To see the other types of publications on this topic, follow the link: Chemical vapour transport.

Journal articles on the topic 'Chemical vapour transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemical vapour transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ntep, J. M., S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet. "ZnO growth by chemical vapour transport." Journal of Crystal Growth 207, no. 1-2 (November 1999): 30–34. http://dx.doi.org/10.1016/s0022-0248(99)00363-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pajączkowska, A., and K. Majcher. "The chemical vapour transport of Mn3Fe2Ge3O12 garnet." Journal of Materials Science Letters 5, no. 4 (April 1986): 487–88. http://dx.doi.org/10.1007/bf01672372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Moon H., Guangyu Qiu, Bingan Chen, Alex Jouvray, Kenneth B. K. Teo, Cinzia Cepek, Lawrence Wu, Jongmin Kim, William I. Milne, and Matthew T. Cole. "Transport in polymer-supported chemically-doped CVD graphene." Journal of Materials Chemistry C 5, no. 38 (2017): 9886–97. http://dx.doi.org/10.1039/c7tc02263h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Legma, J. B., G. Vacquier, and A. Casalot. "Chemical vapour transport of molybdenum and tungsten diselenides by various transport agents." Journal of Crystal Growth 130, no. 1-2 (May 1993): 253–58. http://dx.doi.org/10.1016/0022-0248(93)90859-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mycielski, A., L. Kowalczyk, A. Szadkowski, B. Chwalisz, A. Wysmołek, R. Stępniewski, J. M. Baranowski, et al. "The chemical vapour transport growth of ZnO single crystals." Journal of Alloys and Compounds 371, no. 1-2 (May 2004): 150–52. http://dx.doi.org/10.1016/j.jallcom.2003.08.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vengatesan, B., N. Kanniah, and P. Ramasamy. "Growth of Sb2S3 single crystals by chemical vapour transport." Materials Chemistry and Physics 17, no. 3 (June 1987): 311–16. http://dx.doi.org/10.1016/0254-0584(87)90153-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tailor, Jiten P., Devangini S. Trivedi, S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande. "Study of chemical vapour transport (CVT) grown WSe1.93 single crystals." Materials Science in Semiconductor Processing 61 (April 2017): 11–16. http://dx.doi.org/10.1016/j.mssp.2016.12.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaussende, D., Y. Monteil, P. Aboughe-nze, C. Brylinski, and J. Bouix. "Thermodynamical calculations on the chemical vapour transport of silicon carbide." Materials Science and Engineering: B 61-62 (July 1999): 98–101. http://dx.doi.org/10.1016/s0921-5107(98)00454-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Young Jung, William T. Nichols, Dae-Gun Kim, and Young Do Kim. "Chemical vapour transport synthesis and optical characterization of MoO3thin films." Journal of Physics D: Applied Physics 42, no. 11 (May 15, 2009): 115419. http://dx.doi.org/10.1088/0022-3727/42/11/115419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paorici, C., V. Pessina, and L. Zecchina. "Interface Kinetical Limitations in Closed-Tube Chemical Vapour Transport (I)." Crystal Research and Technology 21, no. 9 (September 1986): 1149–52. http://dx.doi.org/10.1002/crat.2170210905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Kyo-Seon, and Masato Ikegawa. "Particle growth and transport in silane plasma chemical vapour deposition." Plasma Sources Science and Technology 5, no. 2 (May 1, 1996): 311–22. http://dx.doi.org/10.1088/0963-0252/5/2/029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Józefowicz, M., and W. Piekarczyk. "Preparation of In2O3 single crystals by chemical vapour transport method." Materials Research Bulletin 22, no. 6 (June 1987): 775–80. http://dx.doi.org/10.1016/0025-5408(87)90031-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nützel, Matthias, Aurélien Podglajen, Hella Garny, and Felix Ploeger. "Quantification of water vapour transport from the Asian monsoon to the stratosphere." Atmospheric Chemistry and Physics 19, no. 13 (July 12, 2019): 8947–66. http://dx.doi.org/10.5194/acp-19-8947-2019.

Full text
Abstract:
Abstract. Numerous studies have presented evidence that the Asian summer monsoon anticyclone substantially influences the distribution of trace gases – including water vapour – in the upper troposphere and lower stratosphere (e.g. Santee et al., 2017). Stratospheric water vapour in turn strongly affects surface climate (see e.g. Solomon et al., 2010). Here, we analyse the characteristics of water vapour transport from the upper troposphere in the Asian monsoon region to the stratosphere employing a multiannual simulation with the chemistry-transport model CLaMS (Chemical Lagrangian Model of the Stratosphere). This simulation is driven by meteorological data from ERA-Interim and features a water vapour tagging that allows us to assess the contributions of different upper tropospheric source regions to the stratospheric water vapour budget. Our results complement the analysis of air mass transport through the Asian monsoon anticyclone by Ploeger et al. (2017). The results show that the transport characteristics for water vapour are mainly determined by the bulk mass transport from the Asian monsoon region. Further, we find that, although the relative contribution from the Asian monsoon region to water vapour in the deep tropics is rather small (average peak contribution of 14 % at 450 K), the Asian monsoon region is very efficient in transporting water vapour to this region (when judged according to its comparatively small spatial extent). With respect to the Northern Hemisphere extratropics, the Asian monsoon region is much more impactful and efficient regarding water vapour transport than e.g. the North American monsoon region (averaged maximum contributions at 400 K of 29 % versus 6.4 %).
APA, Harvard, Vancouver, ISO, and other styles
14

Marinova, Maya, Alkyoni Mantzari, and Efstathios K. Polychroniadis. "Some Recent Results on the 3C-SiC Structural Defects." Solid State Phenomena 159 (January 2010): 39–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.159.39.

Full text
Abstract:
This work presents some recent results on the 3C-SiC structural defects, studied by Transmission Electron Microscopy (TEM). The samples studied were grown in several laboratories, using different methods. Commonly used methods for growth are Sublimation Epitaxy (SE), Physical Vapour Transport (PVT), Continuous Feed Physical Vapour Transport (CF-PVT), Chemical Vapour Deposition (CVD), and Liquid Phase Epitaxy (LPE). In all these methods, for both bulk and epitaxial layer growth, substrates from other polytypes are exploited like the common hexagonal polytypes 4H- and 6H-SiC or 3C-SiC seeds both in (111) and (100) orientation.
APA, Harvard, Vancouver, ISO, and other styles
15

Yamauchi, T., Y. Takahara, M. Naitoh, and N. Narita. "Growth mechanism of ZnSe single crystal by chemical vapour transport method." Physica B: Condensed Matter 376-377 (April 2006): 778–81. http://dx.doi.org/10.1016/j.physb.2005.12.195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Agarwal, Ajay. "Synthesis of laminar SnSe crystals by a chemical vapour transport technique." Journal of Crystal Growth 183, no. 3 (January 1998): 347–51. http://dx.doi.org/10.1016/s0022-0248(97)00418-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mantilla, J., G. E. S. Brito, E. ter Haar, V. Sagredo, and V. Bindilatti. "The structure of Zn1 xMnxIn2Se4crystals grown by chemical vapour phase transport." Journal of Physics: Condensed Matter 16, no. 21 (May 14, 2004): 3555–62. http://dx.doi.org/10.1088/0953-8984/16/21/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mycielski, A., A. Szadkowski, L. Kowalczyk, B. Witkowska, W. Kaliszek, B. Chwalisz, A. Wysmołek, et al. "ZnO and ZnO:Mn crystals obtained with the chemical vapour transport method." physica status solidi (c) 1, no. 4 (February 5, 2004): 884–87. http://dx.doi.org/10.1002/pssc.200304181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Belyaev, V. K., K. G. Nikiforov, S. I. Radautsan, and V. A. Bazakutsa. "Vapour transport of CdCr2S4 and HgCr2Se4: Chemical equilibrium and crystal growth." Crystal Research and Technology 24, no. 4 (April 1989): 371–77. http://dx.doi.org/10.1002/crat.2170240407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bieger, W., W. Piekarczyk, G. Krabbes, G. Stöver, and Ngyen van Hai. "On the chemical vapour transport of nickel titanate with selenium tetrachloride." Crystal Research and Technology 25, no. 4 (April 1990): 375–84. http://dx.doi.org/10.1002/crat.2170250406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Agafonov, V., D. Michel, A. Kahn, and M. Perez Y Jorba. "Crystal growth by chemical vapour transport in the GeO2-Ga2O3 system." Journal of Crystal Growth 71, no. 1 (January 1985): 12–16. http://dx.doi.org/10.1016/0022-0248(85)90038-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fiechter, S., J. Mai, A. Ennaoui, and W. Szacki. "Chemical vapour transport of pyrite (FeS2) with halogen (Cl, Br, I)." Journal of Crystal Growth 78, no. 3 (December 1986): 438–44. http://dx.doi.org/10.1016/0022-0248(86)90144-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Paorici, C., and L. Zecchina. "Note on the productivity function in closed-tube chemical vapour transport." Journal of Crystal Growth 83, no. 3 (June 1987): 453–55. http://dx.doi.org/10.1016/0022-0248(87)90310-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Balakrishnan, K., B. Vengatesan, and P. Ramasamy. "Application of the productivity function to closed tube chemical vapour transport." Journal of Materials Science Letters 14, no. 9 (1995): 679–81. http://dx.doi.org/10.1007/bf00586177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Philipp, Frauke, and Peer Schmidt. "The cationic clathrate Si46−2xP2xTex crystal growth by chemical vapour transport." Journal of Crystal Growth 310, no. 24 (December 2008): 5402–8. http://dx.doi.org/10.1016/j.jcrysgro.2008.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Döll, G., M. Ch Lux-Steiner, Ch Kloc, J. R. Baumann, and E. Bucher. "Chemical vapour transport and structural characterization of layered MnIn2Se4 single crystals." Journal of Crystal Growth 104, no. 3 (August 1990): 593–600. http://dx.doi.org/10.1016/0022-0248(90)90002-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rabago, F., A. B. Vincent, and N. V. Joshi. "Chemical vapour transport grown ZnSe and NiZnSe crystals for infrared windows." Materials Letters 9, no. 11 (July 1990): 480–82. http://dx.doi.org/10.1016/0167-577x(90)90122-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Talib, Mohammad, Rana Tabassum, S. S. Islam, and Prabhash Mishra. "Influence of growth temperature on titanium sulphide nanostructures: from trisulphide nanosheets and nanoribbons to disulphide nanodiscs." RSC Advances 9, no. 2 (2019): 645–57. http://dx.doi.org/10.1039/c8ra08181f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bosholm, O., H. Oppermann, and S. Däbritz. "Chemischer Transport intermetallischer Phasen IV: Das System Fe - Ge/Chemical Vapour Transport of Intermetallic Phases IV: The System Fe - Ge." Zeitschrift für Naturforschung B 56, no. 4-5 (May 1, 2001): 329–36. http://dx.doi.org/10.1515/znb-2001-4-501.

Full text
Abstract:
Abstract Six phases exist in the binary system iron-germanium Fe3Ge, β, η, Fe6Ge5, FeGe and FeGe2. All phases could be prepared by chemical transport with iodine as transport agent in the temperature range between T1 (600 °C) and T2 (950 °C). Two phase diagrams have been known in the literature from specific experiments of chemical vapour transport. It is now possible to decide which phase diagram is the most valid description.
APA, Harvard, Vancouver, ISO, and other styles
30

Lenz, M., and R. Gruehn. "Chemical vapour transport of tungsten dioxide using HgBr2 as transport agent; experiments and thermochemical calculations." Journal of Crystal Growth 137, no. 3-4 (April 1994): 499–508. http://dx.doi.org/10.1016/0022-0248(94)90990-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Murr, Alexander. "The Relevance of Water Vapour Transport for Water Vapour Sorption Experiments on Small Wooden Samples." Transport in Porous Media 128, no. 2 (March 7, 2019): 385–404. http://dx.doi.org/10.1007/s11242-019-01253-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jendrzejewska, I., T. Groń, J. Kusz, J. Goraus, Z. Barsova, E. Pietrasik, J. Czerniewski, T. Goryczka, and M. Kubisztal. "Growth, structure and physico-chemical properties of monocrystalline ZnCr2Se4:Ho prepared by chemical vapour transport." Journal of Solid State Chemistry 281 (January 2020): 121024. http://dx.doi.org/10.1016/j.jssc.2019.121024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shibata, T., Y. Muranushi, T. Miura, and T. Kishi. "Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport." Journal of Materials Science 26, no. 18 (January 25, 1991): 5107–12. http://dx.doi.org/10.1007/bf00549899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hao, Yufeng, Guowen Meng, Ye Zhou, Mingguang Kong, Qing Wei, Min Ye, and Lide Zhang. "Tuning the architecture of MgO nanostructures by chemical vapour transport and condensation." Nanotechnology 17, no. 19 (September 19, 2006): 5006–12. http://dx.doi.org/10.1088/0957-4484/17/19/039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Paorici, C., and L. Zecchina. "The productivity function for multi-reaction chemical vapour transport in closed tubes." Journal of Crystal Growth 97, no. 2 (September 1989): 267–72. http://dx.doi.org/10.1016/0022-0248(89)90207-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Peshev, P., and M. Khristov. "Preparation of titanium disilicide single crystals by chemical vapour transport with halogens." Journal of the Less Common Metals 117, no. 1-2 (March 1986): 361–68. http://dx.doi.org/10.1016/0022-5088(86)90061-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hotje, U. "Chemischer Transport fester Lösungen, 25 [1]. Untersuchungen zur Mischphasenbildung und zum chemischen Transport in den Systemen TiS2/MoS2, TiSe2/MoSe2, TaS2/MoS2 und TaSe2/MoSe2 / Chemical Vapour Transport of Solid Solutions, 25 [1]. Formation of Mixed Phases and Chemical Vapour Transport in the Systems TiS2/MoS2, TiSe2/MoSe2, TaS2/MoS2 and TaSe2/MoSe2." Zeitschrift für Naturforschung B 60, no. 12 (December 1, 2005): 1235–40. http://dx.doi.org/10.1515/znb-2005-1204.

Full text
Abstract:
X-ray investigations have shown a complete miscibility in the systems TaS2/MoS2 and TaSe2/ MoSe2. In these systems mixed crystals could be obtained by chemical vapour transport with iodine as transport agent in the temperature gradient 1000→800 °C. By contrast, no mixed crystals are formed in the systems TiS2/MoS2 and TiSe2/MoSe2. The transport behaviour in these systems is reported.
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Dan, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, et al. "Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data." Atmospheric Chemistry and Physics 20, no. 7 (April 7, 2020): 4133–52. http://dx.doi.org/10.5194/acp-20-4133-2020.

Full text
Abstract:
Abstract. Low ozone and high water vapour mixing ratios are common features in the Asian summer monsoon (ASM) anticyclone; however, low ozone and low water vapour values were observed near the tropopause over Kunming, China, within the ASM using balloon-borne measurements performed during the SWOP (sounding water vapour, ozone, and particle) campaign in August 2009 and 2015. Here, we investigate low ozone and water vapour signatures in the upper troposphere and lower stratosphere (UTLS) using FengYun-2D, FengYun-2G, and Aura Microwave Limb Sounder (MLS) satellite measurements and backward trajectory calculations. Trajectories with kinematic and diabatic vertical velocities were calculated using the Chemical Lagrangian Model of the Stratosphere (CLaMS) trajectory module driven by both ERA-Interim and ERA5 reanalysis data. All trajectory calculations show that air parcels with low ozone and low water vapour values in the UTLS over Kunming measured by balloon-borne instruments originate from the western Pacific boundary layer. Deep convection associated with tropical cyclones over the western Pacific transports ozone-poor air from the marine boundary layer to the cold tropopause region. Subsequently, these air parcels are mixed into the strong easterlies on the southern side of the Asian summer monsoon anticyclone. Air parcels are dehydrated when passing the lowest temperature region (< 190 K) at the convective outflow of tropical cyclones. However, trajectory calculations show different vertical transport via deep convection depending on the employed reanalysis data (ERA-Interim, ERA5) and vertical velocities (diabatic, kinematic). Both the kinematic and the diabatic trajectory calculations using ERA5 data show much faster and stronger vertical transport than ERA-Interim primarily because of ERA5's better spatial and temporal resolution, which likely resolves convective events more accurately. Our findings show that the interplay between the ASM anticyclone and tropical cyclones has a significant impact on the chemical composition of the UTLS during summer.
APA, Harvard, Vancouver, ISO, and other styles
39

Murase, Kuniaki, Kiyoshi Shinozaki, Yoshiyuki Hirashima, Ken-ichi Machida, and Gin-ya Adachi. "Rare earth separation using a chemical vapour transport process mediated by vapour complexes of the LnCl3AlCl3 system." Journal of Alloys and Compounds 198, no. 1-2 (August 1993): 31–38. http://dx.doi.org/10.1016/0925-8388(93)90139-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Russell, R. Andrew. "Robotic location of underground chemical sources." Robotica 22, no. 1 (January 2004): 109–15. http://dx.doi.org/10.1017/s026357470300540x.

Full text
Abstract:
This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources of leaks from pipes and tanks are some examples. Initial experiments were conducted using an ethanol chemical source buried in coarse sand. To gain an understanding of the sensory environment that would be experienced by a robot burrowing through the ground, the factors affecting transport of chemical vapour through soil were investigated. A robot search algorithrn was then developed for gathering chemical gradient inforrnation and using this to guide a robot towards the source. Experiments were performed using a chemical sensing probe positioned by a UMI RTX robot manipulator arm. The resulting system was successful in locating a source of ethanol vapour buried in sand. This paper includes details of experiments to characterise the sand used in this project, the robot search algorithm, sensor probe and results of source location trials.
APA, Harvard, Vancouver, ISO, and other styles
41

van der Zanden, A. J. J., A. M. E. Schoenmakers, and P. I. A. M. Kerkhof. "Isothermal Vapour and Liquid Transport Inside Clay During Drying." Drying Technology 14, no. 3-4 (January 1996): 647–76. http://dx.doi.org/10.1080/07373939608917119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zanden, A. J. J. van der, A. M. E. Schoenmakers, and P. J. A. M. Kerkhof. "Isothermal Vapour and Liquid Transport Inside Clay During Drying." Drying Technology 14, no. 10 (January 1996): 2183–211. http://dx.doi.org/10.1080/07373939608917203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hotje, U., R. Wartchow, and M. Binnewies. "Chemischer Transport fester Lösungen, 26 [1]. Untersuchungen zur Mischphasenbildung und zum chemischen Transport in den Systemen TiS2/NbS2, TiSe2/NbSe2, NbS2/TaS2 und NbSe2/TaSe2 / Chemical Vapour Transport of Solid Solutions, 26 [1]. Formation of Mixed Phases and Chemical Vapour Transport in the Systems TiS2/NbS2, TiSe2/NbSe2, NbS2/TaS2 and NbSe2/TaSe2." Zeitschrift für Naturforschung B 60, no. 12 (December 1, 2005): 1241–49. http://dx.doi.org/10.1515/znb-2005-1205.

Full text
Abstract:
In the systems TiS2/NbS2, TiSe2/NbSe2, NbS2/TaS2 und NbSe2/TaSe2 complete miscibility in the solid state has been observed by powder X-ray investigations. Mixed crystals as well as the binary compounds can be prepared by chemical vapour transport reactions using iodine as transport agent in the temperature gradient 1000→900 °C. The gaseous species TiI3(g), TiI4(g), NbI4(g) and TaI4(g) are responsible for the transport effect.
APA, Harvard, Vancouver, ISO, and other styles
44

Chaki, S. H., J. P. Tailor, and M. P. Deshpande. "Covellite CuS – Single crystal growth by chemical vapour transport (CVT) technique and characterization." Materials Science in Semiconductor Processing 27 (November 2014): 577–85. http://dx.doi.org/10.1016/j.mssp.2014.07.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Paszkowicz, Wojciech, Jarosław Domagała, and Zbigniew Gołacki. "X-ray characterisation of Zn1−xCoxS single crystals grown by chemical vapour transport." Journal of Alloys and Compounds 274, no. 1-2 (June 1998): 128–35. http://dx.doi.org/10.1016/s0925-8388(98)00521-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chevrier, Véronique, Jean-Claude Launay, Sophie Laügt, Oudomsack Viraphong, and Pierre Gibart. "GaAs epitaxy by chemical vapour transport under high, earth and low-gravity conditions." Journal of Crystal Growth 183, no. 1-2 (January 1998): 1–9. http://dx.doi.org/10.1016/s0022-0248(97)00414-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sanchez, A., P. J. Sebastian, and O. Gomez-Daza. "Low-resistivity CdS thin films formed by a new chemical vapour transport method." Semiconductor Science and Technology 10, no. 1 (January 1, 1995): 87–90. http://dx.doi.org/10.1088/0268-1242/10/1/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vengatesan, B., N. Kanniah, and P. Ramasamy. "Growth of cadmium sulphide thin film by open tube chemical vapour transport method." Crystal Research and Technology 22, no. 10 (October 1987): K169—K171. http://dx.doi.org/10.1002/crat.2170221028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Okońska-Kozłowska, I., E. Maciżek, K. Wokulska, and J. Heimann. "Growth of four-element single crystals by chemical vapour transport and their properties." Journal of Alloys and Compounds 219, no. 1-2 (March 1995): 97–99. http://dx.doi.org/10.1016/0925-8388(94)05000-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pons, M., E. Blanquet, C. Bernard, H. Rouch, J. M. Dedulle, and R. Madar. "Thermochemical and Mass Transport Modelling of the Chemical Vapour Deposition of Si1-xGex." Le Journal de Physique IV 05, no. C5 (June 1995): C5–63—C5–70. http://dx.doi.org/10.1051/jphyscol:1995504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography