To see the other types of publications on this topic, follow the link: Chern insulator.

Dissertations / Theses on the topic 'Chern insulator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Chern insulator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Repellin, Cécile. "Numerical study of fractional topological insulators." Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0028/document.

Full text
Abstract:
Les isolants topologiques sont des isolants qui ne peuvent être différenciés des isolants atomiques que par une grandeur physique non locale appelée invariant topologique. L'effet Hall quantique et son équivalent sans champ magnétique l'isolant de Chern sont des exemples d'isolants topologiques. En présence d'interactions fortes, des excitations exotiques appelées anyons peuvent apparaître dans les isolants topologiques. L'effet Hall quantique fractionnaire (EHQF) est la seule réalisation expérimentale connue de ces phases. Dans ce manuscrit, nous étudions numériquement les conditions d'émergence de différents isolants topologiques fractionnaires. Nous nous concentrons d'abord sur l'étude de l'EHQF sur le tore. Nous introduisons une méthode de construction projective des états EHQF les plus exotiques complémentaire par rapport aux méthodes existantes. Nous étudions les excitations de basse énergie sur le tore de deux états EHQF, les états de Laughlin et de Moore-Read. Nous proposons des fonctions d'onde pour les décrire, et vérifions leur validité numériquement. Grâce à cette description, nous caractérisons les excitations de basse énergie de l'état de Laughlin dans les isolants de Chern. Nous démontrons également la stabilité d'autres états de l'EHQF dans les isolants de Chern, tels que les états de fermions composites, Halperin et NASS. Nous explorons ensuite des phases fractionnaires sans équivallent dans la physique de l'EHQF, d'abord en choisissant un modèle dont l'invariant topologique a une valeur plus élevée, puis en imposant au système la conservation de la symétrie par renversement du temps, ce qui modifie la nature de l'invariant topologique
Topological insulators are band insulators which are fundamentally different from atomic insulators. Only a non-local quantity called topological invariant can distinguish these two phases. The quantum Hall effect is the first example of a topological insulator, but the same phase can arise in the absence of a magnetic field, and is called a Chern insulator. In the presence of strong interactions, topological insulators may host exotic excitations called anyons. The fractional quantum Hall effect is the only experimentally realized example of such phase. In this manuscript, we study the conditions of emergence of different types of fractional topological insulators, using numerical simulations. We first look at the fractional quantum Hall effect on the torus. We introduce a new projective construction of exotic quantum Hall states that complements the existing construction. We study the low energy excitations on the torus of two of the most emblematic quantum Hall states, the Laughlin and Moore-Read states. We propose and validate model wave functions to describe them. We apply this knowledge to characterize the excitations of the Laughlin state in Chern insulators. We show the stability of other fractional quantum Hall states in Chern insulators, the composite fermion, Halperin and NASS states. We explore the physics of fractional phases with no equivalent in a quantum Hall system, using two different strategies: first by choosing a model with a higher value of the topological invariant, second by adding time-reversal symmetry, which changes the nature of the topological invariant
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, Haoming. "Conductivity behavior of LaNiO3- and LaMnO3- based thin film superlattices." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-224437.

Full text
Abstract:
The present work covers the fabrication and electrical and magnetic investigation of LaNiO3- and LaMnO3- based superlattices (SL). In recent years, several interesting theoretical predictions have been made in these SLs, for example, Mott insulators, metal-insulator transitions, superconductivity, topological insulators, and Chern insulators. Motivated by the promising theoretical predictions, four kinds of SLs with different designed structures and orientations were systematically studied in this thesis. The samples were grown by pulsed laser deposition with in-situ reflection high-energy electron diffraction to monitor the two-dimensional layer-by-layer growth process. In order to ensure the high-quality of SLs, growth parameters were optimised. Characteristic methods like X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used. These measurements proved the high-quality of the SLs and provided the basis for electrical and magnetic measurements. The first studied SL is the (001)-oriented LaNiO3/LaAlO3 SL, which was predicted as a superconductor in theory. Temperature-dependent resistivity measurements revealed a metal-insulator transition by lowering the dimensionality of the LaNiO3 layers in the SLs from three dimensions to two dimensions. The second studied SL is the (111)-oriented LaNiO3/LaAlO3 SL, which was predicted as a topological insulator in theory. The polarity-controlled conductivity was observed and the intrinsic conductivity mechanisms were discussed by means of appropriate modeling. The third studied SL is LaMnO3/LaAlO3 SL, which was predicted as a Chern insulator in theory. By lowering the temperature, a paramagnetic-ferromagnetic phase transition and a thermal activated behavior were observed in the SLs. The last studied SL is the LaNiO3/LaMnO3 SL, in which an exchange bias effect was expected. The studies reveal the exchange bias exists in three kinds of SLs with different orientations.
APA, Harvard, Vancouver, ISO, and other styles
3

Demion, Arnaud. "Transport électronique dans le graphène et les isolants topologiques 2D en présence de désordre magnétique." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4349.

Full text
Abstract:
Dans cette thèse, nous étudions l’effet du désordre magnétique sur les propriétés de transport électronique du graphène et des isolants topologiques 2D de type HgTe. Le graphène et les isolants topologiques sont des matériaux dont les excitations électroniques sont assimilées à des fermions de Dirac sans masse. L’influence des impuretés magnétiques sur les propriétés de transport du graphène est étudiée dans le régime de forts champs électriques. En conséquence de la production de paires électron-trou, la réponse devient non linéaire et dépend de la polarisation magnétique. Nous étudions une transition entre un isolant topologique bi-dimensionnel conducteur, caractérisé par une conductance G = 2 (en quantum de conductance) et un isolant de Chern avec G = 1, induite par des impuretés magnétiques polarisées
In this thesis, we study the effect of a magnetic disorder on the electronic transport properties of graphene and HgTe-type 2D topological insulators. Graphene and topological insulators are materials whose electronic excitations are treated as massless Dirac fermions.The influence of magnetic impurities on the transport properties of graphene is investigated in the regime of strong applied electric fields. As a result of electron-hole pair creation, the response becomes nonlinear and dependent on the magnetic polarization.We investigate a transition between a two-dimensional topological insulator conduction state, characterized by a conductance G = 2 (in conductance quantum) and a Chern insulator with G = 1, induced by polarized magnetic impurities
APA, Harvard, Vancouver, ISO, and other styles
4

Kunst, Flore Kiki. "Topology Meets Frustration : Exact Solutions for Topological Surface States on Geometrically Frustrated Lattices." Licentiate thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-150281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Motruk, Johannes. "Characterization of topological phases in models of interacting fermions." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-206990.

Full text
Abstract:
The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z_N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z_N symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i)~the Hall conductivity, (ii)~the spectral flow and level counting in the ES, (iii)~the topological entanglement entropy, and (iv)~the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced by next-nearest neighbor interactions has been predicted by mean field theory. However, various subsequent studies challenged this picture and it was still unclear whether the CI would survive quantum fluctuations. We therefore map out the phase diagram of the model as a function of the interactions on an infinite cylinder with DMRG and find evidence for the absence of the CI phase. However, we report the detection of two novel charge-ordered phases and corroborate the existence of the remaining phases that had been predicted in mean field theory. Furthermore, we characterize the transitions between the various phases by studying the behavior of correlation length and entanglement entropy at the phase boundaries. Finally, we develop an improvement to the DMRG algorithm for fermionic lattice models on cylinders. By using a real space representation in the direction along the cylinder and a real space representation in the perpendicular direction, we are able to use the momentum around the cylinder as conserved quantity to reduce computational costs. We benchmark the method by studying the interacting Hofstadter model and report a considerable speedup in computation time and a severely reduced memory usage.
APA, Harvard, Vancouver, ISO, and other styles
6

Caio, Marcello Davide. "Non-equilibrium dynamics of Chern insulators." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/nonequilibrium-dynamics-of-chern-insulators(32b36d8e-f927-4224-999c-3170f749f213).html.

Full text
Abstract:
Topological states of matter exhibit a wealth of novel properties including the exact quantisation of macroscopic observables and the presence of edge states. In this thesis, we study the non-equilibrium dynamics of a class of topological phases, known as Chern insulators. By focusing on the Haldane model, we study quenches between the topological and non-topological phases, and the dynamics induced on physical observables. A notable feature is that the Chern number, calculated for an infinite system, is unchanged under the dynamics following such a quench. However, in finite-size geometries, the initial and final Hamiltonians are distinguished by the presence or absence of edge states. We study the edge excitations and describe their impact on the dynamics of the edge currents and the magnetisation. We show that, following a quantum quench, the edge currents relax towards new steady-state values, and that there is light-cone spreading of the currents into the interior of the sample. The late-time behaviour of the edge currents, after multiple traversals of the sample, is captured by a Generalised Gibbs Ensemble. We further provide an analysis of the Hall response following a quantum quench in an isolated system, with explicit results for the Haldane model. We show that the Hall conductance is no longer related to the Chern number in the post-quench state, in contrast to the equilibrium case. We also discuss the effects of generic open boundary conditions and confinement potentials. Finally, we discuss the impact of disorder on the phases of the Haldane model, both in and out of equilibrium. We conclude with a discussion of ongoing work on the non-equilibrium dynamics of the entanglement spectrum of the Haldane model, and with prospects for further research. The results presented in Chapters 2 and 3 are published in Refs [1, 2]. The results in Chapter 4 are currently in preparation for publication [3].
APA, Harvard, Vancouver, ISO, and other styles
7

Harper, Fenner Thomas Pearson. "The Hofstadter model and other fractional Chern insulators." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:4c4df19a-9bab-43c4-a845-ae170868913f.

Full text
Abstract:
Fractional Chern insulators (FCIs) are strongly correlated, topological phases of matter that may exist on a lattice in the presence of broken time-reversal symmetry. This thesis explores the link between FCI states and the quantum Hall effect of the continuum in the context of the Hofstadter model, using a combination of nonperturbative, perturbative and numerical methods. We draw links to experimental realisations of topological phases, and go on to consider a novel way of generating general FCI states using strong interactions on a lattice. We begin by considering the Hofstadter model at weak field, where we use a semiclassical analysis to obtain nonperturbative expressions for the band structure and Berry curvature of the single-particle eigenstates. We use this calculation to justify a perturbative approximation, an approach that we extend to the case when the amount of flux per plaquette is close to a rational fraction with a small denominator. We find that eigenstates of the system are single- or multicomponent wavefunctions that connect smoothly to the Landau levels of the continuum. The perturbative corrections to these are higher Landau level contributions that break rotational invariance and allow the perturbed states to adopt the symmetry of the lattice. In the presence of interactions, this approach allows for the calculation of generalised Haldane pseudopotentials, and in turn, the many-body properties of the system. The method is sufficiently general that it can apply to a wide variety of lattices, interactions, and magnetic field strengths. We present numerical simulations of the Hofstadter model relevant to its recent experimental realisation using optical lattices, noting the additional complications that arise in the presence of an external trap. Finally, we show that even if a noninteracting system is topologically trivial, it is possible to stabilise an FCI state by introducing strong interactions that break time-reversal symmetry. We show that this method may also be used to create a (time-reversal symmetric) fractional topological insulator, and provide numerical evidence to support our argument.
APA, Harvard, Vancouver, ISO, and other styles
8

Sticlet, Doru. "Edge states in Chern Insulators and Majorana fermions in topological superconductors." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112318/document.

Full text
Abstract:
Cette thèse poursuit deux directions dans le domaine des isolants et supraconducteurs topologiques.Dans la première partie de la thèse nous étudions des isolants en deux dimensions sur réseau, présentant un effet Hall quantique anormal (c'est-à-dire en l'absence d'un champ magnétique externe), induit par la présence d'un flux magnétique inhomogène dans la maille. Le système possède des phase isolantes caractérisés par un invariant topologique, le nombre de Chern, qui est lié à la conductance portée par le bord états. Nous montrons que les modèles à deux bandes admettent des phase à nombre de Chern arbitraire, ou, de façon équivalente, un nombre arbitraire d'états de bord, quand on augmente la portée des couplages sur réseau. Cette compréhension est rendue possible grâce à la démonstration d'une formule montrant que le nombre de Chern d'une bande dépend de certains propriétés d'un ensemble discret de points dans la zone de Brillouin, les points de Dirac en l'absence du gap. Ces idées sont rendues plus concrètes dans l'étude du modèle de Haldane et dans la création d'un modèle artificiel avec cinq phases de Chern dont les états de bord sont déterminés en détail. La deuxième partie de la thèse porte sur les supraconducteurs topologiques unidimensionnels qui exhibent des états exotiques d'énergie zéro: les états liés de Majorana. Nous étudions ici la présence de fermions de Majorana dans des fils de semiconducteurs à fort couplage spin-orbite sous l’effet de proximité d'un supraconducteur d'onde s. Nous montrons que la polarisation de spin des degrés de liberté électroniques dans la fonction d'onde Majorana dépend du poids relatif du couplage spin-orbite Dresselhaus et Rashba. Nous étudions également les fermions de Majorana dans des jonctions linéaires longues supraconducteur-normal et supraconducteur-normal-supraconducteur (SNS) où ils apparaissent comme des états étendus dans la jonction normale. En outre, la géométrie d'anneaux peut être mise en correspondance avec une jonction SNS, et, sous l'action de gradients dans la phase supraconductrice, des fermions Majorana étendus se forment encore à l'intérieur du fil normal. Enfin, un modèle à deux bandes avec des fermions de Majorana multiples est traité. Nous démontrons que les jonctions Josephson construites à partir de ce modèle maintiennent l'une des signatures remarquables des fermions de Majorana, à savoir la périodicité 4π de l'effet Josephson fractionnaire
This thesis follows two threads in the field of topological insulators and superconductors. The first part of the thesis is devoted to the study of two-dimensional quantum anomalous Hall insulators on a lattice, in the absence of an external magnetic flux, but induced by an inhomogeneous flux in the unit cell. The system possesses several gapped phases characterized by a topological invariant, the Chern number, that is related to the conductance carried by the edge states. Here we show that two-band models admit an arbitrary large number of Chern phases or, equivalently, an arbitrary number of edge states, by adding hopping between distant neighbor sites. This result is based on a formula proving that the Chern number of a band depends on certain properties of a finite set of points in the Brillouin zone, i.e. the Dirac points for the gapless system. These ideas are made more concrete in the study of a modified Haldane model, and also by creating an artificial model with five Chern phases, whose edge states are determined in detail. The second part of the thesis focuses on one-dimensional topological superconductors with exotic zero-energy edge states: the Majorana bound states. Here we investigate the presence of Majorana fermions in spin-orbit coupled semiconducting wire in proximity to an s-wave superconductor. We show that the spin-polarization of the electronic degrees of freedom in the Majorana wave function depends on the relative weight of Dresselhaus and Rashba spin-orbit couplings. We also investigate Majorana fermions in linear superconductor-normal and long superconductor-normal-superconductor (SNS) junctions where they appear as extended states in the normal junction. Furthermore, ring geometries can be mapped to an SNS junction, and, we have shown that under the action of superconducting phases gradients, extended Majorana fermions can form again inside the normal wire. Finally a two-band model with multiple Majorana fermions is treated and we show that Josephson junctions built from this model maintain the 4π periodicity for the fractional Josephson effect, one of Majorana fermions signatures
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Mengsu. "Exact diagonalization study of strongly correlated topological quantum states." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/87436.

Full text
Abstract:
A rich variety of phases can exist in quantum systems. For example, the fractional quantum Hall states have persistent topological characteristics that derive from strong interaction. This thesis uses the exact diagonalization method to investigate quantum lattice models with strong interaction. Our research topics revolve around quantum phase transitions between novel phases. The goal is to find the best schemes for realizing these novel phases in experiments. We studied the fractional Chern insulator and its transition to uni-directional stripes of particles. In addition, we studied topological Mott insulators with spontaneous time-reversal symmetry breaking induced by interaction. We also studied emergent kinetics in one-dimensional lattices with spin-orbital coupling. The exact diagonalization method and its implementation for studying these systems can easily be applied to study other strongly correlated systems.
PHD
Topological quantum states are a new type of quantum state that have properties that cannot be described by local order parameters. These types of states were first discovered in the 1980s with the integer quantum Hall effect and the fractional quantum Hall effect. In the 2000s, the predicted and experimentally discovered topological insulators triggered studies of new topological quantum states. Studies of strongly correlated systems have been a parallel research topic in condensed matter physics. When combining topological systems with strong correlation, the resulting systems can have novel properties that emerge, such as fractional charge. This thesis summarizes our work that uses the exact diagonalization method to study topological states with strong interaction.
APA, Harvard, Vancouver, ISO, and other styles
10

Dos, Santos Luiz Henrique Bravo. "Topological Properties of Interacting Fermionic Systems." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10195.

Full text
Abstract:
This thesis is a study of three categories of problems in fermionic systems for which topology plays an important role: (i) The properties of zero modes arising in systems of fermions interacting with a bosonic background, with a special focus on Majorana modes arising in the superconductor state. We propose a method for counting Majorana modes and we study a mechanism for controlling their number parity in lattice systems, two questions that are of relevance to the protection of quantum bits. (ii) The study of dispersionless bands in two dimensions as a platform for correlated physics, where it is shown the possibility of stabilizing the fractional quantum Hall effect in a flat band with Chern number. (iii) The extension of the hierarchy of quantum Hall fluids to the case of time-reversal symmetric incompressible ground states describing a phase of strongly interacting topological insulators in two dimensions.
Physics
APA, Harvard, Vancouver, ISO, and other styles
11

Regnault, Nicolas. "Spectroscopie d'intrication et son application aux phases de l'effet Hall quantique fractionnaire." Habilitation à diriger des recherches, Ecole Normale Supérieure de Paris - ENS Paris, 2013. http://tel.archives-ouvertes.fr/tel-00967692.

Full text
Abstract:
La spectroscopie d'intrication, initialement introduite par Li et Haldane dans le contexte de l'effet Hall quantique fractionnaire, a suscité un large éventail de travaux. Le spectre d'intrication est le spectre de la matrice de densité réduite, quand on partitionne le système en deux. Pour de nombreux systèmes quantiques, il révèle une caractéristique unique : calculé uniquement à partir de la fonction d'onde de l'état fondamental, le spectre d'intrication donne accès à la physique des excitations de bord. Dans ce manuscrit, nous donnons un apercu de la spectroscopie d'intrication. Nous introduisons les concepts de base dans le cas des chaînes de spins quantiques. Nous présentons une étude approfondie des spectres d'intrication appliqués aux phases de l'effet Hall quantique fractionnaire, montrant quel type d'information est encodé dans l'état fondamental et comment les différentes facons de partitionner le système permettent de sonder différents types d'excitation. Comme application pratique de cette technique, nous discutons de la manière dont cette technique peut aider à faire la distinction entre les différentes phases qui émergent dans les isolants de Chern en interaction forte.
APA, Harvard, Vancouver, ISO, and other styles
12

Abdalla, Leonardo Batoni. "Propriedades eletrônicas dos isolantes topológicos." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-17072015-140214/.

Full text
Abstract:
Na busca de um melhor entendimento das propriedades eletrônicas e magnéticas dos isolantes topológicos nos deparamos com uma das suas caraterísticas mais marcantes, a existência de estados de superfície metálicos com textura helicoidal de spin os quais são protegidos de impurezas não magnéticas. Na superfície estes canais de spin possuem um potencial enorme para aplicações em dispositivos spintrônicos. Muito há para se fazer e o tratamento via cálculos de primeiros princípios por simulações permite um caráter preditivo que corrobora na elucidação de fenômenos físicos via análises experimentais. Nesse trabalho analisamos as propriedades eletrônicas de isolantes topológicos tais como: (Bi,Sb)$_2$(Te,Se)$_3$, Germaneno e Germaneno funcionalizado. Cálculos baseados em DFT evidenciam a importância das separações entre as camadas de Van der Waals nos materiais Bi$_2$Se$_3$ e Bi$_2$Te$_3$. Mostramos que devido a falhas de empilhamento, pequenas oscilações no eixo de QLs (\\textit{Quintuple Layers}) podem gerar um desacoplamento dos cones de Dirac, além de criar estados metálicos na fase \\textit{bulk} de Bi$_2$Te$_3$. Em se tratando do Bi$_2$Se$_3$ um estudo sistemático dos efeitos de impurezas de metais de transição foi realizado. Observamos que há quebra de degenerescência do cone de Dirac se houver magnetização em quaisquer dos eixos. Além disso se a magnetização permanecer no plano, além de uma pequena quebra de degenerescência, há um deslocamento do mesmo para outro ponto da rede recíproca. No entanto, se a magnetização apontar para fora do plano a quebra ocorre no próprio ponto $\\Gamma$, porém de maneira mais intensa. Importante enfatizar que além de mapear os sítios com suas orientações magnéticas de menor energia observamos que a quebra da degenerescência está diretamente relacionada com a geometria local da impureza. Isso proporciona imagens de STM distintas para cada sítio possível, permitindo que um experimental localize cada situação no laboratório. Estudamos ainda a transição topológica na liga (Bi$_x$Sb$_{1-x}$)$_2$Se$_3$, onde identificamos um isolante trivial e topológico para $x=0$ e $x=1$. Apesar de óbvia a existência de tal transição, detalhes importantes ainda não estão esclarecidos. Concluímos que a dopagem com impurezas não magnéticas proporciona uma boa técnica para manipulação e engenharia de cone nesta família de materiais, de forma que dependendo da faixa de dopagem podemos eliminar a condutividade que advém do \\textit{bulk}. Finalmente estudamos superfícies de Germaneno e Germaneno funcionalizado com halogênios. Usando uma funcionalização assimétrica e com a avalição do invariante topológico $Z_2$ notamos que o material Ge-I-H é um isolante topológico podendo ser aplicado na elaboração de dispositivos baseados em spin.
In the search of a better understanding of the electronic and magnetic properties of topological insulators we are faced with one of its most striking features, the existence of metallic surface states with helical spin texture which are protected from non-magnetic impurities. On the surface these spin channels allows a huge potential for applications in spintronic devices. There is much to do and treating calculations via \\textit{Ab initio} simulations allows us a predictive character that corroborates the elucidation of physical phenomena through experimental analysis. In this work we analyze the electronic properties of topological insulators such as: (Bi, Sb)$_2$(Te, Se)$_3$, Germanene and functionalized Germanene. Calculations based on DFT show the importance of the separation from interlayers of Van der Waals in materials like Bi$_2$Se$_3$ and Bi$_2$Te$_3$. We show that due to stacking faults, small oscillations in the QLs axis (\\textit{Quintuple Layers}) can generate a decoupling of the Dirac cones and create metal states in the bulk phase Bi$_2$Te$_3$. Regarding the Bi$_2$Se$_3$ a systematic study of the effects of transition metal impurities was performed. We observed that there is a degeneracy lift of the Dirac cone if there is any magnetization on any axis. If the magnetization remains in plane, we observe a small shift to another reciprocal lattice point. However, if the magnetization is pointing out of the plane a lifting in energy occurs at the very $ \\Gamma $ point, but in a more intense way. It is important to emphasize that in addition to mapping the sites with their magnetic orientations of lower energy we saw that the lifting in energy is directly related to the local geometry of the impurity. This provides distinct STM images for each possible site, allowing an experimental to locate each situation in the laboratory. We also studied the topological transition in the alloy (Bi$_x$Sb$_{1-x}$)$_ 2$Se$_3$, where we identify a trivial and topological insulator for $x = 0$ and $x = 1$. Despite the obvious existence of such a transition, important details remain unclear. We conclude that doping with non-magnetic impurities provides a good technique for handling and cone engineering this family of materials so that depending on the range of doping we can eliminate conductivity channels coming from the bulk. Finally we studied a Germanene and functionalized Germanene with halogens. Using an asymmetrical functionalization and with the topological invariant $Z_2$ we noted that the Ge-I-H system is a topological insulator that could be applied in the development of spin-based devices.
APA, Harvard, Vancouver, ISO, and other styles
13

Bleu, Olivier. "Physics of quantum fluids in two-dimensional topological systems." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC044/document.

Full text
Abstract:
Cette thèse est consacrée à la description de la physique à une particule ainsi qu'à celle de fluides quantiques bosoniques dans des systèmes topologiques. Les deux premiers chapitres sont introductifs. Dans le premier, nous introduisons des éléments de théorie des bandes et les quantités géométriques et topologiques associées : tenseur métrique quantique, courbure de Berry, nombre de Chern. Nous discutons différents modèles et réalisations expérimentales donnant lieu à des effets topologiques. Dans le second chapitre, nous introduisons les condensats de Bose-Einstein ainsi que les excitons-polaritons de cavité.La première partie des résultats originaux discute des phénomènes topologiques à une particule dans des réseaux en nid d'abeilles. Cela permet de comparer deux modèles théoriques qui mènent à l'effet Hall quantique anormal pour les électrons et les photons dû à la présence d'un couplage spin-orbite et d'un champ Zeeman. Nous étudions aussi l'effet Hall quantique de vallée photonique à l'interface entre deux réseaux de cavités avec potentiels alternés opposés.Dans une seconde partie, nous discutons de nouveaux effets qui émergent due à la présence d'un fluide quantique interagissant décrit par l’équation de Gross-Pitaevskii dans ces systèmes. Premièrement, il est montré que les interactions spin anisotropes donnent lieu à des transitions topologiques gouvernées par la densité de particules pour les excitations élémentaires d’un condensat spineur d’exciton-polaritons.Ensuite, nous montrons que les tourbillons quantifiés d'un condensat scalaire dans un système avec effet Hall quantique de vallée, manifestent une propagation chirale le long de l'interface contrairement aux paquets d'ondes linéaires. La direction de propagation de ces derniers est donnée par leur sens de rotation donnant lieu à un transport de pseudospin de vallée protégé topologiquement, analogue à l’effet Hall quantique de spin.Enfin, revenant aux effets géométriques linéaires, nous nous sommes concentrés sur l’effet Hall anormal. Dans ce contexte, nous présentons une correction non-adiabatique aux équations semi-classiques décrivant le mouvement d’un paquet d’ondes qui s’exprime en termes du tenseur géométrique quantique. Nous proposons un protocole expérimental pour mesurer cette quantité dans des systèmes photonique radiatifs
This thesis is dedicated to the description of both single-particle and bosonic quantum fluid Physics in topological systems. After introductory chapters on these subjects, I first discuss single-particle topological phenomena in honeycomb lattices. This allows to compare two theoretical models leading to quantum anomalous Hall effect for electrons and photons and to discuss the photonic quantum valley Hall effect at the interface between opposite staggered cavity lattices.In a second part, I present some phenomena which emerge due to the interplay of the linear topological effects with the presence of interacting bosonic quantum fluid described by mean-field Gross-Pitaevskii equation. First, I show that the spin-anisotropic interactions lead to density-driven topological transitions for elementary excitations of a condensate loaded in the polariton quantum anomalous Hall model (thermal equilibrium and out-of-equilibrium quasi-resonant excitation configurations). Then, I show that the vortex excitations of a scalar condensate in a quantum valley Hall system, contrary to linear wavepackets, can exhibit a robust chiral propagation along the interface, with direction given by their winding in real space, leading to an analog of quantum spin Hall effect for these non-linear excitations. Finally, coming back to linear geometrical effects, I will focus on the anomalous Hall effect exhibited by an accelerated wavepacket in a two-band system. In this context, I present a non-adiabatic correction to the known semiclassical equations of motion which can be expressed in terms of the quantum geometric tensor elements. We also propose a protocol to directly measure the tensor components in radiative photonic systems
APA, Harvard, Vancouver, ISO, and other styles
14

I-ChiChen and 陳詣奇. "Non-equilibrium dynamics of adatom impurity coupling with Chern insulator." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/fz24qv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wei, Haoming. "Conductivity behavior of LaNiO3- and LaMnO3- based thin film superlattices." Doctoral thesis, 2016. https://ul.qucosa.de/id/qucosa%3A15613.

Full text
Abstract:
The present work covers the fabrication and electrical and magnetic investigation of LaNiO3- and LaMnO3- based superlattices (SL). In recent years, several interesting theoretical predictions have been made in these SLs, for example, Mott insulators, metal-insulator transitions, superconductivity, topological insulators, and Chern insulators. Motivated by the promising theoretical predictions, four kinds of SLs with different designed structures and orientations were systematically studied in this thesis. The samples were grown by pulsed laser deposition with in-situ reflection high-energy electron diffraction to monitor the two-dimensional layer-by-layer growth process. In order to ensure the high-quality of SLs, growth parameters were optimised. Characteristic methods like X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used. These measurements proved the high-quality of the SLs and provided the basis for electrical and magnetic measurements. The first studied SL is the (001)-oriented LaNiO3/LaAlO3 SL, which was predicted as a superconductor in theory. Temperature-dependent resistivity measurements revealed a metal-insulator transition by lowering the dimensionality of the LaNiO3 layers in the SLs from three dimensions to two dimensions. The second studied SL is the (111)-oriented LaNiO3/LaAlO3 SL, which was predicted as a topological insulator in theory. The polarity-controlled conductivity was observed and the intrinsic conductivity mechanisms were discussed by means of appropriate modeling. The third studied SL is LaMnO3/LaAlO3 SL, which was predicted as a Chern insulator in theory. By lowering the temperature, a paramagnetic-ferromagnetic phase transition and a thermal activated behavior were observed in the SLs. The last studied SL is the LaNiO3/LaMnO3 SL, in which an exchange bias effect was expected. The studies reveal the exchange bias exists in three kinds of SLs with different orientations.
APA, Harvard, Vancouver, ISO, and other styles
16

(10703055), Guodong Jiang. "INTERPLAY OF GEOMETRY WITH IMPURITIES AND DEFECTS IN TOPOLOGICAL STATES OF MATTER." Thesis, 2021.

Find full text
Abstract:
The discovery of topological quantum states of matter has required physicists to look beyond Landau’s theory of symmetry-breaking, previously the main paradigm for
studying states of matter. This has led also to the development of new topological theories for describing the novel properties. In this dissertation an investigation in this
frontier research area is presented, which looks at the interplay between the quantum geometry of these states, defects and disorder. After a brief introduction to the topological quantum states of matter considered herein, some aspects of my work in this area are described. First, the disorder-induced band structure engineering of topological insulator surface states is considered, which is possible due to their resilience from Anderson localization, and believed to be a consequence of their topological origin.
Next, the idiosyncratic behavior of these same surface states is considered, as observed in experiments on thin film topological insulators, in response to competition between
hybridization effects and an in-plane magnetic field. Then moving in a very different direction, the uncovering of topological ‘gravitational’ response is explained: the
topologically-protected charge response of two dimensional gapped electronic topological states to a special kind of 0-dimensional boundary – a disclination – that encodes spatial curvature. Finally, an intriguing relation between the gravitational response of quantum Hall states, and their response to an apparently unrelated perturbation – nonuniform electric fields is reported.
APA, Harvard, Vancouver, ISO, and other styles
17

Chang, Rui-An, and 張睿安. "Topological Phase Transitions in Chern Insulators with Tunable Magnetization Orientations." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5sy39n.

Full text
Abstract:
碩士
國立臺灣大學
應用物理研究所
107
So far, the highly-discussed topological phase transitions in Chern insulators have mostly been induced by tuning an intrinsic material parameter such as the exchange coupling strength. But it is not a practical way to induce topological phase transitions in real applications. Here we show that the topological phase transitions can be induced by tuning the extrinsic degree of freedom, magnetization orientation, in a Chern insulaotr formed by a two-dimensional electron gas with Dresselhaus [001] spin-orbit coupling and an exchange coupling to a ferromagnetic overlayer. In an analytic way, we show that this system has a topologically trivial phase with in-plane magnetization but undergoes a topological phase transition when the magnetization is deviated from the in-plane direction. The analytic results are further confirmed by numerical nonequilibrium Green functions calculations. With the combination of this phase transition and spin-transfer torque, a novel transistor can be designed with this promising fusion of topology and spintronics. At last, we combine this Chern insulator with an s-wave superconductor, forming the chiral topological superconductor. It will have vital applications in topological quantum computation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography