To see the other types of publications on this topic, follow the link: Chemical process simulation.

Journal articles on the topic 'Chemical process simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemical process simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Fanxing, Liang Zeng, and Liang-Shih Fan. "Biomass direct chemical looping process: Process simulation." Fuel 89, no. 12 (2010): 3773–84. http://dx.doi.org/10.1016/j.fuel.2010.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nayak, Priyam, Pravin Dalve, Rahul Anandi Sai, et al. "Chemical Process Simulation Using OpenModelica." Industrial & Engineering Chemistry Research 58, no. 26 (2019): 11164–74. http://dx.doi.org/10.1021/acs.iecr.9b00104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lucia, Angelo, and Delong Liu. "Reverse Iteration in Chemical Process Simulation." Industrial & Engineering Chemistry Research 37, no. 11 (1998): 4332–40. http://dx.doi.org/10.1021/ie9802764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Tommaso, Jacopo, Francesco Rossi, Nooshin Moradi, Carlo Pirola, Gregory S. Patience, and Federico Galli. "Experimental methods in chemical engineering: Process simulation." Canadian Journal of Chemical Engineering 98, no. 11 (2020): 2301–20. http://dx.doi.org/10.1002/cjce.23857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aviso, Kathleen B. "Dominic Foo (ed.): Chemical Engineering Process Simulation." Process Integration and Optimization for Sustainability 2, no. 4 (2018): 301. http://dx.doi.org/10.1007/s41660-018-0056-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Linnhoff, B., and C. G. Akinradewo. "Linking process simulation and process integration." Computers & Chemical Engineering 23 (June 1999): S945—S953. http://dx.doi.org/10.1016/s0098-1354(99)80229-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hansen, Jens A., and Barry H. Cooper. "Process simulation of refinery units including chemical reactors." Computers & Chemical Engineering 16 (May 1992): S431—S439. http://dx.doi.org/10.1016/s0098-1354(09)80051-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

YUAN, Xigang, and Guocong YU. "Computational Mass Transfer Method for Chemical Process Simulation." Chinese Journal of Chemical Engineering 16, no. 4 (2008): 497–502. http://dx.doi.org/10.1016/s1004-9541(08)60113-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ZHANG, Beike, Xin XU, Xin MA, and Chongguang WU. "SDG-based Model Validation in Chemical Process Simulation." Chinese Journal of Chemical Engineering 21, no. 8 (2013): 876–85. http://dx.doi.org/10.1016/s1004-9541(13)60554-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takriff, M. S., N. H. Mansor, and S. K. Kamarudin. "Review: Integrating Optimization Module into Chemical Process Simulation." Journal of Applied Sciences 10, no. 21 (2010): 2493–98. http://dx.doi.org/10.3923/jas.2010.2493.2498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Casavant, Tracy E., and Raymond P. Côté. "Using chemical process simulation to design industrial ecosystems." Journal of Cleaner Production 12, no. 8-10 (2004): 901–8. http://dx.doi.org/10.1016/j.jclepro.2004.02.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Stephenson, G. R., and C. F. Shewchuk. "Reconciliation of process data with process simulation." AIChE Journal 32, no. 2 (1986): 247–54. http://dx.doi.org/10.1002/aic.690320211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Neubauer, Dean V. "Chemical Process Performance Evaluation." Technometrics 50, no. 1 (2008): 95–96. http://dx.doi.org/10.1198/tech.2008.s539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nasrollahi, A., S. A. A. Salehi Neyshabouri, G. Ahmadi, and M. M. Namin. "Numerical Simulation of Particle Saltation Process." Particulate Science and Technology 26, no. 6 (2008): 529–50. http://dx.doi.org/10.1080/02726350802498723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gao, Dong, Xin Xu, and Xin Ma. "A General Automatic Scoring Framework for Chemical Simulation Process." Information Technology Journal 12, no. 14 (2013): 2621–27. http://dx.doi.org/10.3923/itj.2013.2621.2627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Corriou, Jean-Pierre, and Jean-Claude Assaf. "Special Issue on “Chemical Process Design, Simulation and Optimization”." Processes 8, no. 12 (2020): 1596. http://dx.doi.org/10.3390/pr8121596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yun, Jong-Ho, and Shi-Woo Rhee. "Feature scale simulation of selective chemical vapor deposition process." Thin Solid Films 339, no. 1-2 (1999): 270–76. http://dx.doi.org/10.1016/s0040-6090(98)01405-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Oyeleye, Olayiwola O., and Mark A. Kramer. "Qualitative simulation of chemical process systems: Steady-state analysis." AIChE Journal 34, no. 9 (1988): 1441–54. http://dx.doi.org/10.1002/aic.690340906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schöneberger, J. C., A. Fricke, and A. Wolna. "Process Simulation Cup 2018." Chemie Ingenieur Technik 90, no. 9 (2018): 1245. http://dx.doi.org/10.1002/cite.201855250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bodnár, István. "Simulation of acacia gasification process." Analecta Technica Szegedinensia 14, no. 1 (2020): 24–33. http://dx.doi.org/10.14232/analecta.2020.1.24-33.

Full text
Abstract:
This electronic document presents the thermokinetical modelling of the gasification process done on acacia-tree with variable operating conditions and different humidity levels. Gasification does not produce flue gas, but due to imperfect burning, synthesis gas appears which is rich in flammable components (CO2 and H2). The chemical structure of this gas depends on the components of the fuel and the humidity level, but greatly affected by the technological parameters too, such as pressure and temperature, as well as the air-ratio. The study shows the change in the amount of the fuel and the re
APA, Harvard, Vancouver, ISO, and other styles
21

Ko, G. H., M. M. Osias, D. A. Tremblay, M. D. Barrera, and C. C. Chen. "Process simulation in polymer manufacturing." Computers & Chemical Engineering 16 (May 1992): S481—S490. http://dx.doi.org/10.1016/s0098-1354(09)80057-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bury, S. J., C. K. Groot, C. Huth, and N. Hardt. "Dynamic simulation of chemical industry wastewater treatment plants." Water Science and Technology 45, no. 4-5 (2002): 355–63. http://dx.doi.org/10.2166/wst.2002.0623.

Full text
Abstract:
High variability, stringent effluent permits, and often extreme operating conditions define the practice of wastewater treatment in the chemical industry. This paper reviews the benefits and challenges of applying dynamic simulation to chemical-industry wastewater treatment plants by describing case studies at full-scale wastewater treatment plants (WWTP). The applications range from process troubleshooting to optimization and control. The applications have been valuable and useful in developing a deeper understanding of the plants as integrated systems. However there still remains substantial
APA, Harvard, Vancouver, ISO, and other styles
23

Sekher, Malik, Mohammed M'Saad, Mondher Farza, and O. Gehan. "Chemical process sliding mode control." International Journal of Modelling, Identification and Control 5, no. 4 (2008): 260. http://dx.doi.org/10.1504/ijmic.2008.023510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

PICHAICHANARONG, P., R. M. SPOTNITZ, R. P. KREH, S. M. GOLDFARB, and J. T. LUNDQUIST. "SIMULATION OF A MEDIATED ELECTROCHEMICAL PROCESS." Chemical Engineering Communications 94, no. 1 (1990): 119–30. http://dx.doi.org/10.1080/00986449008911459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shiojima, Takeo, Hiroaki Endoh, and Shigeru Matsumoto. "Numerical simulation of catalytic reforming process." KAGAKU KOGAKU RONBUNSHU 14, no. 2 (1988): 141–46. http://dx.doi.org/10.1252/kakoronbunshu.14.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Montagna, Jorge Marcelo. "Problem-oriented modules for process simulation. resolution strategies for simulation and optimization." Canadian Journal of Chemical Engineering 71, no. 4 (1993): 634–41. http://dx.doi.org/10.1002/cjce.5450710416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bridgeman, J. "Hydrodynamic and Physico-Chemical Process Simulation in the Water Industry." Computational Technology Reviews 4 (September 14, 2010): 33–63. http://dx.doi.org/10.4203/ctr.4.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rudniak, L. "Numerical simulation of chemical vapour deposition process in electric field." Computers & Chemical Engineering 22 (March 1998): S755—S758. http://dx.doi.org/10.1016/s0098-1354(98)00141-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lucia, Angelo. "Complex Domain Chemical Process Simulation in Theory and in Practice†." Industrial & Engineering Chemistry Research 39, no. 6 (2000): 1713–22. http://dx.doi.org/10.1021/ie990655c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Elliott, J. Richard, Z. Nevin Gerek, and Neil Gray. "Combining molecular dynamics and chemical process simulation: the SPEAD model." Asia-Pacific Journal of Chemical Engineering 2, no. 4 (2007): 257–71. http://dx.doi.org/10.1002/apj.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Li, Xiaobo, Shuhong Wu, Jie Song, Hua Li, and Shuping Wang. "Numerical simulation of pore-scale flow in chemical flooding process." Theoretical and Applied Mechanics Letters 1, no. 2 (2011): 022008. http://dx.doi.org/10.1063/2.1102208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rodrigues, Alirio E., and Mirjana Minceva. "Modelling and simulation in chemical engineering: Tools for process innovation." Computers & Chemical Engineering 29, no. 6 (2005): 1167–83. http://dx.doi.org/10.1016/j.compchemeng.2005.02.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, C. C. "Some recent developments in process simulation for reactive chemical systems." Pure and Applied Chemistry 59, no. 9 (1987): 1177–88. http://dx.doi.org/10.1351/pac198759091177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lee, J. G., and T. Won. "Three-dimensional numerical simulation for anisotropic wet chemical etching process." Molecular Simulation 33, no. 7 (2007): 593–97. http://dx.doi.org/10.1080/08927020601067508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ponton, J. W., and V. Vasek. "A two-level approach to chemical plant and process simulation." Computers & Chemical Engineering 10, no. 3 (1986): 277–86. http://dx.doi.org/10.1016/0098-1354(86)85009-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cofer, H. N., and M. A. Stadtherr. "Reliability of iterative linear equation solvers in chemical process simulation." Computers & Chemical Engineering 20, no. 9 (1996): 1123–32. http://dx.doi.org/10.1016/0098-1354(95)00074-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zitney, S. E., J. Mallya, T. A. Davis, and M. A. Stad therr. "Multifrontal vs frontal techniques for chemical process simulation on supercomputers." Computers & Chemical Engineering 20, no. 6-7 (1996): 641–46. http://dx.doi.org/10.1016/0098-1354(95)00198-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cardoso, Marcelo, Kátia Dionísio de Oliveira, George Alberto Avelar Costa, and Maria Laura Passos. "Chemical process simulation for minimizing energy consumption in pulp mills." Applied Energy 86, no. 1 (2009): 45–51. http://dx.doi.org/10.1016/j.apenergy.2008.03.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mohammed Hafiz, O. K., and Anugrah Singh. "CFD simulation of laser enhanced modified chemical vapor deposition process." Chemical Engineering Research and Design 89, no. 6 (2011): 593–602. http://dx.doi.org/10.1016/j.cherd.2010.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shuai, Wang, Yang Yunchao, Lu Huilin, Wang Jiaxing, Xu Pengfei, and Liu Guodong. "Hydrodynamic simulation of fuel-reactor in chemical looping combustion process." Chemical Engineering Research and Design 89, no. 9 (2011): 1501–10. http://dx.doi.org/10.1016/j.cherd.2010.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Jiang-Hua, Hai-Yue Liu, Rui Zhu, and Yang Liu. "Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation." Complexity 2017 (2017): 1–16. http://dx.doi.org/10.1155/2017/4927649.

Full text
Abstract:
The recent rapid development of information technology, such as sensing technology, communications technology, and database, allows us to use simulation experiments for analyzing serious accidents caused by hazardous chemicals. Due to the toxicity and diffusion of hazardous chemicals, these accidents often lead to not only severe consequences and economic losses, but also traffic jams at the same time. Emergency evacuation after hazardous chemical accidents is an effective means to reduce the loss of life and property and to smoothly resume the transport network as soon as possible. This paper
APA, Harvard, Vancouver, ISO, and other styles
42

Lucia, Angelo, and Delong Liu. "More process simulation in singular regions." Computers & Chemical Engineering 23 (June 1999): S367—S370. http://dx.doi.org/10.1016/s0098-1354(99)80090-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lucia, Angelo, Xinzhou Guo, and Xiaofeng Wang. "Process simulation in the complex domain." AIChE Journal 39, no. 3 (1993): 461–70. http://dx.doi.org/10.1002/aic.690390309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Banks, P. S., K. A. Irons, and M. R. Woodman. "Interoperability of Process Simulation Software." Oil & Gas Science and Technology 60, no. 4 (2005): 607–16. http://dx.doi.org/10.2516/ogst:2005043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Junkai, Zhongqi Liu, Zengzhi Du, and Jianhong Wang. "A Parallel Processing Approach to Dynamic Simulation of Ethylbenzene Process." Processes 9, no. 8 (2021): 1386. http://dx.doi.org/10.3390/pr9081386.

Full text
Abstract:
Parallel computing has been developed for many years in chemical process simulation. However, existing research on parallel computing in dynamic simulation cannot take full advantage of computer performance. More and more applications of data-driven methods and increasing complexity in chemical processes need faster dynamic simulators. In this research, we discuss the upper limit of speed-up for dynamic simulation of the chemical process. Then we design a parallel program considering the process model solving sequence and rewrite the General dynamic simulation & optimization system (DSO) w
APA, Harvard, Vancouver, ISO, and other styles
46

Debbaut, B. "Rheology: from process to simulation." Plastics, Rubber and Composites 37, no. 2-4 (2008): 166–73. http://dx.doi.org/10.1179/174328908x283357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Alshekhli, Omar, Dominic C. Y. Foo, Ching Lik Hii, and Chung Lim Law. "Process simulation and debottlenecking for an industrial cocoa manufacturing process." Food and Bioproducts Processing 89, no. 4 (2011): 528–36. http://dx.doi.org/10.1016/j.fbp.2010.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Forgie, D. J. L., and P. T. Kerc. "Automatic Control of Supplemental Chemical Addition for Primary Treatment Enhancement." Water Quality Research Journal 22, no. 2 (1987): 211–26. http://dx.doi.org/10.2166/wqrj.1987.016.

Full text
Abstract:
Abstract Chemical coagulation can be used to improve the efficiency of a primary wastewater treatment plant. Using statistical and fuzzy mathematical techniques, models of this process were developed from data gathered at a plant which was using liquid alum and a polymeric coagulant aid to reduce its primary effluent strength. Mathematical simulation of on-line process control using these models and fixed and variable chemical feed rate regimes were conducted using “typical day” influent strength and flow rate data. The results of these simulations show that on-line process control with a vari
APA, Harvard, Vancouver, ISO, and other styles
49

An, Lisha, Zhe Yang, Yingwen Liu, and Gao Bo. "Numerical simulation of polysilicon deposition characteristics in chemical vapor deposition process." Thermal Science 22, Suppl. 2 (2018): 719–27. http://dx.doi.org/10.2298/tsci171009057a.

Full text
Abstract:
This paper addresses the complex component evolution and silicon dynamic deposition characteristics in the traditional Siemens reactor. A two-dimensional heat and mass transfer model coupled with a detailed chemical reaction mechanism was developed. The distributions of temperature, velocity, and concentration are presented in detail. The influencing factors (such as feeding mole ratio, inlet velocity, base temperature and reactor pressure) on the molar concentration evolutions of ten major components and silicon growth rate were obtained and analyzed. Results show that base temperature is mai
APA, Harvard, Vancouver, ISO, and other styles
50

Wang zhaorui, Wang shujuan, and Cheng guiru. "The Study on Chemical Process Simulation System using Computer Aided Engineering." Journal of Convergence Information Technology 7, no. 16 (2012): 451–58. http://dx.doi.org/10.4156/jcit.vol7.issue16.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!