Academic literature on the topic 'Chevalley-Eilenberg'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chevalley-Eilenberg.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chevalley-Eilenberg"

1

DONADZE, G., and M. LADRA. "COTRIPLE HOMOLOGY OF CROSSED 2-CUBES OF LIE ALGEBRAS." Journal of Algebra and Its Applications 12, no. 06 (2013): 1350007. http://dx.doi.org/10.1142/s0219498813500072.

Full text
Abstract:
The cotriple homology of crossed 2-cubes of Lie algebras is constructed and investigated. Namely, we calculate the cotriple homology of an inclusion crossed 2-cube of Lie algebras in terms of the bi-relative Chevalley–Eilenberg homologies. We also define in a natural way the Chevalley–Eilenberg homology of crossed 2-cubes of Lie algebras and study the relationship between cotriple and Chevalley–Eilenberg homologies for any crossed 2-cube of Lie algebras. We show that low-dimensional cyclic homologies of associative algebras are calculated in terms of the cotriple homology of crossed 2-cubes of Lie algebras.
APA, Harvard, Vancouver, ISO, and other styles
2

HURLE, BENEDIKT, та ABDENACER MAKHLOUF. "α-TYPE CHEVALLEY–EILENBERG COHOMOLOGY OF HOM-LIE ALGEBRAS AND BIALGEBRAS". Glasgow Mathematical Journal 62, S1 (2019): S108—S127. http://dx.doi.org/10.1017/s0017089519000296.

Full text
Abstract:
AbstractThe purpose of this paper is to define an α-type cohomology, which we call α-type Chevalley–Eilenberg cohomology, for Hom-Lie algebras. We relate it to the known Chevalley–Eilenberg cohomology and provide explicit computations for some examples. Moreover, using this cohomology, we study formal deformations of Hom-Lie algebras, where the bracket as well as the structure map α are deformed. Furthermore, we provide a generalization of the grand crochet and study, in a particular case, the α-type cohomology for Hom-Lie bialgebras.
APA, Harvard, Vancouver, ISO, and other styles
3

Aboughazi, R., and C. Ogle. "On Chevalley-Eilenberg and Cyclic Homologies." Journal of Algebra 166, no. 2 (1994): 317–39. http://dx.doi.org/10.1006/jabr.1994.1154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Markarian, Nikita. "Weyl n-algebras and the Kontsevich integral of the unknot." Journal of Knot Theory and Its Ramifications 25, no. 12 (2016): 1642008. http://dx.doi.org/10.1142/s0218216516420086.

Full text
Abstract:
Given a Lie algebra with a scalar product, one may consider the latter as a symplectic structure on a [Formula: see text]-scheme, which is the spectrum of the Chevalley–Eilenberg algebra. In Sec. 1 we explicitly calculate the first-order deformation of the differential on the Hochschild complex of the Chevalley–Eilenberg algebra. The answer contains the Duflo character. This calculation is used in the last section. There we sketch the definition of the Wilson loop invariant of knots, which is, hopefully, equal to the Kontsevich integral, and show that for unknot they coincide. As a byproduct, we get a new proof of the Duflo isomorphism for a Lie algebra with a scalar product.
APA, Harvard, Vancouver, ISO, and other styles
5

Dongho, Joseph, Epizitone Duebe-Abi, and Shuntah Roland Yotcha. "On 2 - 3 Matrix Chevalley Eilenberg Cohomology." Advances in Pure Mathematics 05, no. 14 (2015): 835–49. http://dx.doi.org/10.4236/apm.2015.514078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sardanashvily, G., and W. Wachowski. "Differential Calculus onN-Graded Manifolds." Journal of Mathematics 2017 (2017): 1–19. http://dx.doi.org/10.1155/2017/8271562.

Full text
Abstract:
The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, overN-graded commutative rings and onN-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and onZ2-graded manifolds. We follow the notion of anN-graded manifold as a local-ringed space whose body is a smooth manifoldZ. A key point is that the graded derivation module of the structure ring of graded functions on anN-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its bodyZ. Accordingly, the Chevalley–Eilenberg differential calculus on anN-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus onN-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds ofN-graded bundles.
APA, Harvard, Vancouver, ISO, and other styles
7

Wagemann, Friedrich. "Spectral sequences for commutative Lie algebras." Communications in Mathematics 28, no. 2 (2020): 123–37. http://dx.doi.org/10.2478/cm-2020-0015.

Full text
Abstract:
AbstractWe construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic 2. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley--Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
APA, Harvard, Vancouver, ISO, and other styles
8

Randriambololondrantomalala, Princy, H. S. G. Ravelonirina, and F. M. Anona. "Sur les algèbres de Lie associées à une connexion." Canadian Mathematical Bulletin 58, no. 4 (2015): 692–703. http://dx.doi.org/10.4153/cmb-2015-022-2.

Full text
Abstract:
RésuméEtant donné une connexion Γ sur une variété differéntiable M, dans ce papier on se propose de donner quelques propriétés de Γ en étudiant les algèbres de Lie associées à cette connexion. En particulier, on calcule le premier espace de cohomologie de Chevalley–Eilenberg de la partie horizontale de l’algèbre de Lie des champs de vecteurs sur le ûbré tangent de M dont la dérivée de Lie correspondante de Γ est nulle, et de l’espace de nullité horizontal de la courbure.
APA, Harvard, Vancouver, ISO, and other styles
9

Eager, Richard, Ingmar Saberi, and Johannes Walcher. "Nilpotence Varieties." Annales Henri Poincaré 22, no. 4 (2021): 1319–76. http://dx.doi.org/10.1007/s00023-020-01007-y.

Full text
Abstract:
AbstractWe consider algebraic varieties canonically associated with any Lie superalgebra, and study them in detail for super-Poincaré algebras of physical interest. They are the locus of nilpotent elements in (the projectivized parity reversal of) the odd part of the algebra. Most of these varieties have appeared in various guises in previous literature, but we study them systematically here, from a new perspective: As the natural moduli spaces parameterizing twists of a super-Poincaré-invariant physical theory. We obtain a classification of all possible twists, as well as a systematic analysis of unbroken symmetry in twisted theories. The natural stratification of the varieties, the identification of strata with twists, and the action of Lorentz and R-symmetry are emphasized. We also include a short and unconventional exposition of the pure spinor superfield formalism, from the perspective of twisting, and demonstrate that it can be applied to construct familiar multiplets in four-dimensional minimally supersymmetric theories. In all dimensions and with any amount of supersymmetry, this technique produces BRST or BV complexes of supersymmetric theories from the Koszul complex of the maximal ideal over the coordinate ring of the nilpotence variety, possibly tensored with any equivariant module over that coordinate ring. In addition, we remark on a natural connection to the Chevalley–Eilenberg complex of the supertranslation algebra, and give two applications related to these ideas: a calculation of Chevalley–Eilenberg cohomology for the (2, 0) algebra in six dimensions, and a degenerate BV complex encoding the type IIB supergravity multiplet.
APA, Harvard, Vancouver, ISO, and other styles
10

de León, Manuel, Juan C. Marrero, and Edith Padrón. "H-Chevalley-Eilenberg cohomology of a Jacobi manifold and Jacobi-Chern class." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 4 (1997): 405–10. http://dx.doi.org/10.1016/s0764-4442(97)85625-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chevalley-Eilenberg"

1

Riviere, Salim. "Sur l'isomorphisme entre les cohomologies de Hochschild et de Chevalley-Eilenberg." Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00785201.

Full text
Abstract:
Nous construisons un inverse explicite à l'isomorphisme d'antisymétrisation de Cartan-Eilenberg qui permet d'identifier la cohomologie d'une algèbre de Lie sur un anneau de caractéristique zéro et la cohomologie de Hochschild de son algèbre universelle enveloppante.
APA, Harvard, Vancouver, ISO, and other styles
2

Rivière, Salim. "Sur l’isomorphisme entre les cohomologies de Chevalley-Eilenberg et de Hochschild." Nantes, 2012. http://www.theses.fr/2012NANT2092.

Full text
Abstract:
Le but de ce travail est d'expliquer en quoi l'application de d'antisymétrisation de Cartan-Eilenberg F*, qui permet d'identifer la cohomologie de Chevalley-Eilenberg d'une algèbre de Lie g à la cohomologie de Hochschild de son algèbre enveloppante Ug, est l'analogue algébrique de l'application usuelle de dérivation de cochaînes de groupe lisses au voisinage de l'élément neutre d'un groupe de Lie, et comment un de ses quasi-inverses peut être construit et compris comme une application d'intégration de cocycles de Lie. De plus, nous montrons qu'un tel quasi-inverse, bien que provenant d'une contraction d'origine géométrique, peut s'écrire de manière totalement intinsèque, en n'utilisant que la structure d'algèbre de Hopf cocommutative connexe sur Ug<br>This thesis aims at explaining why Cartan and Eilenberg's antisymmetrisation map F*, which provides an explicit identifcation between the Chevalley-Eilenberg cohomology of a free lie algebra g and the Hochschild cohomology of its universal enveloping algebra Ug, can be seen as an algebraic analogue of the well-known derivation map from the complex of locally smooth group cochains to the one of Lie algebra cochains, and how one of its quasi-inverses can be built and thought of as an integration of Lie algebra cochains in Lie group cochains process. Moreover, we show that such a quasi-inverse, even if it is defined thanks to a Poincare contraction coming from geometry, can be written using a totally intrinsic formula that involves only the connex cocommutative Hopf algebra structure on Ug
APA, Harvard, Vancouver, ISO, and other styles
3

PAVIA, EMANUELE. "MIXED GRADED MODULES IN HOMOTOPY LIE THEORY." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/930979.

Full text
Abstract:
L’obiettivo principale di questa tesi è lo studio dei complessi misti graduati e del loro possibile ruolo nell’ambito della ricerca nella teoria della deformazione. In particolare, mi sono occupato della relazione tra complessi misti graduati e algebre di Lie derivate. I due contributi principali di questa tesi sono la costruzione di una t-struttura completa e non-degenere sulla ∞-categoria stabile dei complessi misti graduati, che esibisce i moduli misti graduati come il completamento sinistro della t-struttura di Beilinson sulla ∞-categoria derivata filtrata, e la costruzione di una famiglia di funtori di Chevalley-Eilenberg verso la ∞-categoria dei moduli misti graduati. Nonostante sia noto che i complessi di Chevalley-Eilenberg siano dotati di questa struttura, in letteratura tale funtore non è mai stato costruito in maniera indipendente da qualsiasi modello per le ∞-categorie.<br>The main objective of this thesis is to study mixed graded complexes as a framework where to study derived deformation theory. In particular, I investigated the relationship between mixed graded complexes and derived Lie algebras. The main contributions of this thesis are the following. First, I provided the ∞-category of mixed graded complexes with a complete and non-degenerate t-structure, which exhibits such ∞-category as the left completion of the Beilinson t-structure on the filtered derived ∞-category. Secondly, I constructed a family of Chevalley-Eilenberg ∞-functors computing homology and cohomology of derived Lie algebras, endowing them of a richer structure of mixed graded complexes. Even if it is known that Chevalley-Eilenberg complexes are endowed with such structure, my construction is new and completely model-independent.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chevalley-Eilenberg"

1

Connes, Alain, Bernard de Wit, Antoine Van Proeyen, et al. "Chevalley–Eilenberg Complex." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!