Academic literature on the topic 'Chern character'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chern character.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chern character"

1

Brzeziński, Tomasz, and Piotr M. Hajac. "The Chern–Galois character." Comptes Rendus Mathematique 338, no. 2 (January 2004): 113–16. http://dx.doi.org/10.1016/j.crma.2003.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

RAMADOSS, AJAY C. "THE BIG CHERN CLASSES AND THE CHERN CHARACTER." International Journal of Mathematics 19, no. 06 (July 2008): 699–746. http://dx.doi.org/10.1142/s0129167x08004856.

Full text
Abstract:
Let X be a smooth scheme over a field of characteristic 0. The Atiyah class of the tangent bundle TX of X equips TX[-1] with the structure of a Lie algebra object in the derived category D +(X) of bounded below complexes of [Formula: see text] modules with coherent cohomology [6]. We lift this structure to that of a Lie algebra object [Formula: see text] in the category of bounded below complexes of [Formula: see text] modules in Theorem 2. The "almost free" Lie algebra [Formula: see text] is equipped with Hochschild coboundary. There is a symmetrization map [Formula: see text] where [Formula: see text] is the complex of polydifferential operators with Hochschild coboundary. We prove a theorem (Theorem 1) that measures how I fails to commute with multiplication. Further, we show that [Formula: see text] is the universal enveloping algebra of [Formula: see text] in D +(X). This is used to interpret the Chern character of a vector bundle E on X as the "character of a representation" (Theorem 4). Theorems 4 and 1 are then exploited to give a formula for the big Chern classes in terms of the components of the Chern character.
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Xuan. "Chern character for matrix factorizations via Chern–Weil." Journal of Algebra 424 (February 2015): 416–47. http://dx.doi.org/10.1016/j.jalgebra.2014.09.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berthomieu, Alain. "A version of smooth K-theory adapted to the total Chern class." Journal of K-Theory 6, no. 2 (October 2010): 197–230. http://dx.doi.org/10.1017/is010009026jkt104.

Full text
Abstract:
AbstractA new model of smooth K0-theory ([5] [1]) is constructed, with the help of the total Chern class (contrary to the theories considered in ]1], [5], [12] and [13] which use the Chern character). The correspondence with the earlier model [1] is obtained by adapting, at the level of transgression forms, the usual formulae which express the Chern character in terms of the Chern classes and vice versa.The advantage of this new model is that it allows constructing Chern classes with values in integral Chern-Simons characters in a natural way: this construction answers a question asked by U. Bunke [4].
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xiaolu. "A Bivariant Chern Character, II." Canadian Journal of Mathematics 44, no. 2 (April 1, 1992): 400–435. http://dx.doi.org/10.4153/cjm-1992-027-3.

Full text
Abstract:
In [Con2] Connes introduced cyclic cohomology HC*(A) for an associative algebra A. When A is a complex algebra he constructed a Chern character for p-summable Fredholm modules over A taking values in HC*(A). As a very special case, when X is a closed C∞-manifold and A = C∞ (X), this construction recovers the usual Chern character, which is a rational isomorphism from the K-homology K0(X) to , the even dimensional deRham homology of X.
APA, Harvard, Vancouver, ISO, and other styles
6

林, 奕武. "Orbifold Bundle and Chern Character." Pure Mathematics 09, no. 05 (2019): 627–31. http://dx.doi.org/10.12677/pm.2019.95083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gillet, H., and C. Soulé. "On the arithmetic Chern character." Annales de la faculté des sciences de Toulouse Mathématiques 23, no. 3 (2014): 611–19. http://dx.doi.org/10.5802/afst.1418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nistor, Victor. "A Bivariant Chern--Connes Character." Annals of Mathematics 138, no. 3 (November 1993): 555. http://dx.doi.org/10.2307/2946556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quillen, D. "Superconnections and the Chern character." Topology 24, no. 2 (1985): 89–95. http://dx.doi.org/10.1016/0040-9383(85)90028-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Quillen, Daniel. "Superconnections and the Chern character." Topology 24, no. 1 (1985): 89–95. http://dx.doi.org/10.1016/0040-9383(85)90047-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chern character"

1

Platt, David. "Chern Character for Global Matrix Factorizations." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13244.

Full text
Abstract:
We give a formula for the Chern character on the DG category of global matrix factorizations on a smooth scheme $X$ with superpotential $w\in \Gamma(\O_X)$. Our formula takes values in a Cech model for Hochschild homology. Our methods may also be adapted to get an explicit formula for the Chern character for perfect complexes of sheaves on $X$ taking values in right derived global sections of the De-Rham algebra. Along the way we prove that the DG version of the Chern Character coincides with the classical one for perfect complexes.
APA, Harvard, Vancouver, ISO, and other styles
2

Dumitraşcu, Constantin Dorin. "The odd chern character and obstruction theory /." This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-05092009-040330/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dumitra?cu, Constantin Dorin. "The odd chern character and obstruction theory." Thesis, Virginia Tech, 1995. http://hdl.handle.net/10919/42530.

Full text
Abstract:

Having as starting point a formula described in the paper of Baum & Douglas, [BmDg] the odd-degree component of the Chern character is is analyzed. Our presentation uses the obstruction theory definition Chern characteristic classes in order to emphasize the connections with the even-degree component (see Theorem 4.3.1) and leads to a natural justification of the fundamental property of the Chern character, i.e. of being a ring homomorphism. The reader is assumed to have some background in topological Î -theory and algebraic topology.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Wenran. "Caractère de Chern en cohomologie basique équivariante." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS026/document.

Full text
Abstract:
Depuis 1980, il est un problème ouvert de donner des formules cohomologiques pour l'indice basique d'un opérateur différentiel basique transversalement elliptique sur un fibré vectoriel au dessus d'une variété feuilletée. Dans les années 1990, El Kacimi-Alaoui a proposé d'utiliser la théorie de Molino pour étudier cette indice. Molino a montré qu'à tout feuilletage Riemannien transversalement orienté, nous pouvons associer une variété, appelée variété basique, qui est munie d'une action du groupe orthogonal, El Kacimi-Alaoui a montré comment associer à l'opérateur basique transversalement elliptique un opérateur sur un fibré vectoriel, appelé fibré utile, au dessus de la variété basique.L'idée est d'obtenir la formule cohomologique espérée à partir des résultats sur l'opérateur sur le fibré utile. Cette thèse est une première étape dans cette direction. Lorsque le feuilletage Riemannien est de Killing, Goertsches et Töben ont remarqué qu'il existe un isomorphisme cohomologique naturel entre la cohomologie basique équivariante du feuilletage de Killing et la cohomologie équivariante de la variété basique.Le résultat principal de cette thèse est de donner une réalisation géométrique de l'isomorphisme cohomologique ci-dessus à travers les caractères de Chern sous certaine Hypothèse
From 1980s, it is an open problem of proposing cohomologic formula for the basic index of a transversally elliptic basic differential operator on a vector bundle over a foliated manifold. In 1990s, El Kacimi-Alaoui has proprosed to use the Molino theory for study this index. Molino has proved that to every transversally oriented Riemannien foliation, we can associate a manifold, called basique manifold, which is équiped with an action of orthogonal group, El Kacimi-Alaoui has shown how to associate a transversally elliptic basic differential operator an operator on a vector bundle, called useful bundle, over the basique manifold.The idea is to obtain the desired cohomologic formula from résultats about the operator on the useful bundle. This thesis is a first step in this direction. While the Riemannien foliation is Killing, Goertsches et Töben have remarked that there exists a naturel cohomologic isomorphism between the equivariant basique cohomology of the Killing foliation and the equivariant cohomology of the basique manifold.The principal result of this thesis is the geometric realisation of the cohomologic isomorphism by Chern characters under some hypothèses
APA, Harvard, Vancouver, ISO, and other styles
5

Taher, Chadi. "Calculating the parabolic chern character of a locally abelain parabolic bundle : the chern invariants for parabolic bundles at multiple points." Nice, 2011. http://www.theses.fr/2011NICE4013.

Full text
Abstract:
In this thesis we calculate the parabolic Chern character of a bundle with locally abelian parabolic structure on a smooth strict normal crossings divisor, using the definition in terms of Deligne-Mumford stacks. We obtain explicit formulas for ch_1, ch_2 and ch_3, and verify that these correspond to the formulas given by Borne for ch_1 and Mochizuki for ch_2. The second part of the thesis we take D subset in X is a curve with multiple points in a surface, a parabolic bundle defined on (X, D) away from the singularities can be extended in several ways to a parabolic bundle on a resolution of singularities. We investigate the possible parabolic Chern classes for these extensions.
APA, Harvard, Vancouver, ISO, and other styles
6

Schlarmann, Eric [Verfasser], and Bernhard [Akademischer Betreuer] Hanke. "A cocycle model for the equivariant Chern character and differential equivariant K-theory / Eric Schlarmann ; Betreuer: Bernhard Hanke." Augsburg : Universität Augsburg, 2020. http://d-nb.info/1219852554/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dias, David Pires. "O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082008-164858/.

Full text
Abstract:
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações).
Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
APA, Harvard, Vancouver, ISO, and other styles
8

Savin, Anton, Bert-Wolfgang Schulze, and Boris Sternin. "On the invariant index formulas for spectral boundary value problems." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2528/.

Full text
Abstract:
In the paper we study the possibility to represent the index formula for spectral boundary value problems as a sum of two terms, the first one being homotopy invariant of the principal symbol, while the second depends on the conormal symbol of the problem only. The answer is given in analytical, as well as in topological terms.
APA, Harvard, Vancouver, ISO, and other styles
9

Pauly, Markus [Verfasser]. "Chern characters for matrix factorizations / Markus Pauly." Mainz : Universitätsbibliothek Mainz, 2019. http://d-nb.info/1187681229/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Yeping. "Limites adiabatiques, fibrations holomorphes plates et théorème de R.R.G." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS264/document.

Full text
Abstract:
Cette thèse est faite de deux parties. La première partie est un article rédigé conjointementavec Martin Puchol et Jialin Zhu. La deuxième partie est une série de résultats obtenus par moi-même liés au théorème de Riemann-Roch-Grothendieck pour les fibrés vectoriels plats. Dans la première partie, nous donnons une preuve analytique d'un résultat décrivant le comportement de la torsion analytique en théorie de de Rham lorsque la variété considérée est séparée en deux par une hypersurface. Plus précisément, nous donnons une formule liant la torsion analytique de la variété entière aux torsions analytiques associées aux variétés à bord avec des conditions limites relative ou absolue le long de l'hypersurface. Dans la deuxième partie de cette thèse, nous raffinons les résultats de Bismut-Lott pour les images directes des fibrés vectoriels plats au cas où le fibré vectoriel plat en question est lui-même la cohomologie holomorphe d'un fibré vectoriel le long d'une fibration plate à fibres complexes. Dans ce contexte, nous donnons une formule de Riemann-Roch-Grothendieck dans laquelle la classe de Todd du fibré tangent relatif apparaît explicitement. En remplaçant les classes de cohomologie par des formes explicites qui les représentent en théorie de Chern-Weil, nous généralisons ainsi des constructions de Bismut-Lott
This thesis consists of two parts. The first part is an article written jointly with Martin Puchol and Jialin Zhu, the second part is a series of results obtained by myself in connection with the Riemann-Roch-Grothendieck theorem for flat vector bundles. In the first part, we give an analytic approach to the behavior of classical Ray-Singer analytic torsion in de Rham theory when a manifold is separated along a hypersurface. More precisely, we give a formula relating the analytic torsion of the full manifold, and the analytic torsion associated with relative or absolute boundary conditions along the hypersurface. In the second part of this thesis, we refine the results of Bismut-Lott on direct images of flat vector bundles to the case where the considered flat vector bundle is itself the fiberwise holomorphic cohomology of a vector bundle along a flat fibration by complex manifolds. In this context, we give a formula of Riemann-Roch-Grothendieck in which the Todd class of the relative holomorphic tangent bundle appears explicitly. By replacing cohomology classes by explicit differential forms in Chern-Weil theory, we extend the constructions of Bismut-Lott in this context
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Chern character"

1

1944-, Moscovici Henri, and Pflaum M. (Markus), eds. Connes-Chern character for manifolds with boundary and eta cochains. Providence, Rhode Island: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

B, Gilmour H. Cher and Cher alike. New York: Archway, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A loyal character dancer. Rearsby: W F Howes, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiaolong, Qiu. A loyal character dancer. New York: Soho Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

A loyal character dancer. New York: Soho Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yan, Hai, ed. A Q chen di. Tianjin Shi: Tianjin ren min chu ban she, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Copyright Paperback Collection (Library of Congress), ed. True blue Hawaii. New York: Archway, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yueyue, Huang, ed. Chen mo de ri gui: Ruling passion. Beijing: Xin xing chu ban she, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cussler, Clive. Chen chuan die ji. Taibei Shi: Huang guan chu ban she, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The Mao case: An Inspector Chen novel. New York: Minotaur Books, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Chern character"

1

Loday, Jean-Louis. "Chern Character." In Grundlehren der mathematischen Wissenschaften, 257–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-11389-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Loday, Jean-Louis. "Chern Character." In Grundlehren der mathematischen Wissenschaften, 253–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-21739-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Toën, Bertrand, and Gabriele Vezzosi. "Chern Character, Loop Spaces and Derived Algebraic Geometry." In Algebraic Topology, 331–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01200-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cuntz, Joachim. "Cyclic Theory and the Bivariant Chern-Connes Character." In Lecture Notes in Mathematics, 73–135. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39702-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schechtman, V. V. "On the delooping of Chern character and Adams operations." In K-Theory, Arithmetic and Geometry, 265–319. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cuntz, Joachim. "Cyclic Theory, Bivariant K-Theory and the Bivariant Chern-Connes Character." In Encyclopaedia of Mathematical Sciences, 1–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06444-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berline, Nicole, and Michèle Vergne. "The equivariant Chern character and index of G-invariant operators. Lectures at CIME, Venise 1992." In Lecture Notes in Mathematics, 157–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/bfb0073468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Buchweitz, Ragnar-Olaf, and Hubert Flenner. "The Atiyah-Chern character yields the semiregularity map as well as the infinitesimal Abel-Jacobi map." In CRM Proceedings and Lecture Notes, 33–46. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/crmp/024/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cortiñas, G., and C. Weibel. "Relative Chern Characters for Nilpotent Ideals." In Algebraic Topology, 61–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01200-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lück, Wolfgang, and Bob Oliver. "Chern characters for the equivariant K-theory of proper G-CW-complexes." In Progress in Mathematics, 217–47. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8312-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chern character"

1

Teleman, Nicolae. "Direct Connections and Chern Character." In Proceedings of the 2005 Marseille Singularity School and Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812707499_0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Wowo, Yihui Yang, Wei You, and Yunlong Peng. "Morphological analysis: to evaluate the pattern of Residential building based on wind performance." In 24th ISUF 2017 - City and Territory in the Globalization Age. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/isuf2017.2017.5977.

Full text
Abstract:
Yihui Yang, Wei You, Yunlong Peng, Wowo Ding*, School of Architecture and Urban Planning, Nanjing University, No.22 Hankou Rd, Jiangsu 210093, P.R.China. E-mail:yi_hui_yang@outlook.com, youwei@nju.edu.cn, 249626020@qq.com, dww@nju.edu.cn,Phone number:15850561165, 13852293251, +86 25 83593020, Keyword: Residential plot, Apartment pattern, performance evaluation, wind environment Conference topics and scale: Tools of analysis in urban morphology Residential morphological patterns are reflection of people's living habits and tradition, local climate and building regulations, so that one of those factors could be studied through in order to understand residential morphological patterns. Based upon our previous study, we do know that in China living habits and local climate mainly influence the shape of residential buildings and apartment patterns, but we do not know whether the pattern of residential plots determined by FAR and sunshine hours are suitable for wind environment related to residential environmental quality. Therefore, it is very significant to evaluate wind environment within residential plots based on the apartment pattern controlled by various building codes. Our study focuses on the pattern of Slab apartments in Nanjing, which are mainly used in China, and selects 40 residential slices with different plot shapes, plot FAR, building heights and sizes. Based upon MATLAB, we have got all geometrical data between buildings among these slices to identify the spatial pattern character of each residential plot. Through evaluating wind environment of these slices by simulation we can obtain wind speed, pressure and age of air and choose the pattern of age of air as the main evaluation factor of wind performance. Correlation analysis will be made between the apartment patterns and pattern of age of air, by doing so, each typical space between buildings will be evaluated. Our study will reveal the relevance of apartment pattern and wind environment, which can be used to support and improve design in the future. References(95 words) Oke. T. R (1988) ‘Street Design and Urban Canopy Layer Climate’, Energy and Buildings11, 103-113. Wowo Ding, Youpei Hu, Pingping Dou (2012) ‘Study on Interrelationship between Urban Pattern and Urban Microclimate’, Architectural Journal 527, 16-21. Edward Ng, Chao Yuan, Liang Chen, Chao Ren, Jimmy C.H. Fung (2011) ‘Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong’, Landscape and Urban Planning101, 59-74. Youpei Hu (2014) ‘A Performance-Oriented Study on the Morphological Optimization in a High Density Area Concerning Urban Heat Island Effect’, Architectural Journal 557, 23-29. *corresponding author
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography