Journal articles on the topic 'Chiroptical Response'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Chiroptical Response.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ozcelik, Ani, Raquel Pereira-Cameselle, and José Lorenzo Alonso-Gómez. "From Allenes to Spirobifluorenes: On the Way to Device-compatible Chiroptical Systems." Current Organic Chemistry 24, no. 23 (2020): 2737–54. http://dx.doi.org/10.2174/1385272824999201013164534.
Full textDavis, Matthew S., Wenqi Zhu, Jay K. Lee, Henri J. Lezec, and Amit Agrawal. "Microscopic origin of the chiroptical response of optical media." Science Advances 5, no. 10 (2019): eaav8262. http://dx.doi.org/10.1126/sciadv.aav8262.
Full textAsefa, Semere A., Myeongsu Seong, and Dasol Lee. "Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response." Sensors 25, no. 3 (2025): 915. https://doi.org/10.3390/s25030915.
Full textKim, Joohoon, Ahsan Sarwar Rana, Yeseul Kim, et al. "Chiroptical Metasurfaces: Principles, Classification, and Applications." Sensors 21, no. 13 (2021): 4381. http://dx.doi.org/10.3390/s21134381.
Full textFronk, Stephanie L., Ming Wang, Michael Ford, Jessica Coughlin, Cheng-Kang Mai, and Guillermo C. Bazan. "Effect of chiral 2-ethylhexyl side chains on chiroptical properties of the narrow bandgap conjugated polymers PCPDTBT and PCDTPT." Chemical Science 7, no. 8 (2016): 5313–21. http://dx.doi.org/10.1039/c6sc00908e.
Full textWoźniak, Paweł, Israel De Leon, Katja Höflich, et al. "Chiroptical response of a single plasmonic nanohelix." Optics Express 26, no. 15 (2018): 19275. http://dx.doi.org/10.1364/oe.26.019275.
Full textJi, Hai-Feng. "A general method to predict optical rotations of chiral molecules from their structures." RSC Advances 13, no. 7 (2023): 4775–80. http://dx.doi.org/10.1039/d2ra08290j.
Full textOpačak, Saša, Darko Babić, Berislav Perić, et al. "A ferrocene-based pseudopeptide chiroptical switch." Dalton Transactions 50, no. 13 (2021): 4504–11. http://dx.doi.org/10.1039/d1dt00508a.
Full textHe, Yizhuo, Keelan Lawrence, Whitney Ingram, and Yiping Zhao. "Strong Local Chiroptical Response in Racemic Patchy Silver Films: Enabling a Large-Area Chiroptical Device." ACS Photonics 2, no. 9 (2015): 1246–52. http://dx.doi.org/10.1021/acsphotonics.5b00196.
Full textIe, Machiko, Jun-ichiro Setsune, Kazuo Eda, and Akihiko Tsuda. "Chiroptical sensing of oligonucleotides with a cyclic octapyrrole." Organic Chemistry Frontiers 2, no. 1 (2015): 29–33. http://dx.doi.org/10.1039/c4qo00268g.
Full textMalola, Sami, and Hannu Häkkinen. "Chiral footprint of the ligand layer in the all-alkynyl-protected gold nanocluster Au144(CCPhF)60." Chemical Communications 55, no. 64 (2019): 9460–62. http://dx.doi.org/10.1039/c9cc04914b.
Full textChang, Hao, Haoliang Liu, Evgenia Dmitrieva, et al. "Furan-containing double tetraoxa[7]helicene and its radical cation." Chemical Communications 56, no. 96 (2020): 15181–84. http://dx.doi.org/10.1039/d0cc06970a.
Full textHassey, R., E. J. Swain, N. I. Hammer, D. Venkataraman, and M. D. Barnes. "Probing the Chiroptical Response of a Single Molecule." Science 314, no. 5804 (2006): 1437–39. http://dx.doi.org/10.1126/science.1134231.
Full textTian, Xiaorui, Shuli Sun, Eunice Sok Ping Leong, et al. "Fano-like chiroptical response in plasmonic heterodimer nanostructures." Physical Chemistry Chemical Physics 22, no. 6 (2020): 3604–10. http://dx.doi.org/10.1039/c9cp05600a.
Full textDavis, Matthew S., Wenqi Zhu, Jared Strait, et al. "Chiroptical Response of Aluminum Nanocrescents at Ultraviolet Wavelengths." Nano Letters 20, no. 5 (2020): 3656–62. http://dx.doi.org/10.1021/acs.nanolett.0c00586.
Full textPedersen, Thomas Bondo, Henrik Koch, and Kenneth Ruud. "Coupled cluster response calculation of natural chiroptical spectra." Journal of Chemical Physics 110, no. 6 (1999): 2883–92. http://dx.doi.org/10.1063/1.477931.
Full textHao, Changlong, Liguang Xu, Wei Ma, Libing Wang, Hua Kuang, and Chuanlai Xu. "Assembled Plasmonic Asymmetric Heterodimers with Tailorable Chiroptical Response." Small 10, no. 9 (2014): 1805–12. http://dx.doi.org/10.1002/smll.201303755.
Full textPadula, Daniele, Giuseppe Mazzeo, Ernesto Santoro, Patrizia Scafato, Sandra Belviso, and Stefano Superchi. "Amplification of the chiroptical response of UV-transparent amines and alcohols by N-phthalimide derivatization enabling absolute configuration determination through ECD computational analysis." Organic & Biomolecular Chemistry 18, no. 11 (2020): 2094–102. http://dx.doi.org/10.1039/d0ob00052c.
Full textHeister, Philipp, Tobias Lünskens, Martin Thämer, et al. "Orientational changes of supported chiral 2,2′-dihydroxy-1,1′binaphthyl molecules." Phys. Chem. Chem. Phys. 16, no. 16 (2014): 7299–306. http://dx.doi.org/10.1039/c4cp00106k.
Full textHu, Yaolin, Suxia Xie, Chongjun Bai, Weiwei Shen, and Jingcheng Yang. "Quasi-Bound States in the Continuum Enabled Strong Terahertz Chiroptical Response in Bilayer Metallic Metasurfaces." Crystals 12, no. 8 (2022): 1052. http://dx.doi.org/10.3390/cryst12081052.
Full textVázquez-Nakagawa, M., L. Rodríguez-Pérez, M. A. Herranz, and N. Martín. "Chirality transfer from graphene quantum dots." Chemical Communications 52, no. 4 (2016): 665–68. http://dx.doi.org/10.1039/c5cc08890a.
Full textGryb, Dmytro, Fedja J. Wendisch, Andreas Aigner, et al. "Two-Dimensional Chiral Metasurfaces Obtained by Geometrically Simple Meta-atom Rotations." Nano Letters 23, no. 19 (2023): 8891–97. https://doi.org/10.1021/acs.nanolett.3c02168.
Full textCao, Zhaolong, Jianfa Chen, Shaozhi Deng, and Huanjun Chen. "A physical interpretation of coupling chiral metaatoms." Nanoscale 14, no. 10 (2022): 3849–57. http://dx.doi.org/10.1039/d1nr05065f.
Full textYan, Jiao, Yuandong Chen, Shuai Hou, et al. "Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols." Nanoscale 9, no. 31 (2017): 11093–102. http://dx.doi.org/10.1039/c7nr03712k.
Full textOrtuño, Ana M., Pablo Reiné, Sandra Resa, et al. "Extended enantiopure ortho-phenylene ethylene (o-OPE)-based helical systems as scaffolds for supramolecular architectures: a study of chiroptical response and its connection to the CISS effect." Organic Chemistry Frontiers 8, no. 18 (2021): 5071–86. http://dx.doi.org/10.1039/d1qo00822f.
Full textZhai, Dawei, Peng Wang, Rong-Yao Wang, et al. "Plasmonic polymers with strong chiroptical response for sensing molecular chirality." Nanoscale 7, no. 24 (2015): 10690–98. http://dx.doi.org/10.1039/c5nr01966d.
Full textMcAlexander, Harley R., Taylor J. Mach, and T. Daniel Crawford. "Localized optimized orbitals, coupled cluster theory, and chiroptical response properties." Physical Chemistry Chemical Physics 14, no. 21 (2012): 7830. http://dx.doi.org/10.1039/c2cp23797k.
Full textYao, Hiroshi. "Chiral Ligand-Protected Bimetallic Nanoclusters: How does the Metal Core Configuration Influence the Nanocluster’s Chiroptical Responses?" MRS Proceedings 1802 (2015): 1–12. http://dx.doi.org/10.1557/opl.2015.385.
Full textPeluso, Andrea, and Guglielmo Monaco. "Current Density and Spectroscopy—A Themed Issue in Honor of Professor Riccardo Zanasi on the Occasion of His 70th Birthday." Chemistry 4, no. 1 (2022): 118–20. http://dx.doi.org/10.3390/chemistry4010010.
Full textLi, Feng, Skandan Chandrasekar, Aftab Ahmed, and Anna Klinkova. "Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies." Nanotechnology 33, no. 12 (2021): 125203. http://dx.doi.org/10.1088/1361-6528/ac3f12.
Full textXia, Bin, Qian Gao, Zhen-Peng Hu, et al. "Concomitant Photoresponsive Chiroptics and Magnetism in Metal-Organic Frameworks at Room Temperature." Research 2021 (February 10, 2021): 1–12. http://dx.doi.org/10.34133/2021/5490482.
Full textParrish, Katherine A., Andrew Salij, Kendall R. Kamp, et al. "Differential absorption of circularly polarized light by a centrosymmetric crystal." Science 388, no. 6752 (2025): 1194–97. https://doi.org/10.1126/science.adr5478.
Full textZu, Shuai, Quan Sun, En Cao, Tomoya Oshikiri, and Hiroaki Misawa. "Revealing the Chiroptical Response of Plasmonic Nanostructures at the Nanofemto Scale." Nano Letters 21, no. 11 (2021): 4780–86. http://dx.doi.org/10.1021/acs.nanolett.1c01322.
Full textSlyngborg, Morten, Yao-Chung Tsao, and Peter Fojan. "Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response." Beilstein Journal of Nanotechnology 7 (June 24, 2016): 914–25. http://dx.doi.org/10.3762/bjnano.7.83.
Full textKicková, Anna, Jana Donovalová, Peter Kasák, and Martin Putala. "A chiroptical binaphthopyran switch: amplified CD response in a polystyrene film." New Journal of Chemistry 34, no. 6 (2010): 1109. http://dx.doi.org/10.1039/c0nj00102c.
Full textZhou, Shaoen, Pengtao Lai, Guohua Dong, et al. "Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime." Optics Express 27, no. 11 (2015): 15359. http://dx.doi.org/10.1364/oe.27.015359.
Full textMaoz, Ben M., Rob van der Weegen, Zhiyuan Fan, et al. "Plasmonic Chiroptical Response of Silver Nanoparticles Interacting with Chiral Supramolecular Assemblies." Journal of the American Chemical Society 134, no. 42 (2012): 17807–13. http://dx.doi.org/10.1021/ja309016k.
Full textWang, Xuesi, Yongcun Zou, Jingran Zhu, and Yu Wang. "Silver Cholesteric Liquid Crystalline: Shape-Dependent Assembly and Plasmonic Chiroptical Response." Journal of Physical Chemistry C 117, no. 27 (2013): 14197–205. http://dx.doi.org/10.1021/jp403640g.
Full textOusaka, Naoki, Jack K. Clegg, and Jonathan R. Nitschke. "Nonlinear Enhancement of Chiroptical Response through Subcomponent Substitution in M4L6 Cages." Angewandte Chemie International Edition 51, no. 6 (2011): 1464–68. http://dx.doi.org/10.1002/anie.201107532.
Full textOusaka, Naoki, Jack K. Clegg, and Jonathan R. Nitschke. "Nonlinear Enhancement of Chiroptical Response through Subcomponent Substitution in M4L6 Cages." Angewandte Chemie 124, no. 6 (2011): 1493–97. http://dx.doi.org/10.1002/ange.201107532.
Full textKato, Kenichi, and Atsuhiro Osuka. "Propeller‐Shaped Semi‐fused Porphyrin Trimers: Molecular‐Symmetry‐Dependent Chiroptical Response." Chemistry – A European Journal 26, no. 45 (2020): 10217–21. http://dx.doi.org/10.1002/chem.202002157.
Full textWang, Shengyi, Hanzhuo Kuang, Wenjie Li, et al. "Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design." Nanomaterials 14, no. 11 (2024): 979. http://dx.doi.org/10.3390/nano14110979.
Full textZhang, Lu, Jie Wang, Lei Xu, Feng Gao, Wending Zhang, and Ting Mei. "Stressmechanically Reconfigurable Chiroptical Meta‐devices in Visible Band." Advanced Optical Materials, December 3, 2023. http://dx.doi.org/10.1002/adom.202302474.
Full textWang, Zhiyu, Cheng‐Chieh Lin, Kei Murata, et al. "Chiroptical Response Inversion And Enhancement of Room‐Temperature Exciton‐Polaritons Using Two‐Dimensional Chirality in Perovskites." Advanced Materials, August 17, 2023. http://dx.doi.org/10.1002/adma.202303203.
Full textWang, Yan, zeyu wu, Wenming Yu, and Zheng-qi Liu. "Recent progresses and applications on chiroptical metamaterials : a review." Journal of Physics D: Applied Physics, August 14, 2024. http://dx.doi.org/10.1088/1361-6463/ad6f20.
Full textJung, Jung Young, Min Jeong Shin, Baekman Kim, et al. "Cholesteric Liquid Crystal‐Mediated Chiral Plasmonic Films with Strong Chiroptical Response, Dynamic Tunability, and Reversible Thermal Reconfigurability." Advanced Optical Materials, June 26, 2024. http://dx.doi.org/10.1002/adom.202400760.
Full textSachs, Johannes, Jan-Philipp Günther, Andrew G. Mark, and Peer Fischer. "Chiroptical spectroscopy of a freely diffusing single nanoparticle." Nature Communications 11, no. 1 (2020). http://dx.doi.org/10.1038/s41467-020-18166-5.
Full textHashikawa, Yoshifumi, Koki Fujimura, Yoshihiro Ueda, Norihisa Fukaya, Takeo Kawabata, and Yasujiro Murata. "Chiroptical Response of Carbon Nanocages Enhanced by Achiral Guests." Angewandte Chemie, November 27, 2024. http://dx.doi.org/10.1002/ange.202421859.
Full textHashikawa, Yoshifumi, Koki Fujimura, Yoshihiro Ueda, Norihisa Fukaya, Takeo Kawabata, and Yasujiro Murata. "Chiroptical Response of Carbon Nanocages Enhanced by Achiral Guests." Angewandte Chemie International Edition, November 27, 2024. http://dx.doi.org/10.1002/anie.202421859.
Full textOshikiri, Tomoya, Yasutaka Matsuo, Hiromasa Niinomi, and Masaru Nakagawa. "Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction." Photochemical & Photobiological Sciences, December 10, 2024. https://doi.org/10.1007/s43630-024-00667-7.
Full text