Academic literature on the topic 'Chemical vapour transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chemical vapour transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chemical vapour transport"
Ntep, J. M., S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet. "ZnO growth by chemical vapour transport." Journal of Crystal Growth 207, no. 1-2 (November 1999): 30–34. http://dx.doi.org/10.1016/s0022-0248(99)00363-2.
Full textPajączkowska, A., and K. Majcher. "The chemical vapour transport of Mn3Fe2Ge3O12 garnet." Journal of Materials Science Letters 5, no. 4 (April 1986): 487–88. http://dx.doi.org/10.1007/bf01672372.
Full textKang, Moon H., Guangyu Qiu, Bingan Chen, Alex Jouvray, Kenneth B. K. Teo, Cinzia Cepek, Lawrence Wu, Jongmin Kim, William I. Milne, and Matthew T. Cole. "Transport in polymer-supported chemically-doped CVD graphene." Journal of Materials Chemistry C 5, no. 38 (2017): 9886–97. http://dx.doi.org/10.1039/c7tc02263h.
Full textLegma, J. B., G. Vacquier, and A. Casalot. "Chemical vapour transport of molybdenum and tungsten diselenides by various transport agents." Journal of Crystal Growth 130, no. 1-2 (May 1993): 253–58. http://dx.doi.org/10.1016/0022-0248(93)90859-u.
Full textMycielski, A., L. Kowalczyk, A. Szadkowski, B. Chwalisz, A. Wysmołek, R. Stępniewski, J. M. Baranowski, et al. "The chemical vapour transport growth of ZnO single crystals." Journal of Alloys and Compounds 371, no. 1-2 (May 2004): 150–52. http://dx.doi.org/10.1016/j.jallcom.2003.08.106.
Full textVengatesan, B., N. Kanniah, and P. Ramasamy. "Growth of Sb2S3 single crystals by chemical vapour transport." Materials Chemistry and Physics 17, no. 3 (June 1987): 311–16. http://dx.doi.org/10.1016/0254-0584(87)90153-2.
Full textTailor, Jiten P., Devangini S. Trivedi, S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande. "Study of chemical vapour transport (CVT) grown WSe1.93 single crystals." Materials Science in Semiconductor Processing 61 (April 2017): 11–16. http://dx.doi.org/10.1016/j.mssp.2016.12.032.
Full textChaussende, D., Y. Monteil, P. Aboughe-nze, C. Brylinski, and J. Bouix. "Thermodynamical calculations on the chemical vapour transport of silicon carbide." Materials Science and Engineering: B 61-62 (July 1999): 98–101. http://dx.doi.org/10.1016/s0921-5107(98)00454-1.
Full textLee, Young Jung, William T. Nichols, Dae-Gun Kim, and Young Do Kim. "Chemical vapour transport synthesis and optical characterization of MoO3thin films." Journal of Physics D: Applied Physics 42, no. 11 (May 15, 2009): 115419. http://dx.doi.org/10.1088/0022-3727/42/11/115419.
Full textPaorici, C., V. Pessina, and L. Zecchina. "Interface Kinetical Limitations in Closed-Tube Chemical Vapour Transport (I)." Crystal Research and Technology 21, no. 9 (September 1986): 1149–52. http://dx.doi.org/10.1002/crat.2170210905.
Full textDissertations / Theses on the topic "Chemical vapour transport"
Lim, Chin Wai. "Numerical Modelling of Transient and Droplet Transport for Pulsed Pressure - Chemical Vapour Deposition (PP-CVD) Process." Thesis, University of Canterbury. Mechanical Engineering, 2012. http://hdl.handle.net/10092/6829.
Full textPhilipp, Frauke. "Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie: Analyse der Phasenbildung in Systemen M/P/Te, M = Ti,Ce,Si." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1234301400524-98886.
Full textSchmidt, Peer. "Thermodynamische Analyse der Existenzbereiche fester Phasen - Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549.
Full textThe planning of solid-state synthesis includes beside the areas of composition x a thorough assessment of the existence ranges (p, T) of the new phases. The form of presentation of the phase equilibria in phase barograms follows from the thermodynamic relations of the gas-phase reactions (Kp, G(T)) as a lg(p) - 1/T - diagram. For simple constitution types of phase diagrams and barograms a summary was presented. Apart from the dependence of the existence of solids from the total pressure essential conditions of the phase formation can be deduced from the partial pressure behaviour of the components. The oxygen partial pressure p(O2) is accordingly essential for the formation of phase pure oxides. For global classification of the existence ranges (p(O2), T) and the derived redox potentials of oxidic solids, the concept of an electromotive series for solids has been originated. On the basis of these principles, and with the clarity of the diagrams of the voltage range the redox balance of solid state reactions of any combination of elements M and M' in a simple way is to estimate. In addition to the principles of pressure equilibria between condensed materials and the gas phase in only one equilibrium range the mechanisms of solid - gas equilibria between two interconnected ranges were also described. Besides the well-known phenomena of sublimation and decomposition sublimation a new reaction mechanism of the chemical transport was evaluated as an Auto- or Selftransport with theoretical backgrounds, thermodynamic modelling and experimental examples
Philipp, Frauke. "Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie: Analyse der Phasenbildung in Systemen M/P/Te, M = Ti,Ce,Si." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23662.
Full textSchmidt, Peer. "Thermodynamische Analyse der Existenzbereiche fester Phasen - Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A24013.
Full textThe planning of solid-state synthesis includes beside the areas of composition x a thorough assessment of the existence ranges (p, T) of the new phases. The form of presentation of the phase equilibria in phase barograms follows from the thermodynamic relations of the gas-phase reactions (Kp, G(T)) as a lg(p) - 1/T - diagram. For simple constitution types of phase diagrams and barograms a summary was presented. Apart from the dependence of the existence of solids from the total pressure essential conditions of the phase formation can be deduced from the partial pressure behaviour of the components. The oxygen partial pressure p(O2) is accordingly essential for the formation of phase pure oxides. For global classification of the existence ranges (p(O2), T) and the derived redox potentials of oxidic solids, the concept of an electromotive series for solids has been originated. On the basis of these principles, and with the clarity of the diagrams of the voltage range the redox balance of solid state reactions of any combination of elements M and M' in a simple way is to estimate. In addition to the principles of pressure equilibria between condensed materials and the gas phase in only one equilibrium range the mechanisms of solid - gas equilibria between two interconnected ranges were also described. Besides the well-known phenomena of sublimation and decomposition sublimation a new reaction mechanism of the chemical transport was evaluated as an Auto- or Selftransport with theoretical backgrounds, thermodynamic modelling and experimental examples.
Patnaik, Sanjay. "Modelling of transport processes in chemical vapor deposition reactors." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14192.
Full textScience hard copy bound in 2 v.
Includes bibliographical references (leaves 316-328).
by Sanjay Patnaik.
Ph.D.
Löffler, Markus. "Nanomanipulation and In-situ Transport Measurements on Carbon Nanotubes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-33242.
Full textMit dem Aufkommen von Mikroelektronik und mikromechanischen Systemen wurden die Vorteile miniaturisierter Geräte augenscheinlich. Mit der Entdeckung von Kohlenstoff-Nanoröhren durch Iijima 1991 wurde ein Material gefunden, welches überlegene Eigenschaften wie hohe Festigkeit, exzellente elektrische und Wärmeleitfähigkeit zeigt, während es zeitgleich leicht und flexibel ist. Diese Eigentschaften können durch eine Änderung der spezifischen atomaren Anordnung in der Nanoröhrenhülle beeinflusst werden. Der erste Teil dieser Dissertationsschrift behandelt einen neuartigen Syntheseansatz, welche die bekannten Syntheserouten der chemischen Gasphasenabscheidung und Laserablation kombiniert. Die Ergebnisse bezüglich des Durchmessers und der Ausbeute lassen sich gut mit einem etablierten Modell der Nukleation und des Wachstums von Kohlenstoff-Nanoröhren beschreiben - sie erweitern es, indem sie einen größeren Parameterraum berücksichtigen. Des Weiteren wurde konventionelle Laserablation benutzt, um C-13 angereicherte Kohlenstoff-Nanoröhren herzustellen, deren Durchmesser nicht nur von den üblichen Parametern, sondern auch vom C-13 Anteil abhängt. Diese Abhängigkeit geht mit der veränderten thermischen Leitfähigkeit von Isotopenmischungen einher. Die Manipulation von Kohlenstoff-Nanoröhren in einem Transmission-Elektronenmikroskop formt den zweiten Teil der Dissertationschrift. Mit Hilfe eines in-situ Manipulators wurden vielfältige Experimente durchgeführt, um die mechanischen und elektrischen Eigenschaften der Kohlenstoff-Nanoröhren zu bestimmen. Zweipunktmessungen des Widerstands einzelner Nanoröhren und die Beobachtung des Versagens einzelner Kohlenstoffschichten erlaubte die Bestimmung der Stromtragfähigkeit einzelner Hüllen. Mit Hilfe eines elektrischen Stromes konnte eine Nanoröhre durch die veränderung der Struktur in ihren elektrischen Eigenschaften verändert werden. Unter Verwendung dauerhaften oder gepulsten Gleichstroms konnte die Eisen- oder Zementit-Füllung der Kohlenstoff-Nanoröhren in eine polaritätsabhängige Richtung bewegt werden. Die Füllung wurde dabei durch die Wände der Nanoröhre geführt. Abhängig von Strom, Form der Nanoröhre und Zusammensetzung der Füllung ließen sich verschiedene Bereiche des Materialtransports identifizieren, u.a. das Umarbeiten einiger innerer Kohlenstoffschichten. Ein hoher Strom hingegen bewirkt eine Umarbeitung der kompletten Nanoröhre und strominduziertes Wachstum von Kohlenstoff-Nanostrukturen mit veränderter Morphologie. Mit Hilfe der gewonnenen Resultate wurde ein Transportmodell entwickelt, welches den Impulstransfer von Elektronen an Füllungsatome sowie einen festen Füllungskern während des Transports diskutiert. Messungen der mechanischen Eigenschaften, welche mit Hilfe von resonanter oder nicht-resonanter elektrischer Anregung von Schwingungen im Transmissions-Elektronenmikroskop durchgeführt wurden bilden den Abschluss der Arbeit. Durch die Beobachtungen konnten mit einem modifizierten Euler-Bernoulli-Balkenmodell wichtige mechanische Eigenschaften bestimmt werden
Lampert, Lester Florian. "High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3327.
Full textRomanos, Georgius E., Anastasios Labropoulos, and Nick Kanellopoulos. "Innovative methods for the characterization of ceramic nanofiltration membranes modified by TEOS/O3 chemical vapor deposition." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196648.
Full textRomanos, Georgius E., Anastasios Labropoulos, and Nick Kanellopoulos. "Innovative methods for the characterization of ceramic nanofiltration membranes modified by TEOS/O3 chemical vapor deposition." Diffusion fundamentals 2 (2005) 102, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14440.
Full textBooks on the topic "Chemical vapour transport"
Geiser, Juergen. Models and simulation of deposition processes with CVD apparatus: Theory and applications. Hauppauge, N.Y. , USA: Nova Science Publishers, 2009.
Find full textJonas, Stanisława. Spójny model zjawisk transportu masy i reakcji chemicznych w procesie chemicznej krystalizacji z fazy gazowej. Kraków: Akademia Górniczo-Hutnicza im. Stanisława Staszica, 1990.
Find full textSchmidt, Marcus, Michael Binnewies, Robert Glaum, and Peer Schmidt. Chemical Vapor Transport Reactions. De Gruyter, Inc., 2012.
Find full textMcGlynn, E., M. O. Henry, and J. P. Mosnier. ZnO wide-bandgap semiconductor nanostructures: Growth, characterization and applications. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.14.
Full textMiller, R. Todd. A halide transport chemical vapor deposition reactor system for deposition of ZnS:Mn electroluminescent phosphors. 1995.
Find full textHusurianto, Sjamsie. Process optimization and electrical characterization of ZnS:Mn electroluminescent phosphors deposited by halide transport chemical vapor deposition. 1998.
Find full textLu, Xiaobin. Electron spin resonance of ZnS:Mn thin films grown by halide transport chemical vapor deposition. 1999.
Find full textChen, Chia-Jen. A study of ZnS:Mn electroluminescent phosphors grown by halide transport chemical vapor deposition. 1997.
Find full textBook chapters on the topic "Chemical vapour transport"
Schaffrath, Uwe, and Reginald Gruehn. "Chemical (Vapour Phase) Transport in Lanthanide and Actinide Oxide and Oxychloride Chemistry." In Topics in f-Element Chemistry, 259–68. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3758-4_11.
Full textSchmidt, Gerhard, and Reginald Gruehn. "Chemical (Vapour Phase) Transport in Lanthanide and Actinide Oxide and Oxychloride Chemistry." In Topics in f-Element Chemistry, 269–77. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3758-4_12.
Full textPyun, Su-Il, and Young-Gi Yoon. "Hydrogen Transport through TiO2Film Prepared by Plasma Enhanced Chemical Vapour Deposition(PECVD) Method." In Hydrogen Effects in Materials, 261–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803363.ch24.
Full textDobkin, Daniel M., and Michael K. Zuraw. "Mass Transport." In Principles of Chemical Vapor Deposition, 27–67. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0369-7_3.
Full textDobkin, Daniel M., and Michael K. Zuraw. "Heat Transport." In Principles of Chemical Vapor Deposition, 69–93. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0369-7_4.
Full textDobkin, Daniel M., and Michael K. Zuraw. "Reactors Without Transport." In Principles of Chemical Vapor Deposition, 9–25. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0369-7_2.
Full textKulik, V. I., A. V. Kulik, M. S. Ramm, A. S. Nilov, and M. V. Bogdanov. "Two-Dimensional Model of Conjugate Heat and Mass Transport in the Isothermal Chemical Vapour Infiltration of 3D-Preform by SiC Matrix." In Materials Science Forum, 245–48. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.245.
Full textKaldis, E. "Chemical Vapor Transport of the Chalcogenides." In Inorganic Reactions and Methods, 259–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145203.ch160.
Full textYanguas-Gil, Angel. "Physical and Chemical Vapor Deposition Techniques." In Growth and Transport in Nanostructured Materials, 19–37. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24672-7_2.
Full textPeshev, P. "Crystal Growth of Borides by Chemical Vapor Transport." In Inorganic Reactions and Methods, 217–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145289.ch47.
Full textConference papers on the topic "Chemical vapour transport"
Patel, Kunjal, G. K. Solanki, K. D. Patel, Pratik Pataniya, Mohit Tannarana, and Payal Chauhan. "Optoelectronic devices based on chemical vapour transport grown NbSe2 crystals." In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098684.
Full textAusting, D. G., P. Finnie, and J. Lefebvre. "Single Walled Carbon Nanotubes Grown by Chemical Vapour Deposition: Structures and Devices for Transport and Optics." In 2005 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2005. http://dx.doi.org/10.7567/ssdm.2005.g-7-2.
Full textDalton, Tara M., David McGuire, and Mark R. Davies. "Experimental Study of Local Mass Transfer From a Flat Plate in Uniform Flow Using Electronic Speckle Pattern Interferometry." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56605.
Full textMcGuire, David, Tara M. Dalton, and Mark R. Davies. "Investigative Study of Local Sherwood Numbers Using Phase Measurement Interferometry." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59772.
Full textVanderSteen, J. D. J., and J. G. Pharoah. "The Role of Radiative Heat Transfer With Participating Gases on the Temperature Distribution in Solid Oxide Fuel Cells." In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2510.
Full textNovak, Libor. "Observation of chemical-vapor-transport-based processes utilizing µReactor." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.326.
Full textWang, Rong, Ronghui Ma, Govindhan Dhanaraj, Yi Chen, and Michael Dudley. "Modeling of Halide Chemical Vapor Deposition of SiC." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14381.
Full textRoy, T., R. S. Amano, and J. Jatkar. "A Transient Simulation of Heated Soil Vapor Extraction System." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56425.
Full textMeng, Jiandong, and Yogesh Jaluria. "Thermal Transport in the Gallium Nitride Chemical Vapor Deposition Process." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17081.
Full textPiekarczyk, Wladyslaw, Russell F. Messier, Rustum Roy, and Chris Engdahl. "Investigation of diamond deposition by chemical vapor transport with hydrogen." In SPIE Proceedings, edited by Albert Feldman and Sandor Holly. SPIE, 1990. http://dx.doi.org/10.1117/12.22440.
Full textReports on the topic "Chemical vapour transport"
Starr, T. L., and N. Hablutzel. Measurement of gas transport properties for chemical vapor infiltration. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/441120.
Full textStarr, T. L. Gas transport model for chemical vapor infiltration. Topical report. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/70781.
Full textLampert, Lester. High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3308.
Full text