.
Full textZhao, Shu Qiang, and Zhi Wie Li. "The Optimization Model of Planning Electric Vehicle Charging Station." Applied Mechanics and Materials 672-674 (October 2014): 1183–88. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.1183.
Full textSpuritha, M., Harshitha Damineni, Shreemayi Sonti, Veshala Lokesh Kumar, Siri Chandana Veeramalla, Ramprasad Kokkula, and D. Indira. "Crowd sourced smart EV charging station network using ML." E3S Web of Conferences 309 (2021): 01097. http://dx.doi.org/10.1051/e3sconf/202130901097.
Full textAdemulegun, Oluwasola O., Paul MacArtain, Bukola Oni, and Neil J. Hewitt. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions." Energies 15, no. 24 (December 12, 2022): 9396. http://dx.doi.org/10.3390/en15249396.
Full text., Lakshmi, Malini K V, Likitha N E, Basavaraj M, Vanfana K, and Varun Gowda. "Smart Self Monitoring Eco Friendly EV Charging Station." International Journal of Innovative Research in Information Security 09, no. 03 (June 23, 2023): 229–33. http://dx.doi.org/10.26562/ijiris.2023.v0903.32.
Full textMishra, Partha, Eric Miller, Shriram Santhanagopalan, Kevin Bennion, and Andrew Meintz. "A Framework to Analyze the Requirements of a Multiport Megawatt-Level Charging Station for Heavy-Duty Electric Vehicles." Energies 15, no. 10 (May 21, 2022): 3788. http://dx.doi.org/10.3390/en15103788.
Full textZhang, Peipei, Juan Chen, Lilan Tu, and Longteng Yin. "Layout Evaluation of New Energy Vehicle Charging Stations: A Perspective Using the Complex Network Robustness Theory." World Electric Vehicle Journal 13, no. 7 (July 12, 2022): 127. http://dx.doi.org/10.3390/wevj13070127.
Full textShi, Qing Sheng, and Yi Cao. "Gaussian Mixture Model Clustering Based Optimal Location of EV Charging Stations." Applied Mechanics and Materials 380-384 (August 2013): 3400–3403. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.3400.
Full textRăboacă, Maria-Simona, Irina Băncescu, Vasile Preda, and Nicu Bizon. "An Optimization Model for the Temporary Locations of Mobile Charging Stations." Mathematics 8, no. 3 (March 21, 2020): 453. http://dx.doi.org/10.3390/math8030453.
Full textEl-fedany, Ibrahim, Driss Kiouach, and Rachid Alaoui. "System architecture to select the charging station by optimizing the travel time considering the destination of electric vehicle drivers in smart cities." Bulletin of Electrical Engineering and Informatics 9, no. 1 (February 1, 2020): 273–83. http://dx.doi.org/10.11591/eei.v9i1.1564.
Full textDissertations / Theses on the topic "Charging Station"
Huang, Yingfen. "EV Charging Station Infrastructure." Digital Commons at Loyola Marymount University and Loyola Law School, 2017. https://digitalcommons.lmu.edu/etd/397.
Full textSharpe, Nathan. "Mobile phone charging station." Thesis, Sharpe, Nathan (2010) Mobile phone charging station. Other thesis, Murdoch University, 2010. https://researchrepository.murdoch.edu.au/id/eprint/7455/.
Full textAlgvere, Caroline. "Designing Electric Vehicle Charging Station Information." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415168.
Full textDu, Yunke. "PEV Charging Demand Estimation and Selection of Level 3 Charging Station." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1367243693.
Full textEltoumi, Fouad. "Charging station for electric vehicle using hybrid sources." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA009.
Full textHigher penetration of electric vehicles (EV) and plug-in hybrid electric vehicles requires efficient design of charging stations to supply appropriate charging rates. This would trigger stress on conventional grid, thus increasing the cost of charging. Therefore, in this scenario the use of on-site renewable sources such as photovoltaic (PV) energy alongside to the conventional grid can increase the performance of charging station. In this thesis, a PV source is used in conjunction with grid to supplement EV load. However, the PV is known for its intermittent nature that is highly dependent on geographical and weather conditions. So, to compensate the intermittency of PV, a battery storage system (BSS) is combined with the PV in a grid-tied system, providing a stable operation of hybrid PV based charging station.Generally, hybrid sources based charging station should be cost effective, efficient, and reliable to supplement the variable needs of EVs load in different scenarios. In this thesis, efficient hierarchical energy management strategy is proposed and applied to maximize on-site PV energy, to meet the variable load of EVs using quick response of BSS and putting less stress on grid. This strategy overall improves the performance and is reliable and cost-effective.An efficient bidirectional power conversion stage is introduced for BSS in the form of interleaved buck-boost converter to ensure the safe operation of BSS and reduce the losses during conversion stage. This topology has characteristics to improve the current ripples and therefore, increase the power quality drastically. Similarly, to extract the maximum power from PV system under intermittent weather conditions, MPPT is used alongside with interleaved boost converter to ensure the continuity of power from PV source. Similarly, for vehicles charger stage, to meet the dynamic power demands of EVs; while, keeping the balance between available generation amounts, interleave converter is proposed combined to sub-management strategy. Particularly, this conversion stage and management addresses the low utilization of grid sources for charging purpose when, peak load is present at grid side. This charging behaviour greatly decreases the stress on grid especially at peak hours and therefore, improves the performance of system in overall.To operate whole system under desirable conditions, an online energy management strategy is proposed. This real-time strategy works in hierarchical manner, initializing from maximized utilization of PV source, then using BSS to supplement power and utilizing grid during intermittent conditions or when there is low amount of PV. The management strategy ensure reliable operation of system, while maximizing the PV utilization, meeting the EVs demand and maximizing the life the BSS.In this thesis, a hybrid charging system based on PV, BSS and conventional grid is proposed to support the needs of EVs load. Efficient energy conversion stage has been proposed using interleave buck-boost converters to improve the quality of power and at the end, an online management strategy is developed to maximize the renewable energy utilization, inserting lesser stress on grid and improving the utilization of BSS to improve its life
Gong, Jindan. "Optimisation of charging strategies and energy storage operation for a solar driven charging station." Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272006.
Full textSveriges energisystem genomgår en omfattande omställning. Förändringar i form av en ökad andel förnybar elproduktion och elektrifieringen av transportsektorn förväntas medföra stora utmaningar för elsystemets nätstabilitet och överföringskapacitet. Att integrera in distribuerad, förnybar elproduktion som en del av laddinfrastrukturen för elfordon ställer sig som en lovande lösning för att möta de väntande utmaningarna. Möjligheterna att tillämpa en sådan lösning i norra Sverige är däremot mindre självklara, då solresurserna är knappa under vintertid. Det här examensarbetet syftar till att maximera nyttan av en soldriven laddstation för elbilar, placerad på ett arbetsplatsområde i Umeå. En integrerad energisystemmodell av laddstationen har skapats, bestående av systemmodeller av solpaneler, ett batterienergilager, arbetsplatsens elbilsflotta samt byggnaden Växthuset, som laddstationen ska anslutas till. Tre scenarier har utformats för att undersöka hur laddstationens prestanda förändras beroende på olika laddstrategier för elbilarna och batterienergilagrets styrning. Ytterligare två scenarier har utvecklats för att utforska möjliga nättjänster som laddstationen kan bistå med under vintertid. Laddstationens värde har vidare bedömts utifrån systemets prestanda i de olika scenarierna. Bedömningen grundar sig på laddstationens lönsamhet och hur välutnyttjat batterienergilagret är efter en kalkylperiod på 10 år, samt på specifika påverkansfaktorer på elnätet. Faktorerna omfattar konsumtionen av egenproducerad el, toppeffektuttaget och nätöverföringarna orsakade av laddstationen. Från värderingen av laddstationen framgår det att de dynamiska laddstrategierna ledde till en, överlag, minskad påverkan på elnätet samt att styrningen av batterienergilagret hade stor inverkan på dess utnyttjandegrad. Laddstationens nettonuvärde förblev negativt i de tre scenarierna, även om de dynamiska laddstrategierna, ökade dess ekonomiska värde till en viss del. Vidare tyder simuleringen av vinterscenarierna på att det finns en stor potential för laddstationen att erbjuda tjänster för lokalnätet och samtidigt nyttiggöra sig av batterienergilagret. Växthusets toppeffektuttag reducerades märkbart genom att optimera batteristyrningen till att flytta effekttoppar orsakade av Växthusets ellastkurva eller elbilarnas laddning och uppvärmning, till de timmar där lasten var lägre. Med detta i bakgrund föreslås vidare studier som fokuserar på den integrerade energisystemmodellen för att förbättra simuleringarna, samt att undersöka möjligheterna till att erbjuda fler nättjänster, som ökar laddstationens mervärde.
Atterby, Alfred, Jakub Bluj, and Elias Sjögren. "Potential for electric vehicle smart charging station expansion at Fyrisskolan." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352636.
Full textÖsterberg, Viktor. "Electric Vehicle Charging Station Markets : An analysis of the competitive situation." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2018.
Full textIdag utgör elfordon endast en liten nischmarknad i transportmarknaden, men denna förväntas växa snabbt under de närmaste åren. För att kunna hantera marknadsetableringen av elfordon måste elfordonsladdningsinfrastrukturen byggas ut, vilket leder till en ökad efterfrågan på elfordonsladdningsstationer. Elfordonsladdningsmarknaden förespås således bli allt mer intressant för företag. Detta examensarbete genomförs på grund av detta växande intresse, då studiens syfte är att undersöka elfordonsladdstationsmarknaden och dess konkurrenssituation. Metoden som används i denna studie inbegriper en kort marknadsanalys och en konkurrensanalys. Marknadsanalysen innehåller identifiering av elfordonsladdningsmarknaderna, vad som driver och hindrar marknaderna, och en bedömning av hur framtiden ser ut för marknaderna. I konkurrensanalysen ingår identifiering, klassificering och analys av de olika konkurrenterna. De tio mest konkurrenskraftiga konkurrenterna analyseras med hjälp av dokumentinnehållsanalys, syftet med analysen är att förstå konkurrenternas målgrupper, hur de gör affärer och hur deras marknadsföringsmaterial är strukturerad. De tre mest lovande elfordonsladdningsmarknaderna, både nu och i framtiden, är marknaderna i Asien och Stillahavsområdet, Europa och Nordamerika. De flesta av de analyserade konkurrenterna är verksamma inom dessa tre marknader. Den regionala utvecklingen, och vad som driver och begränsar marknaderna har identifierats för de tre mest lovande marknaderna. Eftersom dessa marknader är relativt oexploaterade i samband med att de förväntas växa med väldigt hög takt det kommande decenniet parallellt med massanvändningen av elfordon är möjligheterna många för de företag som inriktar sig mot elbilsladdning.
Hertzberg, Samuel, and Daniel Dahlgren. "Optimal Placement of a Charging Station for a Robotic Vacuum Cleaner." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229763.
Full textRobotdammsugare används i många hushåll och industriella tillämpningar runt om i värden idag. Robotdammsugare har ett visst mål: att städa en yta inom en viss tid. Den gör det genom att använda olika tekniker beroende på informationen det får från sina sensorer. Dock kan effektiviteten variera mellan robot och robot. Variationerna beror på många olika saker då problemet är komplext. Denna rapport kommer att mäta variationer som uppstår på grund av startposition. I en statistisk analys på ett genererat dataset visade resultaten att i några fall påverkar startpositionen robotdammsugaren. Med en av de två algoritmerna som simulerades i detta arbete, random bump algoritmen, visade det sig inte spela stor roll. Medans den andra algoritmen, spiralalgoritmen, kunde bli upp till 20% mer effektiv på grund av startposi-tionen.
Greene, Briun. "How to Develop the Electric Vehicle Charging Station Infrastructure in China." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437409084.
Full textBooks on the topic "Charging Station"
K, Kokula Krishna Hari, ed. A Multi-Function Conversion Technique for Electric Vehicle Charging Station. Chennai, India: Association of Scientists, Developers and Faculties, 2016.
Find full textA, Hamley John, and United States. National Aeronautics and Space Administration., eds. Discharge ignition behavior of the space station plasma contactor. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textW, York Kenneth, Bowers Glen E, and United States. National Aeronautics and Space Administration., eds. Integration issues of a plasma contactor power electronics unit. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textLumampao, Feri G. Gender and renewable energy in the Philippines: A community-based microhydro project in Kalinga and a PV-battery charging station in Southern Leyte. Intramuros, Manila, Philippines: Approtech Asia, 2004.
Find full text1953-, Snyder David B., Jongeward Gary A, and United States. National Aeronautics and Space Administration., eds. Auroral interactions with ISSA. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textRichard, Alice. Electric Vehicle Charging Stations at Airport Parking Facilities. Washington, D.C.: Transportation Research Board, 2014. http://dx.doi.org/10.17226/22390.
Full textUnited States. National Aeronautics and Space Administration., ed. Life test of a xenon hollow cathode for a space plasma contactor. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.
Find full textTo authorize the Architect of the Capitol to establish battery recharging stations for privately owned vehicles in parking areas under the jurisdiction of the House of Representatives at no net cost to the federal government: Report (to accompany H.R. 1402). Washington, D.C: U.S. G.P.O., 2012.
Find full textBayram, İslam Şafak. Plug-in electric vehicle grid integration. Norwood, MA: Artech House, 2017.
Find full textUnited States. National Aeronautics and Space Administration., ed. Continuing life test of a xenon hollow cathode for a space plasma contactor. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textBook chapters on the topic "Charging Station"
Gabbar, Hossam A. "Fast-Charging Station Design." In Fast Charging and Resilient Transportation Infrastructures in Smart Cities, 35–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09500-9_3.
Full textGuo, Yudi, Junjie Yao, Jiaxiang Huang, and Yijun Chen. "Data Driven Charging Station Placement." In Web and Big Data, 260–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26075-0_20.
Full textHoffmann, Florian, Vanessa Wesskamp, Raphael Bleck, and Jochen Deuse. "Scalability of Assembly Line Automation Based on the Integrated Product Development Approach." In Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021, 275–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74032-0_23.
Full textAhmad, Aqueel, Yasser Rafat, Samir M. Shariff, and Rakan Chabaan. "Smart Microgrid-Integrated EV Wireless Charging Station." In Electric Vehicle Integration in a Smart Microgrid Environment, 267–78. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926-11.
Full textLee, Junghoon, Hye-Jin Kim, and Jason Cho. "Charging Station Advertisement on Digital Multimedia Broadcasting Platform." In Communications in Computer and Information Science, 12–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23948-9_3.
Full textKrishna, T. K., D. Susitra, and S. Dinesh Kumar. "DC Smart Grid System for EV Charging Station." In Advances in Intelligent Systems and Computing, 307–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0199-9_27.
Full textDu, Xue-long, Zhi-zhen Liu, Liang Xue, Qing-zhi Jian, Liang Guo, and Lin-lin Sun. "The Improvement on Simulation Model of Charging Station." In Lecture Notes in Electrical Engineering, 347–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-26001-8_45.
Full textXu, Longlong, Wutao Lin, Xiaorong Wang, Zhenhui Xu, Wei Chen, and Tengjiao Wang. "ChargeMap: An Electric Vehicle Charging Station Planning System." In Web and Big Data, 337–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63564-4_31.
Full textGupta, Rudraksh S., Arjun Tyagi, V. V. Tyagi, Y. Anand, A. Sawhney, and S. Anand. "Renewable Energy-Driven Charging Station for Electric Vehicles." In Energy Systems and Nanotechnology, 57–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1256-5_5.
Full textZhang, Le, Ziling Zeng, and Kun Gao. "Optimal Design of Mixed Charging Station for Electric Transit with Joint Consideration of Normal Charging and Fast Charging." In Smart Innovation, Systems and Technologies, 85–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2324-0_9.
Full textConference papers on the topic "Charging Station"
Y., Abi Tirshan, Ajaikrishnan S., and Suresh S. "Charging Slot Prediction and Automation System for Electric Vehicle Charging Station." In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/mbvg6410/ngcesi23p129.
Full textPavithra, C., D. Preethi, Priyadharshini, P. Shalini, and D. Sowmiya. "Smart solar charging station." In INNOVATIONS AND RESEARCH IN MARINE ELECTRICAL AND ELECTRONICS ENGINEERING: ICIRMEEE 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0101184.
Full textEvans, Patrick, Ryan Avery, Maxwell Malcy, Maverick Ruiz, and Uma Balaji. "Multipurpose Solar Charging Station." In 2022 IEEE Long Island Systems, Applications and Technology Conference (LISAT). IEEE, 2022. http://dx.doi.org/10.1109/lisat50122.2022.9924029.
Full textKharade, Jyoti M., Mangesh P. Gaikwad, Saurabh P. Jadhav, Parag D. Kodag, Sweta P. Pawar, and Supriya T. Yadav. "IoT Based Charging Slot Locator at Charging Station." In 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2020. http://dx.doi.org/10.1109/icces48766.2020.9137937.
Full textTonape, Abhishek, and Suryakant H.Pawar. "Pulse Current Charging Station for Electric Vehicle Charging." In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE, 2020. http://dx.doi.org/10.1109/ic-etite47903.2020.358.
Full text"Communication Reduced Interaction Protocol between Customer, Charging Station, and Charging Station Management System." In 3rd International Conference on Smart Grids and Green IT Systems. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004971801180125.
Full textLi, Xun, Yantao Sun, Mengge Shi, and Youwei Jia. "Multi-stage Charging Recommendation of Charging Station Considering User's Charging Behavior." In 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES). IEEE, 2023. http://dx.doi.org/10.1109/aeees56888.2023.10114356.
Full textLam, Albert Y. S., Yiu-Wing Leung, and Xiaowen Chu. "Electric vehicle charging station placement." In 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2013. http://dx.doi.org/10.1109/smartgridcomm.2013.6688009.
Full textDorin, Petreus, Patarau Toma, Etz Radu, and Cirstea Marcian. "Renewable energy EV charging station." In 2021 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2021 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). IEEE, 2021. http://dx.doi.org/10.1109/optim-acemp50812.2021.9590053.
Full textSaranya, L., R. Kavya Sree, D. Janani, P. Loga Sheneha, and A. Priyadharshini. "Smart Electric Vehicle Charging Station." In 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2023. http://dx.doi.org/10.1109/icaccs57279.2023.10113054.
Full textReports on the topic "Charging Station"
Yang, Yu, and Hen-Geul Yeh. Electrical Vehicle Charging Infrastructure Design and Operations. Mineta Transportation Institute, July 2023. http://dx.doi.org/10.31979/mti.2023.2240.
Full textSimpson, M. SPIDERS Bi-Directional Charging Station Interconnection Testing. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1096678.
Full textLapsa, Melissa Voss, Norman Durfee, L. Curt Maxey, and Randall M. Overbey. Solar-Assisted Electric Vehicle Charging Station Interim Report. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1025858.
Full textJu, Ha Kyun, Tae Rim Kim, Kyubyung Kang, Dan Daehyun Koo, Konstantina Gkritza, and Samuel Labi. A Strategic Assessment of Needs and Opportunities for the Wider Adoption of Electric Vehicles in Indiana. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317590.
Full textMathew, Jijo K., Deborah Horton, and Darcy M. Bullock. Utilization of Dedicated Electric Vehicle Plug-In Charging Stations in a College Campus Environment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317436.
Full textSmart, John, and Don Scoffield. Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1164860.
Full textDorsey, Jackson, Ashley Langer, and Shaun McRae. Fueling Alternatives: Gas Station Choice and the Implications for Electric Charging. Cambridge, MA: National Bureau of Economic Research, March 2022. http://dx.doi.org/10.3386/w29831.
Full textMedam, Anudeep, Michael Stadler, Abhishek Banerjee, Muhammad nmn Usman, Ning Kang, Adib Nasle, Kelsey Fahy, and Zack Pecenak. Summary Report for the Microgrid Fast Charging Station (MFCS) Design Platform Project. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1813548.
Full textKuiper, James, Xinyi Wu, Yan Zhou, and Marcy Rood. Modeling Electric Vehicle Charging Station Siting Suitability with a Focus on Equity. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1887567.
Full textBrown, Abby, Stephen Lommele, Alexis Schayowitz, and Emily Klotz. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2020. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1763972.
Full text