Academic literature on the topic 'Chenopodiaceae'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chenopodiaceae.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chenopodiaceae"

1

Snijman, D. A., and J. C. Manning. "Chenopodiaceae." Bothalia 43, no. 1 (2013): 80–84. http://dx.doi.org/10.4102/abc.v43i1.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

S. Al-Mohammadi, Suhad. "Detection of Cholesterol in Suaeda Baccata (Chenopodiaceae)." Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512) 15, no. 2 (2017): 29–36. http://dx.doi.org/10.31351/vol15iss2pp29-36.

Full text
Abstract:
This study detects the presence of cholesterol in an Iraqi plant named Suaeda baccata Forsk of the family Chenopodiacae, wildly and widely grown in Iraq. The absence of any publication concerning the sterol content of this Suaeda specie, and the industrial importance of cholesterol depending on its role as a precursor in the synthesis of some hormones, like progesterone, acquired this study its value. The investigations revealed the presence of cholesterol that was proved by TLC together with the standard compound cholesterol, and anisaldehyde spray reagent using three different solvent systems, then authenticated by HPLC, in which the retention time of both the standard cholesterol and the plant extract cholesterol were identical.
 Key Words: Cholesterol, Suaeda Baccat and Chenopodiaceae
APA, Harvard, Vancouver, ISO, and other styles
3

Osmonali, B. B., P. V. Vesselova, and G. M. Kudabayeva. "The modern species composition of the family Chenopodiaceae Vent. (Amaranthaceae Juss.) of the flora of the desert part of the Syrdarya river valley." Проблемы ботаники южной сибири и монголии 20, no. 1 (2021): 336–40. http://dx.doi.org/10.14258/pbssm.2021067.

Full text
Abstract:
Representatives of the Chenopodiaceae Vent. family are the hallmark of the flora of the desert regionsof Kazakhstan, as they far outnumber other leading families. Moreover, this applies not only to the flora of the mountainousterritories, but also to the flora of the river valleys, in particular, the flora of the wide valley of the Syrdarya river. Thepredominance of Chenopodiaceae is due to the excellent adaptability of its species to desert conditions. Quite a few speciesof Chenopodiaceae are dominant plant communities, especially in the middle deserts of the North Turan province. Amongthem there are many species that have useful properties (forage, landscape, medicinal, etc.). The aim of the work was toidentify the current species composition of the Chenopodiaceae family (Amaranthaceae Juss.) of the flora of the desertpart of the Syrdarya river valley. Classical botanical methods were used in the research process. As a result of the conductedstudies, the modern species composition of the Chenopodiaceae family of the studied territory, consisting of 112 speciesfrom 38 genera, was revealed. The three largest genera include genera: Salsola–17 species, Atriplex–15 species, Suaeda–11species. The remaining genera contain from 6 to 1 species. Genera represented by a small number of species predominate(26 genera of 1–2 species each).
APA, Harvard, Vancouver, ISO, and other styles
4

Jalilzadeh, Afsaneh, Seyed Hamdi, Younes Asri, Mostafa Assadi, and Alireza Iranbakhsh. "Palynological analysis some species of Chenopodiaceae and its systematic implications using scanning electron microscopy." Genetika 54, no. 2 (2022): 539–52. http://dx.doi.org/10.2298/gensr2202539j.

Full text
Abstract:
Chenopodiaceae is a large, diverse and cosmopolitan family within the order Carophyllales. The majority of Chenopodiaceae species are adapted to saline, hypersaline, xerophytic and xerohalophytic communities or ruderal habitats. The family Chenopodiaceae is stenopolinous the pollen grains are monad and exclusively polypantoporate with tiny spinules on both tectum and operculum. Pollen morphology of six genera of Chenopodiaceae (Seidlitzia, Atriplex, Bassia, Salsola, Krascheninnikovia and Spinacia) have been studied in details. These plant species were collected from different phytogeographical regions of Iran. The palynological investigation was done using scanning electron microscopy (SEM) techniques. Pollen characters studied in this study include pollen and pore diameters, number and density of apertures, interporal distance (chord), chord/pollen diameter ratio, pore diameter/pollen diameter ratio as well as spinule density on tectum and operculum. We used different multivariate statistical methods to reveal the species relationships. Ward clustering analyses have been done to check out the relationship among the species. The shapes of pollen grains were radially symmetrical, isopolar, pantopolyporate and spheroidal. Their exine structure is similar. In the Chenopodiaceae, three pollen types have been defined, mainly on the basis of pollen grain size, pore number, number of microechinae on pore membrane, the density of spinules, and pore edge shape.
APA, Harvard, Vancouver, ISO, and other styles
5

Sukhorukov, Alexander P. "Taxonomic notes onDysphaniaandAtriplex (Chenopodiaceae)." Willdenowia 42, no. 2 (2012): 169–80. http://dx.doi.org/10.3372/wi.42.42202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buchbauer, Gerhard, Leopold Jirovetz, Michael Wasicky, Johannes Walter, and Alexej Nikiforov. "Headspace Volatiles ofChenopodiumbotrys(Chenopodiaceae)." Journal of Essential Oil Research 7, no. 3 (1995): 305–8. http://dx.doi.org/10.1080/10412905.1995.9698523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hammer, K., D. Pignone, S. Cifarelli, and P. Perrino. "Barilla (Salsola soda, Chenopodiaceae)." Economic Botany 44, no. 3 (1990): 410–12. http://dx.doi.org/10.1007/bf03183925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

РЫСБЕК, Ә. Ғ., Ж. М. ШЕГЕБАЕВ, У. М. ДАТХАЕВ та А. А. ТУРГУМБАЕВА. "ПРИМЕНЕНИЕ СЕМЕЙСТВА МАРЕВЫХ (CHENOPODIACEAE) В МЕДИЦИНЕ И ФАРМАЦИИ". Vestnik, № 1(64) (17 лютого 2023): 118–28. http://dx.doi.org/10.53065/kaznmu.2023.93.29.010.

Full text
Abstract:
В данной статье представлен литературный обзор семейства Маревых (Chenopodiaceae). В семействе насчитывается более 100 родов и около 1500 видов растений. Многие Маревые (Chenopodiaceae) являются лекарственными растениями, применяемыми в народной и официальной медицине. В составе большинства растений были идентифицированы БАВ (биологически активные вещества): сапонины, алколоиды, флаваноиды, кумарины, фенолы, углеводы, витамины С и В2. Они имеют лекарственное действие как мочегонные, отхаркивающие, болеутоляющее, усиливающие сердечную деятельность и перистальтику кишечника, а также применяются против кожных заболеваний. Поиск фармацевтических активных субстанций из малоизученных видов лекарственных растений с целью расширения номенклатуры отечественных лекарственных средств является актуальным направлением современной фармации. Научная значимость исследования состоит анализ опубликованных данных химического состава растений семейства Маревых с антиоксидантной, противовоспалительной и ранозаживляющей активностью. Цель исследования - провести литературный обзор и анализ опубликованных данных химического состава растений семейства Маревые (Chenopodiaceae).
APA, Harvard, Vancouver, ISO, and other styles
9

Heklau, Heike, Peter Gasson, Fritz Schweingruber, and Pieter Baas. "Wood Anatomy of Chenopodiaceae (Amaranthaceae s.l.)." IAWA Journal 33, no. 2 (2012): 205–32. http://dx.doi.org/10.1163/22941932-90000090.

Full text
Abstract:
The wood anatomy of the Chenopodiaceae is distinctive and fairly uniform. The secondary xylem is characterised by relatively narrow vessels (<100 μm) with mostly minute pits (<4 μm), and extremely narrow vessels (<10 μm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 μm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 μm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hablitzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaranthaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites.
APA, Harvard, Vancouver, ISO, and other styles
10

Jacobs, Surrey. "Notes on Aizoaceae and Chenopodiaceae." Telopea 3, no. 2 (1988): 139–43. http://dx.doi.org/10.7751/telopea19884802.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chenopodiaceae"

1

Sá, Rafaela Damasceno. "Estudo farmacognóstico de Chenopodium ambrosioides L. (Chenopodiaceae)." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/10715.

Full text
Abstract:
Submitted by Ramon Santana (ramon.souza@ufpe.br) on 2015-03-05T14:42:32Z No. of bitstreams: 2 Dissertação Rafaela Damasceno Sá.pdf: 1935790 bytes, checksum: 15e763111ed57a5154fb97fb0918661c (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)<br>Made available in DSpace on 2015-03-05T14:42:32Z (GMT). No. of bitstreams: 2 Dissertação Rafaela Damasceno Sá.pdf: 1935790 bytes, checksum: 15e763111ed57a5154fb97fb0918661c (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-02<br>CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)<br>Chenopodium ambrosioides L., conhecida popularmente como mastruz, é uma erva amplamente distribuída no Brasil e muito utilizada como anti-helmíntica e para tratamentos de gripe. Como os estudos farmacológicos demonstram suas propriedades terapêuticas e devido ao amplo e reconhecido uso popular, a espécie possui grande potencial para se tornar um fitoterápico. Nesse contexto, o objetivo do trabalho foi realizar um estudo farmacognóstico da espécie. Foram realizados cortes transversais para análise microscópica de raiz, caule e pecíolo; nas folhas foram feitos cortes transversais, paradérmicos e testes histoquímicos. Através de cromatografia em camada delgada, investigou-se a presença de metabólitos secundários nas folhas, nas quais também foi determinado o teor de flavonoides totais utilizando espectrofotometria. Foi extraído ainda das folhas o óleo essencial, através de hidrodestilação, e calculado o rendimento. Para estabelecer o perfil quali-quantitativo e determinar a composição do óleo essencial, utilizou-se cromatografia gasosa acoplada à espectrometria de massas. Foram avaliados todos os parâmetros exigidos pela ANVISA para a validação de método desenvolvido para quantificação dos constituintes do óleo essencial por cromatografia gasosa com detector de ionização em chama. Os principais caracteres úteis na identificação da planta resultantes da análise microscópica foram: presença de idioblastos contendo areia cristalina no mesofilo, na nervura principal e no parênquima de caule e pecíolo; presença de tricomas tectores e glandulares capitados na folha e no caule; e crescimento secundário na raiz e no caule formado por uma sucessão de arcos cambiais. Através dos testes histoquímicos, ficou demonstrado que os cristais são de oxalato de cálcio, assim como se evidenciou a presença de substâncias lipídicas, esteroides, óleos essenciais e oleoresinas. Com relação à prospecção fitoquímica, foi demonstrada a presença de açúcares redutores, monoterpenos e sesquiterpenos, triterpenos e esteroides e flavonoides glicosilados. O teor de flavonoides totais calculado foi de 1,61 ± 0,02 (1,51%). A extração do óleo essencial das folhas teve um rendimento médio de 0,7% ± 0,0982. Considerando a análise CG-EM do óleo essencial, pode-se constatar a presença de 10 picos, com tempos de retenção entre 18,7 e 55,2 minutos. Os constituintes majoritários encontrados foram α-terpineno (42,14%) e α-terpinenil-acetato (31,57%). O conteúdo de ascaridol, geralmente relatado como majoritário, foi de 0,87%. Um teor elevado de ascaridol já foi relatado no Brasil e também em outros países, o que leva a conclusão de que o local de coleta da planta é um importante fator a ser considerado para a análise do óleo essencial de C. ambrosioides. O método proposto para a quantificação dos constituintes do óleo essencial mostrou-se linear, com alta sensibilidade de quantificação, além de ser considerado específico, preciso, exato e robusto. Os resultados obtidos fornecem informações relevantes para a identificação e controle de qualidade da espécie, já que a planta não apresenta monografia nos códigos atuais.
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Monica Elizabeth. "Photosynthetic performance of single-cell C₄ species (Chenopodiaceae)." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/m_smith_111907.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rilke, Sabrina. "Revision der Sektion Salsola S.L. der Gattung Salsola (Chenopodiaceae) /." Stutttgart : Schweizerbart, 1999. http://catalogue.bnf.fr/ark:/12148/cb39146323j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Park, Joonho. "Spatial development of the cytoplasmic compartments for single cell C₄ photosynthesis, and mechanisms of tolerance to salinity in Bienertia sinuspersici." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Dissertations/Spring2008/j_park_041608.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klopper, Ronell Renett. "Leaf structure in southern African species of Salsola L. (Chenopodiaceae)." Diss., University of Pretoria, 2000. http://hdl.handle.net/2263/25005.

Full text
Abstract:
Salsola L. is one of the largest genera within the Chenopodiaceae. It has been suggested that almost 90 species occur in southern Africa where the plants are most conspicuous in karroid areas. Members of Salsola are of considerable importance as pasture plants in the Karoo, especially during winter and periods of prolonged drought. Some species also have medicinal and other valuable properties. However, not all Salsola species are beneficial; some may cause diseases and deficiencies in livestock, leading to high mortalities and severe financial loss. Because of the occurrence of harmful and beneficial species within the same area, correct identification of the different species is of extreme importance. Correct identification is, however, rendered problematic by the great morphological similarity of almost all southern African Salsola species and uncertainties concerning the infrageneric classification of the group. There is a great need for a system of easy identification that can be used in the herbarium as well as in the field. This is especially so since available keys to the group cannot be used to identify sterile specimens. There also exists great uncertainty as to the exact identity of most of the 69 new species described by V.P. Botschantzev (Komarov Botanical Institute, St Petersburg) between 1972 and 1983. For this reason many of the names have hardly been taken up and used by South African botanists. A clear delimitation of the different character states within the genus would greatly facilitate and enhance the process of solving the systematic problems that exist within the genus. A comparative anatomical study of the leaves of southern African Salsola species was conducted using LM and SEM techniques. Leaf anatomy proved to be very useful for delimiting groups within the genus. Of particular importance is the structure of the leaf in transverse section and the type of the indumentum. The investigated species can be primarily divided into two main leaf types, according to the presence or absence of a uniseriate hypodermis underlying the adaxial epidermis. A secondary division can be made by indumentum types. Four main indumentum types have been identified based on the appearance of the abaxial leaf surface. One of these indumentum types can be further subdivided according to the area of the leaf covered by trichomes and the number of elongated cells in the trichomes. There is a weak association between leaf type and subsection, as well as between leaf type and indumentum type. No obvious association could be found between leaf or indumentum type and fruit type or any other macromorphological character. Further investigation in this respect is required. In general the species possessing an adaxial hypodermis tend to have a denser covering of trichomes than those species lacking one. This denser indumentum probably provides the plants with better insulation to help prevent excessive water loss and to protect subtending tissues from extreme heat in their arid environment. When studied in combination with other anatomical and ecological evidence these characteristics might prove to be very useful to help establish a classification system whereby Salsola species can be more easily identified.<br>Dissertation (MSc (Botany))--University of Pretoria, 2000.<br>Plant Science<br>unrestricted
APA, Harvard, Vancouver, ISO, and other styles
6

Rosnow, Josh Jeffrey. "In vitro cultures and regeneration of Bienertia sinuspersici (Chenopodiaceae) under increasing concentrations of sodium chloride and carbon dioxide." Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/j_rosnow_042010.pdf.

Full text
Abstract:
Thesis (M.S. in molecular plant sciences)--Washington State University, May 2010.<br>Title from PDF title page (viewed on July 9, 2010). "Department of Molecular Plant Sciences." Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Leisner, Courtney Price. "Salinity tolerance in the single-cell C₄ species Bienertia sinuspersici and the Kranz-type C₄ species Suaeda eltonica (Chenopodiaceae)." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Summer2009/c_leisner_080809.pdf.

Full text
Abstract:
Thesis (M.S. in botany)--Washington State University, August 2009.<br>Title from PDF title page (viewed on Sept. 22, 2009). "Department of Biological Sciences." Includes bibliographical references (p. 138-139).
APA, Harvard, Vancouver, ISO, and other styles
8

Schütze, Peter Wolfram [Verfasser]. "Molekulare Systematik der Gattung Suaeda (Chenopodiaceae) und Evolution des C4-Photosynthesesyndroms / Peter Wolfram Schütze." Kassel : Universitätsbibliothek Kassel, 2011. http://d-nb.info/1018921761/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borger, Catherine. "The biology and ecology of Salsola australis R.Br. (Chenopodiaceae) in southwest Australian cropping systems." University of Western Australia. School of Plant Biology, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0062.

Full text
Abstract:
Salsola australis is an introduced weed of crop and pasture systems in the Western Australian broad acre cropping and pasture region (wheat-belt). This thesis investigated the classification, biology and ecology of the genus Salsola in southwest Australia, as well as modelling the effectiveness of possible weed control practices. Prior to this research, S. tragus was the only recognised species of the Salsola genus within Australia. However, genetic analysis revealed that four genetically distinct putative taxa of the genus Salsola were found in southwest Australia, none of which were S. tragus. The taxa that is the most prevalent agricultural weed was classified as S. australis, but the other three putative taxa could not be matched to recognised species. All four taxa were diploid (2n = 18), as opposed to tetraploid (2n = 36) S. tragus. Within the agricultural system of southwest Australia, S. australis plants established throughout the year, although the majority of seed production occurred in late summer and autumn. Total seed production (138-7734 seeds per plant) and seed viability (7.6-62.8%) of S. australis were lower than that reported for other agricultural weed species of the Salsola genus. Seed dispersal occurred when the senesced plants broke free of their root system to become mobile. Wind driven plants travelled and shed seed over distances of 1.6 to 1247.2 m. Movement of approximately half the plants was restricted to less than 100 m by entanglement with other S. australis plants within the stand. Some seed was retained on the senesced plants, but the germinability of this seed fell to less than 2% in the two month period following plant senescence (i.e. a decline of 79%). Once seed shed into the soil seed bank, anywhere from 32.3 to 80.7% of the viable seeds germinated in the year following seed production, with the rest remaining dormant or degrading. A model of the life cycle of S. australis based on the population ecology data indicated that the dormant seed bank had very little effect on annual seedling recruitment, but seed dispersal from neighbouring populations had a large impact on population growth rate. Therefore, the most successful weed control measures were those that restricted seed dispersal from neighbouring populations, or those that were applied to all populations in the region rather than to a single population. Weed control techniques applied to a single population, without reducing seed dispersal, could not reduce population size.
APA, Harvard, Vancouver, ISO, and other styles
10

Clay, Christine Nicole. "Non-leaf chlorenchyma in Bienertia cycloptera and Suaeda aralocaspica (chenopodiaceae) exhibit single cell C₄ photosynthesis." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Spring2006/c%5Fclay%5F050506.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Chenopodiaceae"

1

Helmut, Freitag, ed. Chenopodiaceae. Dept. of Botany, University of Karachi, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

T︠S︡ėndėė, B. Sulʹkhir: Khuns, ėmchilgėė, ekologiĭn ach kholbogdol bu̇khiĭ amuu taria. Shinzhlėkh Ukhaan Tekhnologiĭn Ikh Surguuliĭn Khėvlėliĭn Uĭldvėr Surgaltyn Tȯv, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mendiola, Mariana Quiroga. La vegetación en un sector de la alta cuenca del Río Iruya (Salta, Argentina): Su distribución, composición y riqueza florística. Herbario MCNS, Facultad de Ciencias Naturales, Universidad Nacional de Salta, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clemants, Steven Earl. Chenopodiaceae and Amaranthaceae of New York State. University of the State of New York, State Education Dept., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ivanov, Vsevolod Vi︠a︡cheslavovich. Opredelitelʹ rasteniĭ Severnogo Prikaspii͡a: Marevye, Lileĭnye. "Nauka," Leningradskoe otd-nie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rilke, Sabrina. Revision der Sektion Salsola s.l. der Gattung Salsola (Chenopodiaceae). E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Datson, Bindy. Samphires in Western Australia: A field guide to chenopodiaceae tribe salicornieae. Govt. of Western Australia, Dept. of Conservation and Land Management, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

P, English J., and Minerals and Energy Research Institute of Western Australia., eds. Understanding the ecophysiology of stress tolerance in Australian Salicorniodideae, especially Halosarcia, to enhance the revegetation of salt-affected lands. MERIWA, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Revision der Gattung Halothamnus (Chenopodiaceae). E. Schweizerbart'sche Verlagsbuchhandlung, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shaw, Nancy L. Germination and seedling establishment of spiny hopsage (Grayia spinosa [Hook.] Moq.). 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chenopodiaceae"

1

Grigore, Marius-Nicusor, Lacramioara Ivanescu, and Constantin Toma. "Chenopodiaceae." In Halophytes: An Integrative Anatomical Study. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05729-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hegnauer, Robert. "Chenopodiaceae." In Chemotaxonomie der Pflanzen. Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-9283-4_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaul, Mohan L. H. "Chenopodiaceae." In Male Sterility in Higher Plants. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83139-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eggli, U. "Chenopodiaceae." In Illustrated Handbook of Succulent Plants: Dicotyledons. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-56316-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kühn, U., V. Bittrich, R. Carolin, et al. "Chenopodiaceae." In Flowering Plants · Dicotyledons. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02899-5_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kafi, Mohammad, and Masoumeh Salehi. "Potentially Domesticable Chenopodiaceae Halophytes of Iran." In Sabkha Ecosystems. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04417-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carlsson, Rolf. "Grain Composition of Amaranthaceae and Chenopodiaceae Species." In Cereals. Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2675-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dinan, Laurence. "Phytoecdysteroids and insect-plant relationships in the Chenopodiaceae." In Proceedings of the 8th International Symposium on Insect-Plant Relationships. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1654-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ye, Huagu, Chuyuan Li, Wencai Ye, et al. "Medicinal Angiosperms of Phytolaccaceae, Chenopodiaceae, Amaranthaceae, and Linaceae." In Common Chinese Materia Medica. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2066-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Teshu, and Vinod Jatav. "Production Technology of Underutilized Vegetables of Chenopodiaceae (Amaranthaceae) Family." In Production Technology of Underutilized Vegetable Crops. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15385-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chenopodiaceae"

1

Dias de Souza, Franciele, Julio César de Souza, and Mariana Carina Frigeri Salaro. "Beta vulgaris INIBE CONTAMINANTES DO PROCESSO FERMENTATIVO?" In XIII SIMPÓSIO DE TECNOLOGIA FATEC JABOTICABAL. FATEC JABOTICABAL, 2023. http://dx.doi.org/10.52138/sitec.v13i1.302.

Full text
Abstract:
A beterraba (Beta vulgaris) é uma hortaliça pertencente família Chenopodiaceae, muito consumida no mundo devido a composição nutricional benéfica. No Brasil a mais consumida é a hortícula, de coloração vermelha, a qual tem sido alvo de estudos por revelar evidências de diversas propriedades como ação antimicrobianas, antitumorais, anti-inflamatórias, citotóxicas e hepatoprotetoras. Em função disso, foi realizado testes de sensibilidade antimicrobiana no extrato vegetal para detectar um possível potencial de uso no processo fermentativo com o objetivo de um controle natural para obtenção do bioetanol. Após a realização do presente estudo foi possível verificar ação antibacteriana em isolados extraídos do processo industrial, sendo necessária a realização da continuidade dos estudos comprovar essa ação ou excluir totalmente essa possibilidade.
APA, Harvard, Vancouver, ISO, and other styles
2

Dorchin, Netta. "Diversification of lasiopterine gall midges (Diptera: Cecidomyiidae) on plants of the genusSuaeda(Chenopodiaceae) – a role for plant life-form and anatomy?" In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.107045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Исяньюлова, Р. Р., Л. М. Ишбирдина, and А. К. Габделхаков. "THE DYNAMICS OF TAXONOMIC COMPOSITION AND SPECTRUM OF VITAL FORMS IN BASHKORTOSTAN URBAN FOREST IN THE CONDITIONS OF CLIMATE CHANGE." In Лесные экосистемы в условиях изменения климата: биологическая продуктивность и дистанционный мониторинг. Crossref, 2019. http://dx.doi.org/10.25686/5711.2019.5.58816.

Full text
Abstract:
В статье представлены результаты проведенных исследований динамики флоры лесопарка им. Лесоводов Башкортостана (далее лесопарк) за 100 лет. По данным метеонаблюдений, в Башкирии за последние 30 лет среднегодовая температура воздуха повысилась на 0,7 0С. Это соответствует общемировым тенденциям. За сто последних лет среднегодовая температура воздуха в России повысилась на 1,29 С, а в мировом масштабе на 0,74. Изучение изменений флористического состава городских парков и лесопарков за продолжительный период позволяет оценить влияние антропогенного трансформирования территории и изменения климатических условий на флору естественных и полуестественных растительных сообществ. Анализ флоры лесопарка проводился на основе собственных исследований авторов 2012-2019 гг. и изучения литературных данных. Выявлено, что флора лесопарка благодаря большому разнообразию экологических условий и типов растительных сообществ (естественные леса, лесные культуры, поляны, опушки, обочины дорожек и площадок, увлажненные местообитания) богата и содержит более 50 видов флоры города Уфы. С начала ХХ века к 2019 году на территории лесопарка зарегистрировано 446 видов растений, относящихся к 71 семейству. За этот период исчезло 10 семейств, 60 родов, 116 видов, появилось 4 семейства, 20 родов, 34 вида. Возросла роль синантропных семейств Brassicaceae, Polygonaceae, Chenopodiaceae, уменьшилось количество видов в семействах Asteraceae, Rosaceae, Scrophulariaceae, Caryophyllaceae, Orchidaceae по причине влияния рекреационной нагрузки и изменения климатических условий. Количество терофитов возросло с 8 до 12 , что отражает процесс терофитизации флоры. The article presents the results of research into the dynamics of flora changes over the past 100 years in Bashkortostan Urban Forest. The analysis of еру weather conditions in Bashkiria over the past 30 years has demonstrated an increase in the average annual temperature of 0.7 degrees, which is in line with the global trends. Over the past hundred years, the average annual air temperature in Russia has increased by 1.29 0 С, by 0.740 С, on a global scale. The research into the changes of floristic composition of urban parks and forest parks over a long period allows us to assess the impact of anthropogenic transformation of the area and climate change on the flora of natural and semi-natural plant communities. The flora of the forest park was analyzed based on research carried out between 2012 and 2019 and published data. Due to extensive variety of environmental conditions and types of plant communities (natural forests, forest crops, glades, edges, roadsides and platforms, moist habitats) the flora of the forest park is rich and contains over 50 of all the species found in Ufa. Since the beginning of the twentieth century to 2019 446 species of plants from 71 plant families have been registered in the forest park. However, over the same period, 10 plant families, 60 genera, 116 species have disappeared, 4 families, 20 genera, 34 species emerged. 55 The importance of synanthropic families Brassicaceae, Polygonaceae, Chenopodiaceae has increased the number of species in plant families Asteraceae, Rosaceae, Scrophulariaceae, Caryophyllaceae, Orchidaceae has decreased due to the influence of recreational load and climate change. The number of therophytes has increased from 8 to 12, thus, remarking the process of flora therophitization .
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography