Academic literature on the topic 'Chloroflexus aurantiacus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chloroflexus aurantiacus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chloroflexus aurantiacus"

1

Kondratieva, Elena N., Ruslan N. Ivanovsky, and Elena N. Krasilnikova. "Carbon metabolism in Chloroflexus aurantiacus." FEMS Microbiology Letters 100, no. 1-3 (December 1992): 269–71. http://dx.doi.org/10.1111/j.1574-6968.1992.tb05714.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yakovlev, Andrei G., Alexandra S. Taisova, and Zoya G. Fetisova. "Femtosecond excited-state dynamics in chlorosomal carotenoids of the photosynthetic bacterium Chloroflexus aurantiacus revealed by near infrared pump–probe spectroscopy." Physical Chemistry Chemical Physics 23, no. 22 (2021): 12761–70. http://dx.doi.org/10.1039/d1cp00927c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lancaster, Vanessa L., Russell LoBrutto, Fabiyola M. Selvaraj, and Robert E. Blankenship. "A Cambialistic Superoxide Dismutase in the Thermophilic Photosynthetic Bacterium Chloroflexus aurantiacus." Journal of Bacteriology 186, no. 11 (June 1, 2004): 3408–14. http://dx.doi.org/10.1128/jb.186.11.3408-3414.2004.

Full text
Abstract:
ABSTRACT Superoxide dismutase from the thermophilic anoxygenic photosynthetic bacterium Chloroflexus aurantiacus was cloned, purified, and characterized. This protein is in the manganese- and iron-containing family of superoxide dismutases and is able to use both manganese and iron catalytically. This appears to be the only soluble superoxide dismutase in C. aurantiacus. Iron and manganese cofactors were identified by using electron paramagnetic resonance spectroscopy and were quantified by atomic absorption spectroscopy. By metal enrichment of growth media and by performing metal fidelity studies, the enzyme was found to be most efficient with manganese incorporated, yet up to 30% of the activity was retained with iron. Assimilation of iron or manganese ions into superoxide dismutase was also found to be affected by the growth conditions. This enzyme was also found to be remarkably thermostable and was resistant to H2O2 at concentrations up to 80 mM. Reactive oxygen defense mechanisms have not been previously characterized in the organisms belonging to the phylum Chloroflexi. These systems are of interest in C. aurantiacus since this bacterium lives in a hyperoxic environment and is subject to high UV radiation fluxes.
APA, Harvard, Vancouver, ISO, and other styles
4

Pšenčík, Jakub, Aaron M. Collins, Lassi Liljeroos, Mika Torkkeli, Pasi Laurinmäki, Hermanus M. Ansink, Teemu P. Ikonen, et al. "Structure of Chlorosomes from the Green Filamentous Bacterium Chloroflexus aurantiacus." Journal of Bacteriology 191, no. 21 (August 28, 2009): 6701–8. http://dx.doi.org/10.1128/jb.00690-09.

Full text
Abstract:
ABSTRACT The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.
APA, Harvard, Vancouver, ISO, and other styles
5

Tang, Kuo-Hsiang, Jianzhong Wen, Xianglu Li, and Robert E. Blankenship. "Role of the AcsF Protein in Chloroflexus aurantiacus." Journal of Bacteriology 191, no. 11 (April 3, 2009): 3580–87. http://dx.doi.org/10.1128/jb.00110-09.

Full text
Abstract:
ABSTRACT The green phototrophic bacteria contain a unique complement of chlorophyll pigments, which self-assemble efficiently into antenna structures known as chlorosomes with little involvement of protein. The few proteins found in chlorosomes have previously been thought to have a primarily structural function. The biosynthetic pathway of the chlorosome pigments, bacteriochlorophylls c, d, and e, is not well understood. In this report, we used spectroscopic, proteomic, and gene expression approaches to investigate the chlorosome proteins of the green filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Surprisingly, Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, AcsF, was identified under anaerobic growth conditions. The AcsF protein was found in the isolated chlorosome fractions, and the proteomics analysis suggested that significant portions of the AcsF proteins are not accessible to protease digestion. Additionally, quantitative real-time PCR studies showed that the transcript level of the acsF gene is not lower in anaerobic growth than in semiaerobic growth. Since the proposed enzymatic activity of AcsF requires molecular oxygen, our studies suggest that the roles of AcsF in C. aurantiacus need to be investigated further.
APA, Harvard, Vancouver, ISO, and other styles
6

Yurkova, E. V., I. N. Tsygannik, A. G. Zargarov, A. S. Zolotarev, N. G. Abdulaev, and V. V. Demin. "Crystallization of photosynthetic reaction centres from Chloroflexus aurantiacus." FEBS Letters 256, no. 1-2 (October 9, 1989): 167–69. http://dx.doi.org/10.1016/0014-5793(89)81741-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holo, Helge, and Reidum Sirev�g. "Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus." Archives of Microbiology 145, no. 2 (July 1986): 173–80. http://dx.doi.org/10.1007/bf00446776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kiselyova, O. I., G. N. Shiryaeva, R. G. Efremov, V. I. Gordeliy, I. V. Yaminsky, M. F. Yanyushin, G. Büldt, and L. S. Yaguzhinsky. "Crystallization of F1F0-ATP synthase from Chloroflexus aurantiacus." Journal of Crystal Growth 275, no. 1-2 (February 2005): e1447-e1452. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kern, Monika, and Jobst-Heinrich Klemme. "Inhibition of Bacteriochlorophyll Biosynthesis by Gabaculin (3-Amino, 2,3-dihydrobenzoic Acid) and Presence of an Enzyme of the C5-Pathway of δ-Aminolevulinate Synthesis in Chloroflexus aurantiacus." Zeitschrift für Naturforschung C 44, no. 1-2 (February 1, 1989): 77–80. http://dx.doi.org/10.1515/znc-1989-1-214.

Full text
Abstract:
Abstract Biosynthesis of bacteriochlorophyll c and a in the thermophilic phototrophic prokaryote. Chloroflexus aurantiacus Ok-70-fl, was strongly inhibited by the antibiotic gabaculin (3-amino 2,3- dihydrobenzoic acid), an inhibitor of the glutamate-C5-pathway of ö-aminolevulinate (ALA) synthesis. The key enzyme of the Shemin-pathway of ALA formation, ALA synthase (EC 2.3.1.37), was not detected in cell extracts of Chi. aurantiacus. However, the extracts catalyzed ALA formation from glutamate 1-semialdehyde, a reaction being highly sensitive to gabaculin.
APA, Harvard, Vancouver, ISO, and other styles
10

Martiskainen, Jari, Juha Linnanto, Robertas Kananavičius, Viivi Lehtovuori, and Jouko Korppi-Tommola. "Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus." Chemical Physics Letters 477, no. 1-3 (July 2009): 216–20. http://dx.doi.org/10.1016/j.cplett.2009.06.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chloroflexus aurantiacus"

1

Lehmann, Rainer Patrick. "Studies on the structure and function of the bacteriochlorophyll C antenna complex of the chlorosomes from the phototrophic bacterium Chloroflexus aurantiacus : the pigment-binding function of the 5.7 kDa polypeptide /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Niedermeier, Georg. "Untersuchungen zur Pigmentorganisation und Proteinfunktion in Chlorosomen von Chloroflexus aurantiacus : Aufklärung der Primärstruktur der Chlorosomenproteine CsmM, CsmN und CsmO /." 1996. http://www.gbv.de/dms/bs/toc/22611144X.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chloroflexus aurantiacus"

1

Blankenship, R. E., D. C. Brune, J. M. Freeman, G. H. King, J. D. McManus, T. Nozawa, T. Trost, and B. P. Wittmerhaus. "Energy Trapping and Electron Transfer in Chloroflexus Aurantiacus." In Green Photosynthetic Bacteria, 57–68. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1021-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klemme, J. H., G. Laakmann-Ditges, and J. Mertschuweit. "Ammonia Assimulation and Amino Acid Metabolism in Chloroflexus Aurantiacus." In Green Photosynthetic Bacteria, 173–74. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1021-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oelze, Jürgen. "Control of Bacteriochlorophyll a and c in Chloroflexus Aurantiacus." In Current Research in Photosynthesis, 1001–4. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schoch, S., U. Oster, K. Mayer, R. Feick, and W. Rüdiger. "Subtrate Specificity of Overexpressed Bacteriochlorophyll Synthase from Chloroflexus Aurantiacus." In The Chloroplast: From Molecular Biology to Biotechnology, 213–16. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4788-0_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Redlinger, T. E., S. J. Theroux, D. L. Driscoll, S. J. Robinson, and R. C. Fuller. "Assembly of Chlorosomes during Photosynthetic Development in Chloroflexus aurantiacus." In Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, 275–84. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-0893-6_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knaff, D. B., R. M. Wynn, T. E. Redlinger, R. E. Blankenship, J. M. Foster, R. W. Shaw, and R. C. Fuller. "Electron Transport Chains of Phototrophically and Chemotrophically Grown Chloroflexus Aurantiacus." In Green Photosynthetic Bacteria, 145–47. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1021-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Becker, M., D. Middendorf, V. Nagarajan, W. W. Parson, J. E. Martin, and R. E. Blankenship. "Picosecond Absorption Studies on Photosynthetic Reaction Centers of Chloroflexus aurantiacus." In Current Research in Photosynthesis, 121–24. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miller, Mette, Tomas Gillbro, and Raymond P. Cox. "Energy Transfer Kinetics in Different Chlorosome Preparations from Chloroflexus aurantiacus." In Current Research in Photosynthesis, 1141–44. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, J. L., J. C. Lambry, M. Ashokkumar, M. E. Michel-Beyerle, R. Feick, and J. Breton. "Primary Charge Separation Process in Reaction Centers from Chloroflexus aurantiacus Bacterium." In Springer Series in Chemical Physics, 524–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84269-6_159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blankenship, Robert E., Jeffrey T. Trost, and L. J. Mancino. "Properties of Reaction Centers from the Green Photosynthetic Bacterium Chloroflexus aurantiacus." In The Photosynthetic Bacterial Reaction Center, 119–27. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0815-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography