Academic literature on the topic 'Chiral ionic liquids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chiral ionic liquids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chiral ionic liquids"
Nobuoka, Kaoru, Satoshi Kitaoka, Tsutomu Kojima, Yuuki Kawano, Kazuya Hirano, Masakazu Tange, Shunsuke Obata, Yuki Yamamoto, Thomas Harran, and Yuich Ishikawa. "Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction." Organic Chemistry International 2014 (November 20, 2014): 1–9. http://dx.doi.org/10.1155/2014/836126.
Full textFlieger, Jolanta, Joanna Feder-Kubis, and Małgorzata Tatarczak-Michalewska. "Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques." International Journal of Molecular Sciences 21, no. 12 (June 15, 2020): 4253. http://dx.doi.org/10.3390/ijms21124253.
Full textVasiloiu, Maria, Sonja Leder, Peter Gaertner, Kurt Mereiter, and Katharina Bica. "Coordinating chiral ionic liquids." Organic & Biomolecular Chemistry 11, no. 46 (2013): 8092. http://dx.doi.org/10.1039/c3ob41635f.
Full textLauth-de Viguerie, Nancy, Cosmin Patrascu, Claudia Sugisaki, Christophe Mingotaud, Jean-Daniel Marty, and Yves Génisson. "New Pyridinium Chiral Ionic Liquids." HETEROCYCLES 63, no. 9 (2004): 2033. http://dx.doi.org/10.3987/com-04-10133.
Full textZalewska, Karolina, and Luis C. Branco. "Organocatalysis with Chiral Ionic Liquids." Mini-Reviews in Organic Chemistry 11, no. 2 (June 2014): 141–53. http://dx.doi.org/10.2174/1570193x1102140609120011.
Full textBica, Katharina, and Peter Gaertner. "Applications of Chiral Ionic Liquids." European Journal of Organic Chemistry 2008, no. 19 (July 2008): 3235–50. http://dx.doi.org/10.1002/ejoc.200701107.
Full textAhn, Sangbum, Shohei Yamakawa, and Kazuo Akagi. "Liquid crystallinity-embodied imidazolium-based ionic liquids and their chiral mesophases induced by axially chiral tetra-substituted binaphthyl derivatives." Journal of Materials Chemistry C 3, no. 16 (2015): 3960–70. http://dx.doi.org/10.1039/c4tc02968b.
Full textSingh, Avtar, Nirmaljeet Kaur, and Harish Kumar Chopra. "Enantioselective Reduction Reactions Using Chiral Ionic Liquids: An Overview." Current Organic Synthesis 15, no. 5 (July 5, 2018): 578–86. http://dx.doi.org/10.2174/1570179415666180427111428.
Full textWang, Hong Li, Xiao Ling Hu, Ping Guan, Jin Yang Yu, and Yi Mei Tang. "Synthesis and Characterization of Novel Ester Functionalized Chiral Ionic Liquids." Advanced Materials Research 197-198 (February 2011): 471–77. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.471.
Full textMarwani, Hadi. "Spectroscopic evaluation of chiral and achiral fluorescent ionic liquids." Open Chemistry 8, no. 4 (August 1, 2010): 946–52. http://dx.doi.org/10.2478/s11532-010-0062-7.
Full textDissertations / Theses on the topic "Chiral ionic liquids"
Foreiter, M. B. "Novel chiral ionic liquids." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675450.
Full textMcCarron, Philip. "Chiral separations using chiral amino acid ionic liquids." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707833.
Full textDONALD, GREGORY THOMAS. "Model Chiral Ionic Liquids for High Performance Liquid Chromatography Stationary Phases." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1214325450.
Full textYunis, Ruhamah. "Synthesis and characterization of amino acid ionic liquids and low symmetry ionic liquids based on the triaminocyclopropenium cation." Thesis, University of Canterbury. Chemistry, 2015. http://hdl.handle.net/10092/10207.
Full textRoberts, Nicola Jean. "Biocatalytic routes to the synthesis of chiral pharmaceutical intermediates in ionic liquids." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1446552/.
Full textYu, Jianguo. "Novel chiral phosphonium ionic liquids as solvents and catalysts for cycloadditions : investigation of the Diels-Alder reaction of a series of dienes and dienophiles in novel chiral phosphonium ionic liquids." Thesis, University of Bradford, 2009. http://hdl.handle.net/10454/4307.
Full textSintra, Tânia Ereira. "Synthesis of more benign ionic liquids for specific applications." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22516.
Full textNas últimas décadas, os líquidos iónicos (ILs) têm sido alvo de elevado interesse quer por parte da academia como a nível industrial. Isto deve-se em grande parte às suas propriedades únicas, assim como à possibilidade de, através de uma apropriada combinação dos seus iões, ser possível ajustar as suas propriedades para uma dada aplicação. Assim, os ILs têm vindo a ser considerados uma abordagem inovador para a “Química verde” e para a sustentabilidade. Contudo, a sua solubilidade em água faz com que estes possam facilmente chegar ao ecossistema aquático, podendo representar um perigo para este. O principal objetivo deste trabalho é estudar novos ILs, mais sustentáveis, assim como algumas das suas potenciais aplicações. Assim, foram investigados ILs como sendo antioxidantes, seletores quirais, hidrótopos, surfactantes, compostos magnéticos, assim como novos compostos hidrofóbicos. Para cada classe de ILs, foi estudada a sua síntese, caracterização físico-química e perfil de ecotoxicidade. Os novos ILs antioxidantes preparados neste trabalho foram avaliados quanto à sua solubilidade em água, estabilidade térmica, citotoxicidade e ecotoxicidade. Foram também estudados vários ILs quirais, quer baseados em aniões quirais (derivados de vários aminoácidos e do ácido tartárico), quer em catiões quirais (derivados da quinina, L-prolina e L-valina), no que respeita à sua estabilidade térmica, rotação ótica e ecotoxicidade. Além disso, foi avaliado o impacto de diferentes estruturas químicas dos ILs, assim como da sua concentração, na solubilidade de fármacos com reduzida solubilidade em água, a fim de analisar o seu comportamento enquanto hidrótopos cataniónicos. Entre as estruturas mais hidrofóbicas referidas neste trabalho estão vários ILs com natureza surfactante e um IL hidrofóbico baseado no anião per-fluoro-tertbutóxido. Relativamente aos ILs com carácter surfactante, foram preparados ILs pertencentes à família dos imidazólios, amónios quaternários e fosfónios, sendo posteriormente avaliados quanto à sua natureza de agregação, propriedades térmicas, ecotoxicidade, e à sua capacidade em promover disrupção celular. Por sua vez, o IL baseado no anião per-fluoro-tert-butóxido foi estudado relativamente às suas propriedades físicas, tais como a sua densidade, viscosidade e tensão superficial, assim como à sua toxicidade. Por fim, 24 ILs magnéticos foram preparados conjugando o catião colínio com diferentes aniões magnéticos ([FeCl4]-, [MnCl4]2-, [CoCl4]2- and [GdCl6]3-), sendo seguidamente avaliados quanto à sua ecotoxicidade. Visando o desenho racional de novos ILs, foi desenvolvido um modelo preditivo QSAR, onde foram utilizandos os dados de ecotoxicidade medidos neste trabalho. As previsões deste modelo relativamente à não toxicidade de um certo número de novos ILs foram testadas com êxito através da síntese destes compostos e posterior avaliação da sua ecotoxicidade utilizando o bioensaio Microtox.
Due to their unique properties, ionic liquids (ILs) have attracted an increased scientific and industrial attention in the last decades. The possibility of tailoring their properties for a specific task by the adequate combination of their ions, makes these ionic compounds good candidates for a wide range of different applications. Actually, ILs have been described as an innovative approach to the “Green Chemistry” and sustainability principles. However, their solubility in water allows their easy access to the aquatic compartment, which makes them potentially hazardous compounds to aquatic organisms. The main goal of this work is to study new, more environmental friendly, IL structures and their main applications. ILs as antioxidants, chiral selectors, hydrotropes, surface-active compounds, with magnetic properties, as well as, new hydrophobic compounds are investigated. The synthesis, physico-chemical characterization and ecotoxicity profile were studied for the various classes of task specific ILs evaluated. New cholinium-based ILs with antioxidant nature were studied regarding their solubility in water, thermal stability, cytotoxicity, and ecotoxicity. Moreover, a large range of chiral ILs (CILs) based on several chiral anions (derived from chiral amino acids and tartaric acid) and chiral cations (based on quinine, L-proline and L-valine), was investigated and their thermal stability, optical rotation and ecotoxicity evaluated. Furthermore, the impact of different ILs structures and concentrations on the solubility of poorly water-soluble drugs was studied, and their role as catanionic hydrotropes investigated. Among the most hydrophobic structures reported in this work are several surface-active ILs and a hydrophobic IL based on the per-fluoro-tert-butoxide anion. The tensioactive ILs, belonging to the imidazolium, quaternary ammonium and phospholium families were tested in terms of their aggregation behavior, thermal properties, ecotoxicity, and their capacity to promore cell disruption. On the other hand, the per-fluoro-tert-butoxide-based IL was evaluated regarding its physical properties, such as density, viscosity, and surface tension and toxicity. Finally, 24 magnetic ILs belonging to the cholinium family and using [FeCl4]-, [MnCl4]2-, [CoCl4]2- and [GdCl6]3- as anions were investigated and their ecotoxicity evaluated. Aiming at the rational design of ILs, a predictive QSAR model was developed with our help, and using ecotoxicity data measured in this work. The predictions of this model concerning the non-toxicity of a number of novel ILs were successfully tested by synthesizing these compounds and evaluating their toxicity using the Microtox bioassay.
Kim, Hannah. "The synthesis and purification of Chiral Amino Acid Ionic Liquids and Investigation of Quantitative Solvent-Solute Interactions." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486364.
Full textKholany, Mariam Achraf Mohamed Bahie El Din El. "Enantioselective separation of chiral compounds using aqueous biphasic systems and solid-liquid biphasic system." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22708.
Full textTipicamente, apenas um dos enantiómeros é responsável pelo efeito pretendido de um fármaco, sendo que o outro pode levar a respostas menos potentes ou até mesmo indesejadas. As entidades reguladoras praticam políticas restritas em relação à comercialização de fármacos como misturas racémicas. Assim, a indústria farmacêutica tem enfrentado desafios relacionados com o desenvolvimento de métodos para produção de fármacos oticamente puros. No entanto, e considerando a dificuldade acrescida na produção de enantiómeros puros por síntese direta, a síntese de misturas racémicas seguida da sua purificação surge como uma alternativa mais barata, simples e flexível. Os sistemas aquosos bifásicos (SABs) e os sistemas de duas fases sólida-líquida (SDFSL) são técnicas alternativas mais biocompatíveis que têm sido utilizados como técnicas de separação enantiosseletiva de fármacos e/ou aminoácidos com enantiosseletividades bastante promissoras. Para além disso, apresentam benefícios de custo, rapidez, simplicidade e versatilidade de operação e possibilidade de aumento de escala. Este trabalho foca-se no desenvolvimento de SABs e SDFSL constituídos por seletores quirais que possam atuar simultaneamente como solvente. Numa primeira abordagem o objetivo foi desenvolver novos SABs quirais, mais biocompatíveis, simples e eficientes. Para tal, SABs constituídos por açúcares, aminoácidos e líquidos iónicos quirais foram aplicados na resolução enantiomérica de ácido mandélico racémico. O sistema mais promissor, composto por [C1Qui][C1SO4] + K3PO4, obteve um excesso enantiomérico de -33.4%. Numa segunda abordagem, foi possível criar uma alternativa mais simples e mais eficiente recorrendo a SDFSL. Com estes sistemas, foi obtido o valor mais elevado de excesso enantiomérico deste trabalho, de 49.0%, através da precipitação enantiosseletiva do R-ácido mandélico por interação com [N4444][D-Phe].
Conventionally, only one of the enantiomers is responsible for the intended effect of a drug, whilst the other may lead to a less potent or even undesired response. Regulation entities are very strict regarding the commercialization of racemic drugs. Thus, pharmaceutical industry has been facing challenges related to the creation of methods to produce optically active drugs. However, considering the increased difficulty in the production of pure enantiomers by direct synthesis, the synthesis of racemic mixtures followed by their purification appears as a cheaper, simpler and more flexible alternative. Aqueous biphasic systems (ABS) and solid-liquid biphasic system (SLBS) are more biocompatible alternatives that have been used to separate racemic drugs and amino acids with promising enantioselectivities. Furthermore, these are cost-effective, quick, simple and operationally flexible. This work intended to develop ABS and SLBS using chiral selectors that can simultaneously act as solvents. In a first attempt, chiral ABS of better biocompatibility, simplicity and efficiency were developed. For that purpose, ABS constituted by sugars, amino acids and chiral ionic liquids (CILs) were applied for chiral resolution of racemic mandelic acid (MA). The most promising ABS was a system composed of [C1Qui][C1SO4] + K3PO4 which yielded the maximum enantiomeric excess of -33.4%. In a second approach, it was possible to create a simpler and more efficient technique resorting to SLBS. The enantiomeric excess value of 49.0% was achieved, by the enantioselective precipitation of the R-MA caused by interactions with [N4444][D-Phe].
Wang, Ying. "Chiral ionic liquid in chiral separation and catalysis." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603555.
Full textBook chapters on the topic "Chiral ionic liquids"
Hu, Rongjing, and Lei Yang. "Chiral Ionic Liquids." In Encyclopedia of Ionic Liquids, 1–15. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6739-6_130-1.
Full textGaumont, Annie-Claude, Yves Génisson, Frédéric Guillen, Viacheslav Zgonnik, and Jean-Christophe Plaquevent. "Chiral Ionic Liquids for Asymmetric Reactions." In Catalytic Methods in Asymmetric Synthesis, 323–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118087992.ch7.
Full textVasiloiu, Maria, and Katharina Bica. "Chiral Ionic Liquids in Separation Sciences." In Green Chemistry and Sustainable Technology, 167–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48520-0_8.
Full textLi, Min, David K. Bwambok, Sayo O. Fakayode, and Isiah M. Warner. "Chiral Ionic Liquids in Chromatographic Separation and Spectroscopic Discrimination." In Chiral Recognition in Separation Methods, 289–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12445-7_11.
Full textEngel, Robert, Sharon Lall-Ramnarine, Delroy Coleman, and Marie Thomas. "New Cations for Ionic Liquids, Including Chiral Adjuncts with Phosphate and Sulfonylimide Anions." In ACS Symposium Series, 259–66. Washington, DC: American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0950.ch020.
Full textXu, Lijin, Kim Hung Lam, Jiwu Ruan, Qinghua Fan, and Albert S. C. Chan. "Ruthenium Catalyzed Asymmetric Hydrogenation of α- and β-Ketoesters in Room Temperature Ionic Liquids Using Chiral P-Phos Ligand." In ACS Symposium Series, 224–34. Washington, DC: American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0950.ch017.
Full textItoh, Toshiyuki, Yoshikazu Abe, Takuya Hirakawa, Nagisa Okano, Shino Nakajima, Shuichi Hayase, Motoi Kawatsura, Tomoko Matsuda, and Kaoru Nakamura. "Chiral Pyrrolidine-Substituted Ionic Liquid-Mediated Activation of Enzyme." In ACS Symposium Series, 155–67. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1038.ch013.
Full textMasson, G., and J. Zhu. "Reaction in Chiral Ionic Liquids." In Stereoselective Reactions of Carbonyl and Imino Groups, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-202-00405.
Full textLiu, Yong, Jiajian Peng, Shangru Zhai, Ningya Yu, Meijiang Li, Jianjiang Mao, Huayu Qiu, Jianxiong Jiang, and Guoqiao La. "One-pot synthesis of ionic liquid functionalized SBA-15 mesoporous silicas." In Recent Progress in Mesostructured Materials - Proceedings of the 5th International Mesostructured Materials Symposium (IMMS2006), Shanghai, P.R. China, August 5-7, 2006, 127–30. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80281-3.
Full textSarkar, M. S., Ji-Young Jung, and Myung-Jong Jin. "VO(acac)2 incorporated in mesoporous silica SBA-15-conflned ionic liquid as a catalyst for epoxidation." In Recent Progress in Mesostructured Materials - Proceedings of the 5th International Mesostructured Materials Symposium (IMMS2006), Shanghai, P.R. China, August 5-7, 2006, 713–16. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80420-4.
Full textConference papers on the topic "Chiral ionic liquids"
Harrison, Benjamin, Richard Czerw, Manohar S. Konchady, Devdas M. Pai, Matt W. Lopatka, and Paul B. Jones. "Ionic Liquids Incorporating Nanomaterials as Lubricants for Harsh Environments." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81680.
Full textVo-Thanh, Giang, and Thu Truong-Thi-Kim. "Synthesis of Functionalized Chiral Ammonium, Imidazolium and Pyridinium-based Ionic Liquids derived from (-)-Ephedrine using solvent-free microwave activation. Applications for the Asymmetric Michael Addition." In The 17th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2013. http://dx.doi.org/10.3390/ecsoc-17-f003.
Full textHirade, Tetsuya. "Positronium bubble oscillation in room temperature ionic liquids." In 2nd Japan–China Joint Workshop on Positron Science (JWPS2013). Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/jjapcp.2.011003.
Full textChen, Liang, Rundong Jia, Qianqian Huang, and Ru Huang. "Si/SnS2 Vertical Heterojunction Tunneling Transistor with Ionic-Liquid Gate for Ultra-Low Power Application." In 2021 China Semiconductor Technology International Conference (CSTIC). IEEE, 2021. http://dx.doi.org/10.1109/cstic52283.2021.9461446.
Full text