To see the other types of publications on this topic, follow the link: Chemische Bindung.

Journal articles on the topic 'Chemische Bindung'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemische Bindung.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Irmer, Erhard. "Chemische Bindung unterrichten." CHEMKON 26, no. 6 (2019): 236. http://dx.doi.org/10.1002/ckon.201900061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahlrichs, Reinhart, and Claus Ehrhardt. "Chemische Bindung anschaulich: Populationsanalysen." Chemie in unserer Zeit 19, no. 4 (1985): 120–24. http://dx.doi.org/10.1002/ciuz.19850190403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarz, W. H. Eugen, Klaus Ruedenberg, Lothar Mensching, et al. "Elektronendichte, Deformationsdichte und chemische Bindung." Angewandte Chemie 101, no. 5 (1989): 605–7. http://dx.doi.org/10.1002/ange.19891010507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nilges, Tom, and Stefan Lange. "CuSnP14 und AgSbP14: Struktur-chemische Aspekte und Betrachtungen zur chemischen Bindung." Zeitschrift für anorganische und allgemeine Chemie 632, no. 12-13 (2006): 2097. http://dx.doi.org/10.1002/zaac.200670042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deng, Shuiquan, Arndt Simon, and Jürgen Köhler. "Supraleitung und chemische Bindung in Quecksilber." Angewandte Chemie 110, no. 5 (1998): 664–66. http://dx.doi.org/10.1002/(sici)1521-3757(19980302)110:5<664::aid-ange664>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reiners, Christiane S. "Die chemische Bindung - Lernhindernisse und mögliche Lernhilfen." CHEMKON 10, no. 1 (2002): 17–22. http://dx.doi.org/10.1002/ckon.200390000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Becker, Jörg August. "Molekularstrahlexperimente an Halbleiterclustern: Polarisierbarkeiten und chemische Bindung." Angewandte Chemie 109, no. 13-14 (1997): 1458–73. http://dx.doi.org/10.1002/ange.19971091305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fässler, Thomas F., and Andreas Savin. "Chemische Bindung anschaulich: die Elektronen-Lokalisierungs-Funktion." Chemie in unserer Zeit 31, no. 3 (1997): 110–20. http://dx.doi.org/10.1002/ciuz.19970310303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whangbo, Myung-Hwan, Changhoon Lee, and Jürgen Köhler. "Übergangsmetallanionen in Festkörpern und ihre chemische Bindung." Angewandte Chemie 118, no. 44 (2006): 7627–30. http://dx.doi.org/10.1002/ange.200602712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaupp, Martin. "Nicht-VSEPR-Strukturen und chemische Bindung in d0-Systemen." Angewandte Chemie 113, no. 19 (2001): 3642–77. http://dx.doi.org/10.1002/1521-3757(20011001)113:19<3642::aid-ange3642>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ormeci, Alim, Arndt Simon, and Yuri Grin. "Topologie der Kristallstruktur und chemische Bindung in Laves-Phasen." Angewandte Chemie 122, no. 47 (2010): 9182–86. http://dx.doi.org/10.1002/ange.201001534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Banser, Deike, Melanie Schnell, Jens-Uwe Grabow, Emilio J. Cocinero, Alberto Lesarri, and José L. Alonso. "Kern-Kern-Potential, Elektronenstruktur und chemische Bindung von Tellurselenid." Angewandte Chemie 117, no. 39 (2005): 6469–73. http://dx.doi.org/10.1002/ange.200501658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Trömel, M. "Atomvolumen, Packungsdichte der Atome und chemische Bindung in nichtmetallischen Elementen." Acta Crystallographica Section B Structural Science 63, no. 4 (2007): 532–36. http://dx.doi.org/10.1107/s0108768107022604.

Full text
Abstract:
The atomic volume of crystalline elements is largely determined by the packing density of atoms in the respective modification. The determination of packing density is improved by assuming that the atomic distances depend on bond valences according to Pauling's equation. With the additional assumption of equal valence in different modifications, the experimental atomic volume of an element in any given structure is reduced to its volume in close-packed structures, e.g. f.c.c. The ratio of this reduced atomic volume and the experimental atomic volume is a measure of packing density. Reduced atomic volumes of C, Si, Ge, P, As, S and Se, as calculated from different modifications, correspond in most cases to within less than ±1% for each element, even if calculated from extremely different structures like diamond and buckminsterfullerene in the case of carbon, or from numerous modifications of sulfur with annular molecules of different sizes. Exceptions (graphite, white phosphorus, tin and selenium) indicate deviating valences.
APA, Harvard, Vancouver, ISO, and other styles
14

Hochrein, Oliver, Yuri Grin, and Rüdiger Kniep. "Das Hexanitridodimanganat(IV) Li6Ca2[Mn2N6]: Herstellung, Kristallstruktur und chemische Bindung." Angewandte Chemie 110, no. 11 (1998): 1667–70. http://dx.doi.org/10.1002/(sici)1521-3757(19980605)110:11<1667::aid-ange1667>3.0.co;2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dürr, Ines, and Caroline Röhr. "Der quasibinäre Schnitt La3In5- La3Pb5: Synthesen, Strukturchemie, Phasenbreiten und chemische Bindung." Zeitschrift für anorganische und allgemeine Chemie 636, no. 2 (2010): 368–77. http://dx.doi.org/10.1002/zaac.200900402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wendorff, Marco, and Caroline Röhr. "Gemischte Tristannide der Reihe CaSn3 - SrSn3 - BaSn3: Synthesen, Kristallstrukturen, Chemische Bindung." Zeitschrift für anorganische und allgemeine Chemie 637, no. 7-8 (2011): 1013–23. http://dx.doi.org/10.1002/zaac.201100012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

von Schering, Hans-Georg. "Book Review: Kristallstruktur und chemische Bindung. By A. Weiss and H. Witte." Angewandte Chemie International Edition in English 25, no. 1 (1986): 112. http://dx.doi.org/10.1002/anie.198601121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bauer, Britta, and Caroline Röhr. "Aluminium-Germanide der zweiwertigen Lanthanoide Eu und Yb: Synthese, Strukturchemie und chemische Bindung." Zeitschrift für Naturforschung B 66, no. 8 (2011): 793–812. http://dx.doi.org/10.1515/znb-2011-0804.

Full text
Abstract:
In the course of attempts to substitute Ca by Yb and Sr by Eu in known alkaline earth Al-germanides, the four new ternary compounds Eu3Al1.8Ge2.2, Eu3 Al2Ge4, Yb2 AlGe3, and Yb17Al8Ge19 have been synthesized from mixtures of the elements and their crystal structures determined by means of single-crystal X-ray data. The two europium compounds Eu3Al1.8Ge2.2 (Ta3B4 structure type, orthorhombic, space group Immm, a = 417.68(3), b = 470.70(3), c = 1897.2(2) pm, Z = 2, R1 = 0.0439) and Eu3Al2Ge4 (Sr3Al2Ge4 structure type, monoclinic, space group C2/m, a = 1235.9(6), b = 416.8(2), c = 878.4(4) pm, β = 110.615(13)°, Z = 2, R1 = 0.0978) are isotypic with the corresponding strontium phases. After ionic decomposition, the layers [Al2- Ge4- ]6− in Eu3Al2Ge4 with four-bonded Al and three-bonded Ge atoms can be interpreted as electron-precise Zintl anions. In contrast, the planar ribbons 1∞[Al2/2Ge2Al2/2] of condensed six-membered rings in Eu3Al1.8Ge2.2 exhibit considerably shorter Al-Ge bonds and an Al-Al bond length of only 251 pm. Yb2AlGe3 (orthorhombic, space group Pnma, a = 682.20(10), b = 417.87(9), c = 1813.9(3) pm, Z = 4, R1 = 0.0415) crystallizes with the Y2AlGe3 structure type. Folded [Al2Ge2] ladders, also found in Eu3Al2Ge4 and the known compound Yb7Al5Ge8, are connected by planar cis/trans chains of Ge atoms. The total density of states calculated within the FP-LAPW|DFT band structure approach shows a distinct minimum at the Fermi level for the electron precise Zintl compound Eu3Al2Ge4, whereas π-bonding contributions are evident from the band structures of Eu3Al2Ge2 and Yb2AlGe3. In full accordance, the tDOS of both compounds exhibits no minimum at EF, small phase widths are possible for Eu3Al2Ge2 and related alkaline earth compounds, and Yb2AlGe3 is isotypic with several other more electron-rich LnIII compounds. The complicated structure of the new compound Yb17Al8Ge19 (tetragonal, space group P4/nmm, a = 1542.50(2), c = 788.285(8) pm, Z = 2, R1 = 0.0282) contains three different building blocks: distorted [Al4Ge4] heterocubane units are interconnected by four-bonded Ge atoms to form columns running along the c axis. Secondly, eight-membered rings are formed by alternating Al and Ge atoms, each being in a trigonal-planar Al/Ge coordination. The rings are terminated by Ge atoms (bonded to Ge of the ring) and linked to the first structural unit by a further Ge atom (bonded to Al of the ring). Thirdly, inside the large channels, which are formed by the packing of the eightmembered rings, Ge2 dumbbells are interspersed as a third structural element.
APA, Harvard, Vancouver, ISO, and other styles
19

Grimme, Stefan, Christian Mück-Lichtenfeld, Gerhard Erker, et al. "Wann bilden wechselwirkende Atome eine chemische Bindung? Spektroskopische und theoretische Analyse an Dideuterophenanthren." Angewandte Chemie 121, no. 14 (2009): 2629–33. http://dx.doi.org/10.1002/ange.200805751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wendorff, Marco, Harald Scherer, and Caroline Röhr. "Das Indid-Hydrid Ba9[In]4[H]: Synthese, Kristallstruktur, NMR-Spektroskopie, Chemische Bindung." Zeitschrift für anorganische und allgemeine Chemie 636, no. 6 (2010): 1038–44. http://dx.doi.org/10.1002/zaac.201000010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dürr, Ines, and Caroline Röhr. "Binäre Lanthan-Stannide mit Sn:La-Verhältnissen nahe 1:1 - Synthesen, Kristallstrukturen, Chemische Bindung." Zeitschrift für anorganische und allgemeine Chemie 638, no. 1 (2011): 163–76. http://dx.doi.org/10.1002/zaac.201100351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wahl, Bernhard, and Michael Ruck. "Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern - Synthese, Kristallstruktur und Chemische Bindung." Zeitschrift für anorganische und allgemeine Chemie 634, no. 15 (2008): 2873–79. http://dx.doi.org/10.1002/zaac.200800320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Leonhardt, G. "Internationales Symposium über „Röntgenspektren und chemische Bindung”︁ vom 23. bis 26. September 1965 in Leipzig." Zeitschrift für Chemie 5, no. 12 (2010): 473–78. http://dx.doi.org/10.1002/zfch.19650051232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schmidt, P. C. "Die chemische Bindung: taliter? aliter? totaliter aliter?: Coulsons Chemische Bindung. Von R. McWeeny. S. Hirzel Verlag, Stuttgart 1984. XIV, 474 S., 201 Abb., 48 Tab., Kst. geb. DM 88,-. ISBN 3-7776-0383-X." Nachrichten aus Chemie, Technik und Laboratorium 33, no. 11 (1985): 978. http://dx.doi.org/10.1002/nadc.19850331111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Peyerimhoff, S. "R. McWeeny: Coulsons Chemische Bindung,2. Auflage, S. Hirzel Verlag Stuttgart, 1984. 474 Seiten, Preis: DM 88,-." Berichte der Bunsengesellschaft für physikalische Chemie 89, no. 11 (1985): 1249–50. http://dx.doi.org/10.1002/bbpc.19850891136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wahl, Bernhard, and Michael Ruck. "Die molekularen Cluster [Bi10Au2](EBi3X9)2(E= As, Bi;X= Cl, Br) - Synthese, Kristallstrukturen, Drillingsbildung und chemische Bindung." Zeitschrift für anorganische und allgemeine Chemie 634, no. 12-13 (2008): 2267–75. http://dx.doi.org/10.1002/zaac.200800229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cremer, Dieter. "Coulsons Chemische Bindung. Von McWeeny. Aus dem Englischen übersetzt von R. Janoschek. 2. Auflage von „ C. A. Coulson, Die Chemische Bindung.” S. Hirzel Verlag, Stuttgart 1984. 472 S., 201 Abb., 48 Tab., Kst. geb. DM 88.00 – ISBN3-7776-0383-X." Angewandte Chemie 98, no. 8 (1986): 763–64. http://dx.doi.org/10.1002/ange.19860980839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Trömel, Martin, and Sven Hübner. "Atomvolumen, Atomabstände und chemische Bindung in festen metallischen Elementen/Atomic Volume, Atomic Distances and Chemical Bonding in Solid Metallic Elements." Zeitschrift für Naturforschung B 56, no. 4-5 (2001): 364–68. http://dx.doi.org/10.1515/znb-2001-4-507.

Full text
Abstract:
Abstract Relationships between bond lengths and bond numbers and also between atomic volumes and valencies are derived and parameters for their calculation are given for the s-block, p-block, and d-block metals. From the atomic volumes under pressure, the valencies of three solid lanthanoids have been confirmed or redetermined: La 3; Ce 2. 3. and 4; Yb 2 and 3.
APA, Harvard, Vancouver, ISO, and other styles
29

Wendorff, Marco, and Caroline Röhr. "Gemischte Plumbide (Ca/Sr)xBa1 –xPb3. Strukturchemie und chemische Bindung/ Mixed Plumbides (Ca/Sr)xBa1−xPb3. Structural Chemistry and Chemical Bonding." Zeitschrift für Naturforschung B 63, no. 12 (2008): 1383–94. http://dx.doi.org/10.1515/znb-2008-1207.

Full text
Abstract:
Ternary mixed Ca/Sr-Ba triplumbides of overall composition AIIPb3 were synthesized from stoichiometric mixtures of the elements. The structures of the compounds have been determined by means of single crystal X-ray data. All structures exhibit close-packed ordered APb3 layers containing Pb Kagomé nets, which are stacked in different orientations. Depending on the stacking sequences, the resulting lead polyanion resembles the oxygen nets of the hexagonal (face sharing octahedra, h stacking, Ni3Sn-type structure) or the cubic perovskites (corner sharing octahedra, c stacking, Cu3Au-type structure). The known binary compound BaPb3, the structure of which has been redetermined from single crystal data (trigonal, space group R3̄̄m, a = 729.06(2), c = 2564.43(10) pm, Z = 9, R1 = 0.0353), shows a (hhc)3 stacking (TaCo3-type structure). A small partial substitution of barium against calcium (Ca0.03Ba0.97Pb3: trigonal, space group R3̄̄m, a = 726.0(2), c = 3443(2) pm, Z = 12, R1 = 0.0542) or strontium (Sr0.11Ba0.89Pb3: a = 727.3(2), c = 3421(2) pm, Z = 12, R1 = 0.0424) causes a structural change to the HT-PuGa3 structure type with a (hhcc)3 stacking sequence. At an approximate 1 : 1 ratio (35 to 53 % Sr) of strontium and barium (Sr0.56Ba0.44Pb3: trigonal, space group P63/mmc, a = 715.82(2), c = 1717.91(7) pm, Z = 6, R1 = 0.0309) the PuAl3 structure type [(hcc)2-stacking] has a distinct homogenity range. The series is terminated with the pure c stacking of SrPb3 and CaPb3. As already noted from the above series, the stacking of the close-packed layers is influenced by the ratio of the atomic radii of the contributing elements. The electronic stability ranges, which are discussed on the basis of the results of FP-LAPW band structure calculations and in comparison to further compounds known from the literature, can be explained using Zintl/Wade rules. Still, due to the presence of only partially occupied steep Pb-p bands of σ bonding characteristic, the compounds are metals exhibiting pseudo band gaps at or near the Fermi level. Thus this structure family represents an instructive case of transition from polar ionic/covalent towards (inter)metallic chemistry.
APA, Harvard, Vancouver, ISO, and other styles
30

Kraus, Florian, Tobias Hanauer, and Nikolaus Korber. "Chemische Bindung in den cyclischen Anionen P64− und As64−: Synthese, Kristallstruktur und Elektronenlokalisierungsfunktion von {Rb([18]Krone-6)}2Rb2As6⋅6 NH3." Angewandte Chemie 117, no. 44 (2005): 7366–70. http://dx.doi.org/10.1002/ange.200502535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Trömel, Martin, Sven Hübner, and Karlheinz Taxer. "Atomvolumen, Packungsdichte und chemische Bindung in festem Iod unter Druck / Atomic Volume, Packing Density and Chemical Bonding in Solid Iodine under Pressure." Zeitschrift für Naturforschung B 59, no. 1 (2004): 44–48. http://dx.doi.org/10.1515/znb-2004-0107.

Full text
Abstract:
Abstract The volume changes of solid iodine under pressure are discussed with respect to the packing density of the atoms and to valence. The packing density of solid iodine which is 0.805 under ambient pressure increases to 0.976 in monoatomic iodine-II, 0.993 in iodine-III, and 1 in fcc iodine-IV. Simultaneously, the valence increases from 1 in the free molecule to 1.78 in the crystal structure under ambient pressure, 2.72 - 2.81 in iodine-II, 2.86 - 2.96 in iodine-III, and 3 in fcc iodine-IV. The valence then remains constant up to about 180 GPa and rises moderately to 3.15 at the highest investigated pressure of 276 GPa. Parameters for calculating bond numbers, valences and atomic volumes of densely packed halogens, hydrogen, oxygen, and nitrogen are given.
APA, Harvard, Vancouver, ISO, and other styles
32

Harms, Wiebke, Ines Dürr, and Caroline Röhr. "Cadmium-Auride AIICdxAu2– x (AII = Ca, Sr) Synthese, Kristallstruktur, chemische Bindung/ Cadmium-Aurides AIICdxAu2−x (AII = Ca, Sr) – Synthesis, Crystal Structure, Chemical Bonding." Zeitschrift für Naturforschung B 64, no. 5 (2009): 471–86. http://dx.doi.org/10.1515/znb-2009-0501.

Full text
Abstract:
Following the observation that the binary dicadmides and diaurides of calcium and strontium (A) both form the KHg2 structure type, the two sections AIICdxAu2−x have been studied systematically by means of synthetic, X-ray structural and theoretical investigations. The binary border compound CaCd2 is dimorphic forming the KHg2 structure at elevated temperatures (orthorhombic, space group Imma, a = 488.63(9), b = 754.1(2), c = 851.3(2) pm, Z = 4, R1 = 0.0498) and the MgZn2-type Laves phase at ambient conditions (hexagonal, space group P63/mmc, a = 599.71(9), c = 962.7(2) pm, Z = 4, R1 = 0.0309). Starting from the known binary calcium auride CaAu2 only a very small amount of Au can be replaced by Cd. Around the 1 : 1 ratio of Au and Cd the TiNiSi structure type (orthorhombic, space group Pnma), an ordered variant of the KHg2 type, has a small homogeneity range (CaCdxAu2−x with x = 1/0.76(2): a = 735.0(1)/731.7(1), b = 433.66(6)/431.43(7), c = 873.7(2)/869.9(2) pm, Z = 4, R1 = 0.0482/0.0539). The analogous structure type is also observed in the Sr compounds with the difference that in this case a continuous transition from the KHg2 type of SrAu2 (i. e. x = 0) towards the distorted TiNiSi structure type (up to x = 0.86) is observed in the series SrCdxAu2−x (for x = 0.86(1)/0.45(1): a = 764.0(1)/758.4(1), b = 458.07(7)/474.6(1), c = 872.16(12)/829.2(2) pm, Z = 4, R1 = 0.0446/0.0410). Attempts to prepare the Ca compounds of intermediate composition around a Cd content of x ≈ 0.5 resulted in the formation of the Aurich phase Ca5Cd2Au10 crystallizing with the Zr7Ni10 structure type (orthorhombic, space group Cmca, a = 1390.6(4), b = 1015.7(3), c = 1025.6(2) pm, Z = 4, R1 = 0.0657). In this compound, Cd and Ca occupy common crystallographic sites, which are occupied by In in the isotypic ternary compound Ca4In3Au10. Similarly, at the Cd-rich parts of the sections AIICdxAu2−x no simple phase width of the KHg2 structure type exists. In the case of the calcium series the new compound Ca11Cd18Au4, which shows only a very small phase width, is formed instead. This compound crystallizes with a new structure type (Ca11Cd18+xAu4−x with x = 0.6/0: tetragonal, space group I41/amd, a = 1030.83(6)/1029.39(6), c = 3062.5(3)/3051.0(3) pm, Z = 4, R1 = 0.0475/0.0379) exhibiting a complicated Cd/Au polyanion with four-, five- and six-bonded Cd/Au atoms. The results of FPLAPWband structure calculations are used to explain the electronic stability of the compounds. The calculated Bader charges of cadmium and gold atoms (and In and Au atoms for comparison) are used to discuss the transition between Cd-rich cadmides (like CaCd2 and Ca11Cd18Au4), auridocadmates (like CaCdAu) and the Cd-poor cadmium aurides (like Ca5Cd2Au10).
APA, Harvard, Vancouver, ISO, and other styles
33

Schnering, Hans Georg Von. "Kristallstruktur und chemische Bindung. VonA. Weiss undH. Witte. Verlag Chemie, Weinheim 1983. XI, 396 S., geb. DM 98.00. – ISBN 3-527-25612-1." Angewandte Chemie 97, no. 3 (1985): 236–37. http://dx.doi.org/10.1002/ange.19850970330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wendorff, Marco, and Caroline Röhr. "Zink-reiche Erdalkalimetall-Verbindungen AZn5 und AZn11: Kristallstrukturen und chemische Bindung / Zinc-rich Alkaline Earth Compounds AZn5 and AZn11: Crystal Structures and Chemical Bonding." Zeitschrift für Naturforschung B 62, no. 12 (2007): 1549–62. http://dx.doi.org/10.1515/znb-2007-1213.

Full text
Abstract:
The zinc-rich compounds in the binary systems with the heavier alkaline earth elements CaZn11 and AZn5 (A = Ca, Sr, Ba) have been synthesized from melts of the elements. Their crystal structures, which were in principle known from very early powder or single crystal film experiments, have been refined on the basis of modern single crystal X-ray data. CaZn5 (hexagonal, space group P6/mmm, a = 538.99(2), c = 424.56(1) pm, Z = 1, R1 = 0.0144) crystallizes with the CaCu5 structure type and exhibits a small but distinct phase width Ca1−xZn5+2x up to a composition of Ca0.87Zn5.26 (a = 533.38(1), c = 430.04(1) pm, R1 = 0.0170) achieved through a gradual substitution of Ca by Zn2 dumbbells. The high-temperature form of SrZn5, which was prepared by quenching of melted samples, also adopts the ideal CaCu5 structure type (a = 554.1(2), c = 428.2(2) pm, R1 = 0.0314). The room temperature modification of SrZn5 (orthorhombic, space group Pnma, a = 1313.3(3), b = 529.91(10), c = 669.72(13) pm, Z = 4, R1 = 0.0349) forms a singular structure, whereas the Ba compound of corresponding composition (orthorhombic, space group Cmcm, a = 1078.3(7), b = 839.8(5), c = 532.0(3) pm, Z = 4, R1 = 0.0281) crystallizes with a third, also rather uncommon structure. For the compound CaZn11 (BaCd11 structure type; tetragonal, space group I41/amd, a = 1068.11(10), c = 682.81(7) pm, Z = 4, R1 = 0.0299) the originally proposed structure type was confirmed and also refined using single crystal data. The chemical bonding in all title compounds is analyzed using FP-LAPWband structure methods. Together with geometrical criteria and observed valence electron numbers of isotypic compounds, the results are used to compare and discuss the stability of the different structures of the intermetallic phases in the systems AZn5 and AM11 (M = Zn, Cd, Hg).
APA, Harvard, Vancouver, ISO, and other styles
35

Wendorff, Marco, and Caroline Röhr. "Neue gemischte Zinn-reiche Erdalkalimetall-Stannide – Synthese, Strukturchemie und chemische Bindung / New Mixed Tin-rich Alkaline Earth Stannides – Synthesis, Structural Chemistry and Chemical Bonding." Zeitschrift für Naturforschung B 66, no. 3 (2011): 245–61. http://dx.doi.org/10.1515/znb-2011-0306.

Full text
Abstract:
Ternary mixed Ca/Ba-Sr pentastannides AIISn5 (AII = Ca, Sr, Ba) have been synthesized from stoichiometric mixtures of the elements or from tin-rich melts. The crystal structures of two new compounds of overall composition ASn5 (A = Sr, Ba) were determined by means of single-crystal X-ray data. The structures of both Sr0.94Ba0.06Sn5 (monoclinic, space group C2/m, a = 1762.8(11), b = 704.1(3), c = 1986(2) pm, β = 100.31(6)º, Z = 14, R1 = 0.0996) and Sr0.89Ba0.11Sn5 (orthorhombic, space group Cmcm, a = 708.1(2), b = 1770.4(8), c = 2781.6(11) pm, Z = 20 , R1 = 0.0821) are closely related and can be described by different stacking sequences of comparable nets. They both resemble the structural features of the tristannides AIISn3 in forming dimers and trimers of facesharing Sn6-octahedra, which are further connected via common corners. According to the higher tin content, the rods formed of the octahedra are interspersed by additional Sn atoms, which themselves show a bonding situation resembling the structure of elementary tin. The complex tin network formed by the strong Sn-Sn bonds alone can be regarded as a cutout of the hexagonal diamond structure. In this view, the similarities of the title compounds to the known binary stannides BaSn5 and SrSn4 become apparent. The phase widths of the latter have been investigated and shown to reach up to Sr0.37Ba0.63Sn5 (BaSn5 type, hexagonal, space group P6/mmm, a = 536.8(2), c = 695.2(3) pm, R1 = 0.0312) and Sr0.79Ca0.21Sn4 (SrSn4 type, orthorhombic, space group Cmcm, a = 461.7(3), b = 1714.1(14), c = 706.7(4) pm, Z = 4, R1 = 0.0861), respectively. The total density of states calculated for the orthorhombic pentastannide within the FP-LAPW DFT band structure approach shows a broad minimum at the Fermi level, which can be explained using the Zintl and the Wade/Jemmis electron counting rules.
APA, Harvard, Vancouver, ISO, and other styles
36

Schwarz, W. H. E. "Werner Kutzelnigg. Einührung in die Theoretische Chemie. Band 2: Die chemische Bindung. Zweite, ergänzte und aktualisierte Auflage. VCH, Weinheim (1994). xxiv + 602 pp. DM 118. ISBN 3 527 29210 1." Magnetic Resonance in Chemistry 33, no. 8 (1995): 698. http://dx.doi.org/10.1002/mrc.1260330817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Meyer, Klaus. "Die chemische Bindung in Kristallen. Von einem Autorenkollektiv (in russischer Sprache); Verlag Wissenschaft und Technik, Minsk 1969; 524 Seiten mit zahlreichen Bildern und Tabellen, Format 14,5 × 22 cm, Hln. 11,25 M." Zeitschrift für Chemie 11, no. 7 (2010): 279. http://dx.doi.org/10.1002/zfch.19710110729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wolff, J. "McWeeny, R.: Coulsons Chemische Bindung. Aus dem Englischen übersetzt von R. Janoschek. 2. Auflage. S. Hirzel Verlag, Stuttgart 1984. 472 Seiten, mit 201 Abb. und 48 Tab. Kunststoff geb. DM 88,—." Starch - Stärke 38, no. 9 (1986): 328. http://dx.doi.org/10.1002/star.19860380916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kulpe, Siegfried. "Kristallstruktur und chemische Bindung Von A. Weiss und H. Witte; Weinheim, Deerfield Beach, Basel, Verlag Chemie, 1983, 296 Seiten mit 200 Bildern und 58 Tabellen; Format 16,8 × 24 cm; Pappband 98,- DM." Zeitschrift für Chemie 25, no. 9 (2010): 348. http://dx.doi.org/10.1002/zfch.19850250934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schönfeld, Peter, and Frank Meyer. "Was der (Viszeral-)Chirurg als neue Erkenntnisse über die Gallensäuren und deren Zusammenspiel mit dem Darmmikrobiom wissen sollte." Zeitschrift für Gastroenterologie 58, no. 03 (2020): 245–53. http://dx.doi.org/10.1055/a-1071-8219.

Full text
Abstract:
ZusammenfassungDer (Viszeral-)Chirurg lernt auch durch Anlehnung an zahlreiche medizinische Nachbarfächer die (patho)biochemischen und (patho)physiologischen Konsequenzen seines erkrankungsrelevanten operativen Wirkens (Veränderung der Anatomie des GI-Trakts und seiner Anhangsorgane, Medikation etc.) kennen und verstehen. Ziel &amp; Methode Mit kompakter narrativer Kurzübersicht soll die Verflechtung von Gallensäuren (GS) im Stoffwechsel, insbesondere im Zusammenhang mit geplantem oder ausgeführtem (viszeral)chirurgischen Vorgehen illustriert werden. Dazu wurden i) einschlägige Referenzen der medizinisch-wissenschaftlichen Literatur und ii) eigene fachspezifisch gewonnene Erkenntnisse herangezogen. Ergebnisse (Eckpunkte) 1. Chirurgie und Biochemie weisen schon früh in der Geschichte einen gemeinsamen Betrachtungsgegenstand auf, u. a. Lebererkrankungen wie z. B. hinsichtlich der Konsequenzen eines gestörten Pfortaderkreislaufs und der Leberzirrhose. 2. GS sind (i) natürliche Detergenzien, (ii) Bestandteile der Cholesterin-Gallensteine und (iii) essenzielle Signalmoleküle der Darm-Leber-Stoffwechselinteraktion. Cholsäure [CA] und Chenodesoxycholsäure [CDCA] dominieren mit je ~35 % den Gallensäure-Pool. Durch Konjugation der GS mit Taurin und Glycin wird ihre Löslichkeit erhöht. Der enterohepatische Kreislauf minimiert die Ausscheidung der GS. 3. Die Bildung der GS in der Leber aus Cholesterin (Umsatz/pro Tag: 0,2–0,6 g Cholesterol) kontrolliert die Cholesterin-7α-Hydroxylase (CYP7A1). Eine toxische GS-Akkumulation wird durch GS-induzierte Repression der CYP7A1-Expression und Sulfatierung der GS (Erhöhung der Harngängigkeit) verhindert. 4. GS haben regulatorische Aktivitäten im Energie-, Glukose-, Lipid- und Lipoproteinstoffwechsel und innerhalb des angeborenen Immunsystems. Durch die Bindung der GS an den Farnesoid-X-Kernrezeptor [FXR] und den membranalen G-Protein-gekoppelten Gallensäurerezeptor-1 [GPBAR1, TGR5] werden vielfältige Wirkungen im Fett- und Kohlenhydratstoffwechsel ausgelöst. 5. GS triggern im braunen Fettgewebe und im Skelettmuskel durch Aktivierung des GPBAR1-MAPK-Signalwegs die Expression der Iodothyronin-Dejodinase (DIO2). Dadurch wird vermehrt Thyroxin (T4) in Trijodthyronin (T3) umgewandelt und in der Folge werden die Fettverbrennung und die Thermogenese gesteigert. 6. GS verändern das intestinale Mikrobiom durch bakteriolytische Aktivitäten und andererseits wird das GS-Profil vom Mikrobiom moduliert. Typische mikrobielle Wirkungen auf den GS-Pool sind die (i) Abspaltung der Glycin- und Taurinreste von den konjugierten GS durch „bile salt hydrolases“ und (ii) die chemische Modifizierung freier, primärer GS durch Re-Amidierung, Oxydation-Reduktion, Veresterung und Desulfatierung. 7. GS hemmen das durch Lipopolysaccharide (Membranbestandteil gramnegativer Bakterien) induzierte endotoxine Entzündungsgeschehen. Über die Bindung der GS an Makrophagenrezeptoren (GPBAR1 und FXR) wird (i) die LPS-induzierte proinflammatorische Zytokinbildung vermindert und die Expression des antiinflammatorischen IL-10 befördert. Außerdem werden (ii) das Leukozyten-„Trafficking“ reguliert und (iii) das Inflammasom von Makrophagen und neutrophilen Granulozyten aktiviert. 8. Die mit der Adipositaschirurgie (z. B. beim „Roux-en-Y gastric bypass“ [RYGB]) erzielten gewichtsunabhängigen Veränderungen korrelieren mit einem erhöhten GS-Serumspiegel und einem veränderten intestinalen GS-Profil. Letzteres führt sekundär zum „Umbau“ des Mikrobioms. RYGB hat u. a. positive Wirkungen auf den Stoffwechsel der Kohlenhydrate. So wird die Insulinsensitivität der Leber verbessert und die Sekretion des Glucagon-like peptide 1 gesteigert. Schlussfolgerung GS sind ein Paradebeispiel für metabolische Regulatoren, deren Interaktionen mit vielfältigen (patho)biochemischen und (patho)physiologischen Vorgängen (viszeral)chirurgisch relevante Erkrankungen und (viszeral)chirurgisch-operative Maßnahmen beeinflussen. Ihre biochemisch-physiologischen Aktivitäten und deren Verständnis auf molekularer Ebene sollten zum medizinisch-wissenschaftlichen Rüstzeug des versierten modernen (Viszeral-)Chirurgen gehören.
APA, Harvard, Vancouver, ISO, and other styles
41

Müller, Hans. "Die chemische Bindung Von C. A. Coulson, übersetzt und ergänzt von Franz Wille; S. Hirzel Verlag, Stuttgart, 1969; XII, 382 Seiten mit 133 Bildern und 35 Tabellen; Format 15 × 23 cm, Kld. 32,- DM." Zeitschrift für Chemie 12, no. 6 (2010): 239–40. http://dx.doi.org/10.1002/zfch.19720120624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Schuler, Bruno, Fabian Mohn, Nikolaj Moll, Leo Gross, and Gerhard Meyer. "Chemische Bindungen visualisiert." Physik in unserer Zeit 44, no. 1 (2013): 6–7. http://dx.doi.org/10.1002/piuz.201390011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Saalfrank, Peter. "Die chemische Bindung, Zweite, ergänzte und aktualisierte Auflage. Band 2 von: W. Kutzelnigg: Einführung in die Theoretische Chemie, VCH Verlagsgesellschaft, Weinheim, New York, Basel, Cambridge, Tokyo 1994, ISBN 3-527-29210-1, 601 Seiten, Preis: DM 118,-." Berichte der Bunsengesellschaft für physikalische Chemie 98, no. 9 (1994): 1209–10. http://dx.doi.org/10.1002/bbpc.19940980937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Müller, Hans. "Studienbücherei Bausteine der Materie und chemische Bindung: Von W. Haberditzl; herausgegeben als Band 1 in der Reihe “Ausgewählte Lehrabschnitte der Chemie” von L. Kolditz; VEB Deutscher Verlag der Wissenschaften, Berlin 1972; 255 Seiten mit 27 Bildern u." Zeitschrift für Chemie 13, no. 5 (2010): 198–99. http://dx.doi.org/10.1002/zfch.19730130527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nesper, Reinhard. "Chemische Bindungen - intermetallische Verbindungen." Angewandte Chemie 103, no. 7 (1991): 805–34. http://dx.doi.org/10.1002/ange.19911030709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Haberditzl, W. "Diamagnetismus und chemische Bindung: Von J. G. Dorfman. Übersetzung aus dem Russischen und wissenschaftliche Redaktion: G. Klose, J. Ranft und G. Saeltzer. B. G. Teubner Verlagsgesellschaft, Leipzig 1964. VIII/216 Seiten, 38 Bilder, Format L 7 N, Glw., 2." Zeitschrift für Chemie 4, no. 8 (2010): 319. http://dx.doi.org/10.1002/zfch.19640040822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Thong, Nguyen Huu. "Graphendarstellung chemischer Bindungen." Zeitschrift für Chemie 20, no. 6 (2010): 230–31. http://dx.doi.org/10.1002/zfch.19800200631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Haberditzl, Werner. "50 Jahre Theorie der chemischen Bindung." Zeitschrift für Chemie 18, no. 10 (2010): 353–59. http://dx.doi.org/10.1002/zfch.19780181002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fuchs, Harald. "Chemische Bindungen unter dem Rasterkraftmikroskop." Physik Journal 57, no. 6 (2001): 22–25. http://dx.doi.org/10.1002/phbl.20010570607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Boese, Roland. "Kann man Chemische Bindungen sehen?" Chemie in unserer Zeit 23, no. 3 (1989): 76–85. http://dx.doi.org/10.1002/ciuz.19890230303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography