Academic literature on the topic 'Cholesteric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cholesteric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cholesteric"

1

Bindu Madhavi, A., and S. Sreehari Sastry. "Rheological properties of cholesteric liquid crystals as lubricant additives." International Journal of Modern Physics B 33, no. 05 (February 20, 2019): 1950014. http://dx.doi.org/10.1142/s0217979219500140.

Full text
Abstract:
Rheological properties of Cholesteryl n-valerate, Cholesteryl decanoate and Cholesteryl myristate which are esters of cholesterol have been studied. Phase transition temperatures and rheological parameters such as viscosity, elastic modulus G[Formula: see text], loss modulus G[Formula: see text] as functions of temperature, shear rate and time are investigated. In frequency sweep test, a higher transition crossover region has occurred for Cholesteryl myristate, whereas for Cholesteryl n-valerate a frequency-independent plateau prevailed for both the moduli. The occurrence of blue phase in Cholesteryl decanoate during temperature sweep measurements is an indication for the rheological support. The results for steady state have informed that cholesteric esters are having non-Newtonian flow behavior in their respective cholesteric phases. The power-law model has explained well the shear rate dependence of shear stress. A few practical applications of these esters as lubricant additives are discussed, too.
APA, Harvard, Vancouver, ISO, and other styles
2

Vill, V., J. Thiem, and P. Rollin. "Flüssigkristalline aromatische Cholesterin-Derivate." Zeitschrift für Naturforschung A 47, no. 3 (March 1, 1992): 515–20. http://dx.doi.org/10.1515/zna-1992-0313.

Full text
Abstract:
Abstract Liquid Crystalline Aromatic Cholesterol Derivates A series of aromatic cholesteryl ethers, esters, phenylcarbonates and benzylcarbonates were prepared and their liquid crystalline properties studied. The occurence of ferroelectric phases as well as properties of cholesteric and blue phases alternate with the number of linking atomes between steroid and atomatic system
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Yuan Ming, Ye Tang Guo, Qing Lan Ma, and Wei Wei Liu. "Synthesis and Characterization of a Cholesteric Liquid Crystal Cholesteryl Nonanoate." Key Engineering Materials 428-429 (January 2010): 94–97. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.94.

Full text
Abstract:
A cholesteric liquid crystal cholesteryl nonanoate was synthesized and then characterized by means of differential scanning calorimetry and polarized optical microscopy. As temperature decreased from its clearing point, cholesteric phase was formed for cholesteryl nonanoate and accompanied by continuous evolution of colors in the focal conic textures. Furthermore, beautiful spherulite crystals were observed to grow out of the cholesteric phase as the crystallization continued. The evolution of the colors in recorded textures was contributed to temperature-dependent selective reflection of the liquid crystal.
APA, Harvard, Vancouver, ISO, and other styles
4

Sixou, P., J. M. Gilli, A. Ten Bosch, F. Fried, P. Maïssa, L. Varichon, and M. H. Godinho. "Cholesteric mesophases." Physica Scripta T35 (January 1, 1991): 47–52. http://dx.doi.org/10.1088/0031-8949/1991/t35/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alvarez, R., and G. H. Mehl. "Cholesteric Silatranes." Molecular Crystals and Liquid Crystals 439, no. 1 (June 2005): 259/[2125]—267/[2133]. http://dx.doi.org/10.1080/15421400590955118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brand, H. R., and H. Pleiner. "Cholesteric to cholesteric phase transitions in liquid crystals." Journal de Physique Lettres 46, no. 15 (1985): 711–18. http://dx.doi.org/10.1051/jphyslet:019850046015071100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Keyes, P. H. "The Cholesteric Blue Phases." MRS Bulletin 16, no. 1 (January 1991): 32–37. http://dx.doi.org/10.1557/s0883769400057882.

Full text
Abstract:
In 1888, the year commonly taken as the birthdate of liquid crystal research, F. Reinitzer wrote to O. Lehmann to describe the curious properties of cholesteryl benzoate, a “substance [which] has two melting points, if it can be expressed in such a manner.” Throughout most of the 33°C interval between these two “melting points” this material is in the birefringent fluid state now known as the cholesteric liquid crystal. Today it is common to find compounds showing a whole cascade of liquid crystalline mesophases as the temperature is increased, but it is not customary to refer to any of the phase changes between them as “melting points” except for the lowest temperature transition where the crystalline lattice dissolves. In recent years, however, it has been discovered that many cholesteric liquid crystals, includin g cholesteryl benzoate, do something very strange in a temperature interval of only a degree or so just before they yield up their last bit of liquid crystalline order: they form complex structures having the symmetries of cubic lattices — they “freeze”! – and then “melt” at a higher temperature into either the ordinary amorphous liquid or else into a new kind of amorphous liquid which in turn undergoes a sharp transition into the ordinary amorphous liquid at still higher temperature.
APA, Harvard, Vancouver, ISO, and other styles
8

Ye, Qiang, Dandan Zhu, Hongxing Zhang, Xuemin Lu, and Qinghua Lu. "Thermally tunable circular dichroism and circularly polarized luminescence of tetraphenylethene with two cholesterol pendants." Journal of Materials Chemistry C 3, no. 27 (2015): 6997–7003. http://dx.doi.org/10.1039/c5tc00987a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gevorgyan, A. A., K. V. Papoyan, and O. V. Pikichyan. "Reflection and transmission of light by cholesteric liquid crystal-glass-cholesteric liquid crystal and cholesteric liquid crystal(1)-cholesteric crystal(2) systems." Optics and Spectroscopy 88, no. 4 (April 2000): 586–93. http://dx.doi.org/10.1134/1.626843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

OBADOVIĆ, D. Ž., M. STOJANOVI, S. JOVANOVIĆ-ŠANTA, D. LAZAR, A. VAJDA, and N. ÉBER. "THE INFLUENCE OF NEW D-SECO-ESTRONE DERIVATIVES ON THE BEHAVIOR OF THE CHOLESTERIC LIQUID CRYSTALS BINARY MIXTURES." International Journal of Modern Physics B 20, no. 21 (August 20, 2006): 2999–3013. http://dx.doi.org/10.1142/s0217979206035333.

Full text
Abstract:
We have studied the influence of the new chiral non-mesogenic seco-estrone derivatives 1-7, synthesized in several synthetic steps starting from estrone, onto the physical characteristics of the binary mixtures of cholesteric liquid crystals. We have examined the phase transitions of the mixture of cholesteryl laurate and cholesteryl enantate with the added chiral non-mesogenic additives 1-7 (45%-45%-10%; Mix.1-Mix.7, respectively). A considerable shift of the I → Ch phase transition temperature, as well as of the temperature of the SmA * phase formation, was observed. X-ray diffraction data enabled the determination of the molecular structures of the compounds 3, 5, 6 and 7, the crystal lattice parameters of the new chiral additives and their molecular length (ℓ) and width (d*), as well as some parameters of the mixtures Mix.1-Mix.6: the thickness of smectic layers and the longitudinal spacing distance in the cholesteric phase (d) and the average distance between the long axes of neighbouring molecules (D). Using molecular-mechanic calculations, on the basis of solved molecular structures, the most probably conformation of the other compounds (1, 2 and 4) used in this work is determined. We have also investigated the influence of these chiral additives onto the pitch of the cholesteric helix of a binary mixture of cholesteric liquid crystals.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cholesteric"

1

Venkataraman, Nithya Leela. "Photosensitive Cholesteric Liquid Crystal Materials." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1248110797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strömer, Jan. "Elastic properties of nematic and cholesteric liquid crystals." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nemati, Hossein. "COLOR TUNING IN POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1428717594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Ying. "CHOLESTERIC LIQUID CRYSTAL PHOTONIC CRYSTAL LASERS AND PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2706.

Full text
Abstract:
This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser emission is further demonstrated in a hybrid photonic band edge - Fabry-Perot (FP) type structure by sandwiching the CLC active layer within a circular polarized resonator consisting of two CLC reflectors. The resonator generates multiple FP modes while preserving the PBE mode from the active layer. More importantly this band edge mode can be greatly enhanced by the external resonator under some conditions. Theoretical analysis is conducted based on 4×4 transfer matrix and scattering matrix and the results are consistent with our experimental observations. To make the CLC laser more compact and miniaturized, we have developed a flexible polymer laser using dye-doped cholesteric polymeric films. By stacking the mirror reflecting layer, the active layer and the CLC reflecting layer, enhanced laser emission was observed in opposite-handed circular polarization state, because of the light recycling effect. On the other hand, we use the stacked cholesteric liquid crystal films, or the cholesteric liquid crystals and polymer composite films to demonstrate the single film broadband circular polarizers, which are helpful for converting a randomly polarized light into linear polarization. New fabrication methods are proposed and the circular polarizers cover ~280 nm in the visible spectral range. Both theoretical simulation and experimental results are presented with a good match.
Ph.D.
Optics and Photonics
Optics and Photonics
Optics PhD
APA, Harvard, Vancouver, ISO, and other styles
5

Self, Rodney Harold. "Mathematical models of some nematic and cholesteric liquid crystal devices." Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/50644/.

Full text
Abstract:
This thesis describes the mathematical modelling and analysis of liquid crystal systems when an electric field is applied. This analysis is performed for Nematic, Twisted nematic, and Super-twisted nematic cells and for Polymer Gels. The mathematical techniques employed are: linear and non-linear stability analysis; perturbation theory; and the method of matched asymptotic expansions. For conventional nematic systems analytic expressions are obtained which describe the distortion of the liquid crystal and the coupled electric field at low, intermediate, and high applied voltages. Aspects of the dynamics are considered for both strong and weak anchoring and also with the inclusion of a coupled flow. It is shown that certain weakly anchored nematic systems admit travelling wave solutions. This is particularly relevant to the relaxation of polymer gels. For these systems a model is proposed which treats the polymer matrix as comprising thin orientated fibrils which act as weak anchoring sites distributed throughout the liquid crystal. The model is shown to correctly predict many of the experimentally observed properties of polymer gels. Specifically it predicts the enhanced critical voltage for such systems and also indicates that they saturate at a voltage proportionately close to the critical voltage. The model predicts that the decay of a polymer gel from a highly distorted state occurs via a travelling wave. This in turn implies that the decay constant will depend linearly on the width of the cell containing the gel.
APA, Harvard, Vancouver, ISO, and other styles
6

Varanytsia, Andrii. "Augmenting Electro-Optic and Optical Behavior of Cholesteric and Nematic Liquid Crystals." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1532526040658373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pereira, Maria Carolina Figueirinhas. "Wetting of cholesteric liquid crystals." Master's thesis, 2015. http://hdl.handle.net/10451/18244.

Full text
Abstract:
Tese de mestrado em Física, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015
Desde a descoberta dos Cristais Líquidos (CLs), que a busca por aplicações destes materiais com propriedades mecânicas e electro-ópticas tão peculiares tem sido uma área de grande interesse. As suas aplicações mais conhecidas incluem aplicações à medicina – CLs podem ser usados como termómetros – e à fotónica – CLs estão na base dos LCDs (Liquid Crystal Displays) que representam cerca de 90% do mercado mundial de dispositivos de visualização. Tal como os LCDs, o fenómeno de molhagem tem sido alvo de grande estudo, uma vez que diversos fenómenos de molhagem são parte integrante do nosso dia-a-dia. Em particular, o estudo da molhagem engloba o estudo de fenómenos interfaciais, cuja compreensão ajuda a responder a questões fundamentais tais como definir uma interface e calcular uma tensão de superfície. Recentemente, o problema da molhagem por colestéricos começou a atrair atenções, não só pelas potenciais aplicações tecnológicas mas também pelo facto de ser um sistema ainda pouco explorado. O formalismo de Landau-de Gennes (LdG) tem-se provado ideal para o desenvolvimento de um entendimento teórico da física subjacente aos sistemas de CLs. Nesta dissertação, tiramos partido deste formalismo para modelar uma interface CI livre (interface entre uma fase líquido-cristalina colestérica e uma isotrópica) e a molhagem de uma superfície plana por um colestérico (interface CI na presença de uma superfície). Para sistemas simples de colestéricos é fácil deduzir um modelo analítico mas para situações mais complexas, onde o sistema apresenta distorções elásticas, precisamos de recorrer a modelos numéricos. Na presente dissertação começamos por introduzir o fenómeno de molhagem para fluidos simples. A equação de Young estabelece a condição de molhagem quando o ângulo de contacto é zero. Com o intuito de introduzir a molhagem por CLs, fazemos um resumo das propriedades dos CLs, assim como da descrição mesoscópica fenomenológica que irá ser usada para modelar cristais líquidos colestéricos – o modelo da energia livre de Landau-de Gennes. Para temperaturas menores do que uma temperatura crítica, os CLs exibem uma fase onde as moléculas apresentam um certo nível de ordenamento médio (fase ordenada). Acima dessa temperatura crítica, os CLs comportam-se como fluidos isotrópicos (fase isotrópica). Devido à simetria dos CLs, o parâmetro de ordem que caracteriza a fase líquido-cristalina ordenada é um tensor de segunda ordem. O modelo de energia livre de LdG descreve o CL em termos de duas densidades de energia livre: uma que decreve a transição entre a fase líquido-cristalina e a fase isotrópica, e uma que penaliza variações do parâmetro de ordem, i.e., penaliza distorções elásticas. Introduzimos também a densidade de energia livre associada à superfície plana que penaliza desvios da orientação molecular em relação à orientação favorecida na superfície. O conceito de defeitos topológicos em CLs é desenvolvido mencionando os dois tipos de defeitos existentes em colestéricos: pontos e linhas (disclinações). De seguida, os resultados da literatura mais importantes para a molhagem por CLs nemáticos e para os fenómenos interfaciais em colestéricos são revistos. Quando uma surperfíe plana é molhada por um nemático, a interface nemático-isotrópico é sempre plana. Para colestéricos isto pode já não ser verdade uma vez que um colestérico forma defeitos topológicos perto da interface CI para quase todas as configurações colestéricas. A única interface CI livre que não exibe defeitos topológicos corresponde a um colestérico com camadas paralelas à interface onde o ancoramento preferencial é também paralelo à interface. Estudos experimentais mostram a formação destes defeitos topológicos perto da interface CI quando uma superfície é molhada por um colestérico. Estes defeitos apresentam ainda uma dinâmica peculiar à medida que o filme de colestérico cresce na superfície. Neste trabalho, estamos interessados no estudo das propriedades termodinâmicas de sistemas colestéricos e, como tal, analisamos configurações de equilíbrio obtidas pela minimização da energia livre LdG. Segundo os cálculos teóricos realizados para o estudo da molhagem por um colestérico sem distorções elásticas, tal colestérico exibe as mesmas propriedades de molhagem que um nemático. Para o estudo de sistemas colestéricos com distorções elásticas tivemos de recorrer a Métodos de Elementos Finitos para a minimização numérica da energia livre LdG. O estudo numérico das propriedades da interface CI mostra que há formação de disclinações perto da interface o que leva a interface a relaxar para uma interface ondulada de modo a evitar a formação de mais disclinações de elevado custo energético. O perfil da interface ondulada é determinado pelas propriedades intrínsecas do colestérico: a periodicidade (pitch P) e a razão k entre as constantes elásticas L1 e L2 do sistema (k = L2=L1). A amplitude das ondulações escala de acordo com A~pP e A ~ k, contrariamente ao que é sugerido na literatura. Esta diferença deve-se à presença de duas escalas de comprimento no sistema: a escala do pitch P e do comprimento de correlação ξ, que determina o tamanho do núcleo dos defeitos topológicos. Apesar de ξ << P, a influência de ξ é ainda notória uma vez que a interface ondula para evitar a formação de mais defeitos topológicos. Do ponto de vista termodinâmico, as distorções elásticas e os defeitos topológicos fazem parte da interface. A energia livre da interface inclui, portanto, a energia das distorções e defeitos. Sendo a tensão de superfície a energia livre por unidade de área, torna-se simples determinar a tensão de superfície da interface CI em função P e k. Para elevados valores de P, a tensão de superfície tende para o valor assimptótico (limite do nemático), conforme esperado. Para pequenos valores de P, a tensão de superfície diminui com a diminuição do valor de k chegando mesmo a assumir valores negativos. Isto indica que nesta região de parâmetros a fase colestérica deixa de ser a fase mais estável dando lugar a fases mais exóticas como as blue phases. Estas fases são caracterizadas pela formação de regiões de double-twist que têm energia inferior à de uma phase colestérica. No que toca ao estudo da molhagem por colestéricos, neste trabalho estamos interessados no estudo da molhagem de uma superfície plana induzida pelo aumento da força do ancoramento favorecido na superfície. Se considerarmos um cholestérico na fase isotrópica em contacto com uma superfície plana à temperatura the coexistência colestérico-isotrópico, há medida que a força do ancoramento imposto na superfície aumenta, começa a ser favorável ordenar as moléculas perto da superfície formando-se um filme the fase colestérica ordenada. A espessura do filme cresce com o aumento da força do ancoramento até a distância entre a superfície plana e a interface CI ser grande em relação ao tamanho do sistema. Neste ponto ocorre a transição de molhagem. Ao valor da força do ancoramento para o qual se dá a transição de molhagem dá-se o nome de constante de ancoramento de transição t. Para o caso em que o filme colestérico não exibe distorções elásticas ou defeitos, t é independente do valor de P, confirmando o resultado de um colestérico e um nemático uniformes terem as mesmas propriedades de molhagem. Na situação em que a fase ordenada exibe distorções ou defeitos, t tende para o limite do nematico para grandes valores de P, tal como esperado, sendo a ligeira diferença entre os valores devido às distorções e defeitos adicionais que não estão presentes no nemático. Para pequenos valores de P, t diminui com a diminuição de k, tal como , o que sugere a emergência de blue phases. De facto, t segue a variação de  ou, por outras palavras, a tensão de superfície "controla" a transição de molhagem.
Recently, wetting phenomena in cholesteric systems have started to receive increasing attention. The Landau-de Gennes formalism has proved ideal for the development of a theoretical understanding of the underlying physics of Liquid Crystals (LCs). In this thesis, we take advantage of this formalism to model a free interface between a cholesteric and an isotropic phase and the wetting of a substrate by a cholesteric LC. For simple cholesteric systems it’s easy to build an analytic model but for situations where the system is elastically distorted we need to rely on numerical models. In this thesis we begin with a brief overview of theoretical approaches used when describing wetting by simple fluids and by liquid crystals. We present the phenomenological Landau-de Gennes (LdG) free energy model as well as the main results known for wetting in nematics and interfacial phenomena in cholesterics. We are concerned with the thermodynamic properties of the cholesteric system and, therefore, we analyze equilibrium configurations obtained by minimizing the LdG free energy. Theory predicts that a nematic and a non-distorted cholesteric have the same wetting properties. The numerical study of the properties of the interface shows the formation of topological defects for distorted cholesterics along with a relaxation of the interface to an undulated pattern whose profile is set by the intrinsic properties of the LC. The surface tension () of the interface and the anchoring strength of the LC molecules at the substrate for which the wetting transition occurs (t) are found to reach the nematic limit when the cholesteric periodicity is very large. For small periodicity and certain values of the elastic constants the cholesteric phase may become unstable giving place to more stable blue phases. Finally we see that t follows the behavior of , meaning that the surface tension drives the wetting transition.
APA, Harvard, Vancouver, ISO, and other styles
8

潘保同. "A Study of Cholesteric Liquid Crystals." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/23635510713136865967.

Full text
Abstract:
碩士
國立臺北科技大學
有機高分子研究所
90
Cholesteric liquid crystals are synthesized in this research. 4-(allyloxy) benzoic acid monomers are esterized with cholesterol and 4-phenyl phenol. The products are reacted with pentamethylcyclopentasiloxane to yield the cyclosiloxane liquid crystals. They are studied by polarized optical microscope,1H-NMR,and FTIR. On the other hand,polarized ATR-FTIR is used to investigate the 3-dimentional orientation of the liquid crystals. Orientation parameters are determined for the materials.
APA, Harvard, Vancouver, ISO, and other styles
9

Liaw, Chien-Huang, and 廖乾煌. "Electrical Controllable Cholesteric Liquid Crystal Phase Grating." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/35169132696877282057.

Full text
Abstract:
碩士
國立交通大學
光電工程所
89
Our previous experimental evidence has shown that the plane-parallel aligned cholesteric liquid crystal (CLC) cell has no more than two possible directions of stripe in fingerprint state. The direction of stripe is affected by the alignment direction and thickness-to-natural-pitch ratio, d/po, where d and po are cell gap and natural pitch of the cholesteric liquid crystal, respectively1. In suitable condition, homeotropic aligned CLC cell can also be in fingerprint state when abruptly switching off the applied external field. We found that the stripe direction depends not only on the boundary condition, but also on the profile of the driving voltage. Here we show that the angle between the stripe direction and the rubbing direction was tunable by the applied voltage. The theta modulation in the optical information processing can be realized in this type of CLC phase grating.
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Chih-Wei, and 吳致維. "Cholesteric Liquid Crystal Based Tunable Fiber Laser." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/atezyf.

Full text
Abstract:
碩士
國立中山大學
光電工程學系研究所
102
Laser therapy has a great attraction in past decades because of healing faster, less pain and less swelling. The different wavelength of laser sources is used for different treatment. However, the tuning range of laser wavelength in laser therapy is narrow so far. So, we propose the “cholesteric liquid crystal based tunable fiber laser" device to achieve compact size, low cost and tunable laser. Cholesteric liquid crystal is a 2D periodic strcucture so it is a photonic crystal and there is photonic bandgap in it. When the frequency of incident light locates at the photonic band edges of cholesteric liquid crystal, the velocity of incident light comes to zero. Then, by adding some laser dye into the CLC material and applying external force, there would lase in the mixture of CLC and laser dye. In this thesis, we formulate the CLC fiber laser device and measure the optical property and tunability of laser wavelength. The CLC fiber laser is formulated by CLC (nematic E48 and S811) with adding some laser dye DCM, two pieces of multi-mode fiber and hollow core fiber. However, It’s hard to do a good alignment film at the fiber ends, so the multi-domain of CLC planar texture results in multi-peak lasing output. The multi-mode fiber at incident way uses single-mode fiber to instead. The pumping spot size of SMF is small enough to see the single domain so the output lasing signal would be single mode. Additionally, The temperature controlled tunability of cholesteric liquid crystal fiber laser(SMF in, MMF out) is 22 nm.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cholesteric"

1

Holtmeier, Hans-Jürgen. Cholesterin. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61104-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roth, Eli. Good cholesterol, bad cholesterol. Rocklin, CA: Prima Pub. & Communications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roth, Eli. Good cholesterol, bad cholesterol. Rocklin, CA: Prima Pub. & Communications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roth, Eli. Good cholesterol, bad cholesterol. 2nd ed. Rocklin, CA: Prima Pub., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

G, Williams David. Cholesterol. Ingram, TX: Mountain Home Pub., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabine, John R. Cholesterol. Ann Arbor, Mich: University Microfilms International, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daninos, Jean-Michel. Cholesterol. Warszawa: W.A.B., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Møller, Jens. Cholesterol. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71600-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lupovici, Zaharia. Good cholesterol, bad cholesterol, and the most discussed cholesterol-- HDL. New York: Vantage Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harris, J. Robin, ed. Cholesterol Binding and Cholesterol Transport Proteins:. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8622-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Cholesteric"

1

Gooch, Jan W. "Cholesteric." In Encyclopedic Dictionary of Polymers, 142. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coates, David. "Cholesteric Reflective Displays." In Handbook of Visual Display Technology, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35947-7_93-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coates, David. "Cholesteric Reflective Displays." In Handbook of Visual Display Technology, 1545–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-79567-4_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coates, David. "Cholesteric Reflective Displays." In Handbook of Visual Display Technology, 2199–222. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yannian, and Quan Li. "Photoresponsive Cholesteric Liquid Crystals." In Intelligent Stimuli-Responsive Materials, 141–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118680469.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Jian, Wanshu Zhang, Meng Wang, Lanying Zhang, and Huai Yang. "Bandwidth Tunable Cholesteric Liquid Crystal." In Liquid Crystal Sensors, 1–32. Boca Raton, FL: CRC Press, [2017] | Series: Liquid crystals book series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120539-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Deng-Ke. "Reflective Cholesteric Liquid Crystal Displays." In Mobile Displays, 443–67. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470994641.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Osipov, M. A. "Molecular Theory of Cholesteric Polymers." In Partially Ordered Systems, 1–25. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8333-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Freidzon, Ya S., N. I. Boiko, V. P. Shibaev, and N. A. Platé. "Cholesteric Polymers with Mesogenic Side Groups." In Polymeric Liquid Crystals, 303–12. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-2299-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cladis, P. E. "A Review of Cholesteric Blue Phases." In Theory and Applications of Liquid Crystals, 73–98. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4613-8743-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cholesteric"

1

Cook, G., E. Beckel, V. Reshetnyak, M. A. Saleh, and D. R. Evans. "Cholesteric-Inorganic Hybrid Photorefractives." In Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/pr.2007.suc4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lavrentovich, Oleg D., Darius Subacius, Sergey V. Shiyanovskii, and Philip J. Bos. "Electrically controlled cholesteric gratings." In Optoelectronics and High-Power Lasers & Applications, edited by Richard L. Sutherland. SPIE, 1998. http://dx.doi.org/10.1117/12.305505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Ying, Kuan-Ming Chen, Yuhua Huang, and Shin-Tson Wu. "Broadband Circular Polarizer based on Cholesteric Liquid Crystal and Cholesteric Polymer Composite Films." In LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting. IEEE, 2007. http://dx.doi.org/10.1109/leos.2007.4382351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kozachenko, A., Viktor M. Sorokin, Y. Kolomzarov, V. Nazarenko, R. Zelinskii, and P. Titarenko. "Multicolor surface-stabilized cholesteric LCD." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sorokin, Viktor M., A. Sorokin, A. Rybalochka, and S. Valyukh. "Electronic addressing reflective cholesteric LCD." In Advanced Display Technologies:Basic Studies of Problems in Information Display (FLOWERS'2000), edited by Victor V. Belyaev and Igor N. Kompanets. SPIE, 2001. http://dx.doi.org/10.1117/12.431281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Young Jin, John Mastrangelo, Chris Spillmann, Jawad Naciri, and B. R. Ratna. "Reflective cholesteric liquid crystal gels." In Optics & Photonics 2005, edited by Iam-Choon Khoo. SPIE, 2005. http://dx.doi.org/10.1117/12.624038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crooker, Peter P., H. S. Kitzerow, and F. Xu. "Polymer-dispersed cholesteric liquid crystals." In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, edited by Ranganathan Shashidhar. SPIE, 1994. http://dx.doi.org/10.1117/12.172123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitov, Michel, Corinne Binet, and Christian Bourgerette. "Broadening of light reflection in glassy cholesteric materials and switchable polymer-stabilized cholesteric liquid crystals." In International Symposium on Optical Science and Technology, edited by Iam-Choon Khoo. SPIE, 2001. http://dx.doi.org/10.1117/12.449950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sung, Yu-Chien, Wei Lee, Yu-Cheng Hsiao, and Mon-Juan Lee. "Sensitive Biosensor Based on Cholesteric Mesophase." In Annual International Conference on Optoelectronics, Photonics & Applied Physics (OPAP 2016). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2301-3516_opap16.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chien, Liang-Chy, Vinay Joshi, Kai-Han Chang, Daniel A. Paterson, John M. D. Storey, Corrie Imrie, and Andrii Varanytsia. "Cholesteric metronomes with flexoelectrically-programmable amplitude." In Emerging Liquid Crystal Technologies XIII, edited by Igor Muševič, Liang-Chy Chien, Dirk J. Broer, and Vladimir G. Chigrinov. SPIE, 2018. http://dx.doi.org/10.1117/12.2291544.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cholesteric"

1

Davis, D., A. Kahn, X. Y. Huang, J. W. Doane, and C. Jones. Eight-Color High Resolution Reflective Cholesteric LCDs. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada452889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mi, Xiang-Dong, and Deng-Ke Yang. Cell Designs for Fast Reflective Cholesteric LCDs. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada455817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mi, Xiang-Dong, and Deng-Ke Yang. Ionic Effects in Bistable Reflective Cholesteric Liquid Crystals. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada455816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sprunt, Samuel N., and L. C. Chien. Polymer-Stabilized Cholesteric Liquid Crystal Diffraction Gratings for Optical Switching and Sensor Applications. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada409045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watson, P., V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos. A Study of the Dynamics of Reflection Color, Helical Axis Orientation, and Domain Size in Cholesteric Liquid Crystal Displays. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada455825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arias, Eduardo, Ivana Moggio, and Ronald Ziolo. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada619975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Min, Byungrok, Il Suk Kim, and Dong U. Ahn. Dietary Cholesterol Affects Lipid Metabolism in Rabbits. Ames (Iowa): Iowa State University, January 2015. http://dx.doi.org/10.31274/ans_air-180814-1348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Freeman, Michael R. A Cholesterol-Sensitive Regulator of the Androgen Receptor. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada543533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hur, Sun Jin, Kwon Il Seo, and Dong U. Ahn. Effects of Dietary Cholesterol and its Oxidation Products on Pathological Lesions and Cholesterol and Lipid Oxidation in the Rabbit Liver. Ames (Iowa): Iowa State University, January 2015. http://dx.doi.org/10.31274/ans_air-180814-1349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wood, W. G. Mechanisms of Alcohol Induced Effects on Cellular Cholesterol Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada398121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography