To see the other types of publications on this topic, follow the link: Chemistry, Radiation.

Journal articles on the topic 'Chemistry, Radiation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemistry, Radiation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Silverman, Joseph. "Applied Radiation Chemistry: Radiation Processing." Nuclear Technology 109, no. 2 (February 1995): 306. http://dx.doi.org/10.13182/nt95-a35062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, David M. "Applied radiation chemistry; radiation processing." Applied Radiation and Isotopes 45, no. 10 (October 1994): 1053. http://dx.doi.org/10.1016/0969-8043(94)90180-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaplan, I. G. "Cherenkov radiation in radiation chemistry." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 248, no. 1 (July 1986): 263–66. http://dx.doi.org/10.1016/0168-9002(86)90526-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

O'Neill, Peter, and Peter Wardman. "Radiation chemistry comes before radiation biology." International Journal of Radiation Biology 85, no. 1 (January 2009): 9–25. http://dx.doi.org/10.1080/09553000802640401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Charlesby, A. "Applied radiation chemistry." Radiation Physics and Chemistry 47, no. 4 (April 1996): 664–65. http://dx.doi.org/10.1016/s0969-806x(96)90045-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belloni, J., M. O. Delcourt, C. Houée-Lévin, and M. Mostafavi. "7 Radiation chemistry." Annual Reports Section "C" (Physical Chemistry) 96, no. 1 (July 26, 2000): 225–95. http://dx.doi.org/10.1039/b001203n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramos-Bernal, Sergio, and Alicia Negrón-Mendoza. "Radiation Chemistry Approach to Cometary Chemistry." International Astronomical Union Colloquium 161 (January 1997): 143–48. http://dx.doi.org/10.1017/s0252921100014652.

Full text
Abstract:
AbstractThe chemistry of comets is analyzed in the light of radiolytic processes occurring in the life-time of the comet due to its interaction with radiation. A simple model of a cometary nucleus is carried out at the laboratory which simulates as a first approximation the behavior of the organics in the comet. Most of the results obtained confirm that the parent molecules of the observed ones can be deduced from these simple simulated experiments. A variety of molecules were obtained (amino acids, carboxylic acids, gaseous products, etc.), even in frozen solutions the formation of oligomers was observed. The simplified mixture consisted of five compounds in a proportion in which they appear in a dense interstellar cloud (HCN/CH3OH/CH3CN/C2H5CN/HCOOH = 1:0.6:0.2:0.1:0.05). The total amount was adjusted to correspond to a C/N ratio 1.8. At this end, radiation chemistry can be a very precise and useful tool to simulate the evolution of organic molecules exposed to high energy radiation, as cosmic rays, during the life time of a comet.
APA, Harvard, Vancouver, ISO, and other styles
8

Salmon, G. Arthur. "The radiation chemistry connection." Physica B: Condensed Matter 326, no. 1-4 (February 2003): 46–50. http://dx.doi.org/10.1016/s0921-4526(02)01575-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chmielewski, Andrzej G. "Chitosan and radiation chemistry." Radiation Physics and Chemistry 79, no. 3 (March 2010): 272–75. http://dx.doi.org/10.1016/j.radphyschem.2009.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kabanov, V. Ya, V. I. Feldman, B. G. Ershov, A. I. Polikarpov, D. P. Kiryukhin, and P. Yu Apel’. "Radiation chemistry of polymers." High Energy Chemistry 43, no. 1 (January 2009): 1–18. http://dx.doi.org/10.1134/s0018143909010019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kiryukhin, D. P. "Low-temperature radiation chemistry." High Energy Chemistry 45, no. 3 (May 2011): 165–82. http://dx.doi.org/10.1134/s0018143911030076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Singh, Ajit. "Fundamentals of radiation chemistry." Radiation Physics and Chemistry 59, no. 5-6 (November 2000): 483. http://dx.doi.org/10.1016/s0969-806x(00)00322-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Butler, J., B. M. Hoey, and A. J. Swallow. "Chapter 6. Radiation chemistry." Annual Reports Section "C" (Physical Chemistry) 83 (1986): 129. http://dx.doi.org/10.1039/pc9868300129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Butler, J., B. M. Hoey, and A. J. Swallow. "Chapter 3. Radiation chemistry." Annual Reports Section "C" (Physical Chemistry) 86 (1989): 49. http://dx.doi.org/10.1039/pc9898600049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Belloni, J., J. Amblard, and M. O. Delcourt. "Chapter 10. Radiation chemistry." Annual Reports Section "C" (Physical Chemistry) 91 (1994): 351. http://dx.doi.org/10.1039/pc9949100351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Decker, Christian. "UV‐radiation curing chemistry." Pigment & Resin Technology 30, no. 5 (October 2001): 278–86. http://dx.doi.org/10.1108/03699420110404593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jonah, Charles D., J. W. T. Spinks, and R. J. Woods. "Introduction to Radiation Chemistry." Radiation Research 124, no. 3 (December 1990): 378. http://dx.doi.org/10.2307/3577852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Belloni, J., M. O. Delcourt, C. Houee-Levin, and M. Mostafavi. "ChemInform Abstract: Radiation Chemistry." ChemInform 31, no. 48 (November 28, 2000): no. http://dx.doi.org/10.1002/chin.200048273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Carmichael, Ian, and G. L. Hug. "Bibliographies on radiation chemistry." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 36, no. 6 (January 1990): 829–43. http://dx.doi.org/10.1016/1359-0197(90)90187-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Charlesby, Arthur. "Introduction to radiation chemistry." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 36, no. 6 (January 1990): 871. http://dx.doi.org/10.1016/1359-0197(90)90195-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Holroyd, Richard A., and Elinor Norton. "Radiation chemistry of tetramethylgermane." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 39, no. 4 (April 1992): 345–47. http://dx.doi.org/10.1016/1359-0197(92)90242-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Serne, R. Jeff. "Radiation effects on chemistry." Engineering Geology 26, no. 4 (April 1989): 319–29. http://dx.doi.org/10.1016/0013-7952(89)90020-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kroh, Jerzy. "Radiation chemistry in Łódź." Radiation Physics and Chemistry 47, no. 1 (January 1996): 19–22. http://dx.doi.org/10.1016/0969-806x(95)00073-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vladimirova, M. V. "Radiation chemistry of actinides." Journal of Radioanalytical and Nuclear Chemistry Articles 143, no. 2 (December 1990): 445–54. http://dx.doi.org/10.1007/bf02039613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Aoki, Yasushi. "3 Radiation Dosimetry—Experimental Methods in Radiation Chemistry—." RADIOISOTOPES 66, no. 10 (2017): 407–16. http://dx.doi.org/10.3769/radioisotopes.66.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Spaans, Marco. "Interstellar Chemistry: Radiation, Dust and Metals." Proceedings of the International Astronomical Union 4, S255 (June 2008): 238–45. http://dx.doi.org/10.1017/s1743921308024885.

Full text
Abstract:
AbstractAn overview is given of the chemical processes that occur in primordial systems under the influence of radiation, metal abundances and dust surface reactions. It is found that radiative feedback effects differ for UV and X-ray photons at any metallicity, with molecules surviving quite well under irradiation by X-rays. Starburst and AGN will therefore enjoy quite different cooling abilities for their dense molecular gas. The presence of a cool molecular phase is strongly dependent on metallicity. Strong irradiation by cosmic rays (>200× the Milky Way value) forces a large fraction of the CO gas into neutral carbon. Dust is important for H2 and HD formation, already at metallicities of 10−4 − 10−3 solar, for electron abundances below 10−3.
APA, Harvard, Vancouver, ISO, and other styles
27

Yamashita, Shinichi, Kenta Murakami, and Mitsumasa Taguchi. "12 Ion Beam Radiation Chemistry." RADIOISOTOPES 66, no. 10 (2017): 497–505. http://dx.doi.org/10.3769/radioisotopes.66.497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shibata, Hiromi. "28 Radiation Chemistry in Space." RADIOISOTOPES 66, no. 11 (2017): 617–23. http://dx.doi.org/10.3769/radioisotopes.66.617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Forsythe, J. S., and D. J. T. Hill. "The radiation chemistry of fluoropolymers." Progress in Polymer Science 25, no. 1 (February 2000): 101–36. http://dx.doi.org/10.1016/s0079-6700(00)00008-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Crowell, Robert A., David J. Gosztola, Ilya A. Shkrob, Dmitri A. Oulianov, Charles D. Jonah, and Tijana Rajh. "Ultrafast processes in radiation chemistry." Radiation Physics and Chemistry 70, no. 4-5 (July 2004): 501–9. http://dx.doi.org/10.1016/j.radphyschem.2003.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gaikwad, Parimal, K. I. Priyadarsini, and B. S. M. Rao. "Radiation chemistry research using PULAF." Radiation Physics and Chemistry 77, no. 10-12 (October 2008): 1124–30. http://dx.doi.org/10.1016/j.radphyschem.2008.05.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hatano, Yoshihiko. "Future perspectives of radiation chemistry." Radiation Physics and Chemistry 78, no. 12 (December 2009): 1021–25. http://dx.doi.org/10.1016/j.radphyschem.2009.06.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Getoff, Nikola. "Radiation chemistry and the environment." Radiation Physics and Chemistry 54, no. 4 (April 1999): 377–84. http://dx.doi.org/10.1016/s0969-806x(98)00266-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Trifunac, Alexander. "The future of radiation chemistry." Radiation Physics and Chemistry 57, no. 1 (January 2000): 53. http://dx.doi.org/10.1016/s0969-806x(99)00307-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wardman, P. "18th Miller Conference: Radiation Chemistry." International Journal of Radiation Biology 64, no. 3 (January 1993): 339–43. http://dx.doi.org/10.1080/09553009314551501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schroder, E., E. E. Budzinski, J. C. Wallace, J. D. Zimbrick, and H. C. Box. "Radiation Chemistry of D(ApCpGpT)." International Journal of Radiation Biology 68, no. 5 (January 1995): 509–23. http://dx.doi.org/10.1080/09553009514551501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Makhlyarchuk, Valentin V., and Stanislav V. Zatonskii. "Radiation chemistry of crown-compounds." Russian Chemical Reviews 61, no. 5 (May 31, 1992): 484–99. http://dx.doi.org/10.1070/rc1992v061n05abeh000958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mason, N. J., A. Dawes, R. Mukerji, E. A. Drage, E. Vasekova, S. M. Webb, and P. Limão-Vieira. "Atmospheric chemistry with synchrotron radiation." Journal of Physics B: Atomic, Molecular and Optical Physics 38, no. 9 (April 25, 2005): S893—S911. http://dx.doi.org/10.1088/0953-4075/38/9/027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Carson, Susan D., David R. Tallant, Marion J. McDonald, Manuel J. Garcia, and Regina L. Simpson. "Radiation Chemistry of Simulated99Mo Product." Industrial & Engineering Chemistry Research 39, no. 9 (September 2000): 3151–56. http://dx.doi.org/10.1021/ie990378+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wardman, P. "Early Developments in Radiation Chemistry." International Journal of Radiation Biology 58, no. 3 (January 1990): 545–46. http://dx.doi.org/10.1080/09553009014551881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jonah, Charles D., and Jerzy Kroh. "Early Developments in Radiation Chemistry." Radiation Research 123, no. 2 (August 1990): 239. http://dx.doi.org/10.2307/3577553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chmielewski, A. G. "Practical applications of radiation chemistry." Russian Journal of Physical Chemistry A 81, no. 9 (September 2007): 1488–92. http://dx.doi.org/10.1134/s0036024407090270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wishart, James F. "Radiation Chemistry of Ionic Liquids." ECS Proceedings Volumes 2004-24, no. 1 (January 2004): 802–13. http://dx.doi.org/10.1149/200424.0802pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Schuler, Robert H. "Chromatographic methods in radiation chemistry." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 39, no. 1 (January 1992): 105–12. http://dx.doi.org/10.1016/1359-0197(92)90181-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Basheer, Rafil, and Malcolm Dole. "The radiation chemistry of polyetherimides." Radiation Physics and Chemistry (1977) 25, no. 1-3 (January 1985): 389–98. http://dx.doi.org/10.1016/0146-5724(85)90287-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Robinson, P. J. "Radiation Chemistry — Principles and Applications." Journal of Photochemistry and Photobiology A: Chemistry 42, no. 1 (March 1988): 170. http://dx.doi.org/10.1016/1010-6030(88)80059-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sangster, D. F. "Radiation chemistry education in Australia." Journal of Radioanalytical and Nuclear Chemistry Articles 171, no. 1 (June 1993): 75–82. http://dx.doi.org/10.1007/bf02039672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Choudhury, Dibyasree, and Susanta Lahiri. "Converter target chemistry – A new challenge to radioanalytical chemistry." Applied Radiation and Isotopes 137 (July 2018): 33–40. http://dx.doi.org/10.1016/j.apradiso.2018.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cooper, Ronald. "The History and Development of Radiation Chemistry." Australian Journal of Chemistry 64, no. 7 (2011): 864. http://dx.doi.org/10.1071/ch11142.

Full text
Abstract:
Stemming from the discovery and isolation of radioactive elements by the Curies came observations of chemical and physical changes produced by ‘emanations’. From ~1900 AD, observations were sporadic and spread across a range of chemical systems. Several conflicting results from irradiated water were reported – one recording no decomposition, whereas another study observed hydrogen and hydrogen peroxide formation. The field progressed slowly while the only practical source of radiation was X-rays. After the mid-1940s, the isotope output from nuclear reactors gave chemists high-activity radiation sources with which to conduct experiments. Particle accelerators were utilized and led to the pulsed radiolysis technique, which unlocked the door to the study of ultrafast solution reactions of free radicals and excited states. The radiation chemistry of water is now a qualitative and quantitative basis for the initiation and study of a wide range of chemical and physical processes. Polymeric systems, solid-state dosimeters, and gaseous plasmas are active areas of research. The radiological use of radiation has an active radiobiology field developing new biochemical processes involving DNA stability.
APA, Harvard, Vancouver, ISO, and other styles
50

Kumagai, Jun. "11 Interface of Radiation Chemistry for Radiation Biology and Meteorology." RADIOISOTOPES 66, no. 10 (2017): 489–96. http://dx.doi.org/10.3769/radioisotopes.66.489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography