Journal articles on the topic 'Chord and twist distributions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Chord and twist distributions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tahani, Mojtaba, Ghazale Kavari, Mojtaba Mirhosseini, and Samira Ghiyasi. "Different functionalized chord and twist distributions in aerodynamic design of HAWTs." Environmental Progress & Sustainable Energy 38, no. 4 (2019): 13108. http://dx.doi.org/10.1002/ep.13108.
Full textGiovanetti, EliB, and KennethC Hall. "Minimum Loss Load, Twist, and Chord Distributions for Coaxial Helicopters in Hover." Journal of the American Helicopter Society 62, no. 1 (2017): 1–9. http://dx.doi.org/10.4050/jahs.62.012001.
Full textTahani, Mojtaba, Ghazale Kavari, Mehran Masdari, and Mojtaba Mirhosseini. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions." Energy 131 (July 2017): 78–91. http://dx.doi.org/10.1016/j.energy.2017.05.033.
Full textYang, Kyoungboo. "Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization." Energies 13, no. 9 (2020): 2320. http://dx.doi.org/10.3390/en13092320.
Full textTan, Chung Ming, and Mei Juan Lai. "Small Wind Turbine Design Verification by Computer Simulation." Applied Mechanics and Materials 863 (February 2017): 235–40. http://dx.doi.org/10.4028/www.scientific.net/amm.863.235.
Full textTangler, J. L. "Influence of Pitch, Twist, and Taper on a Blade’s Performance Loss due to Roughness." Journal of Solar Energy Engineering 119, no. 3 (1997): 248–52. http://dx.doi.org/10.1115/1.2888027.
Full textGaletuse, S. "On the Highest Efficiency Windmill Design." Journal of Solar Energy Engineering 108, no. 1 (1986): 41–48. http://dx.doi.org/10.1115/1.3268062.
Full textDebbache, Mohammed, Messaoud Hazmoune, Semcheddine Derfouf, Dana-Alexandra Ciupageanu, and Gheorghe Lazaroiu. "Wind Blade Twist Correction for Enhanced Annual Energy Production of Wind Turbines." Sustainability 13, no. 12 (2021): 6931. http://dx.doi.org/10.3390/su13126931.
Full textPurusothaman, M., T. N. Valarmathi, and S. Praneeth Reddy. "Selection of Twist and Chord Distribution of Horizontal Axis Wind Turbine in Low Wind Conditions." IOP Conference Series: Materials Science and Engineering 149 (September 2016): 012203. http://dx.doi.org/10.1088/1757-899x/149/1/012203.
Full textXu, Jianhua, Zhonghua Han, Xiaochao Yan, and Wenping Song. "Design Optimization of a Multi-Megawatt Wind Turbine Blade with the NPU-MWA Airfoil Family." Energies 12, no. 17 (2019): 3330. http://dx.doi.org/10.3390/en12173330.
Full textDroandi, G., and G. Gibertini. "Aerodynamic shape optimisation of a proprotor and its validation by means of CFD and experiments." Aeronautical Journal 119, no. 1220 (2015): 1223–51. http://dx.doi.org/10.1017/s0001924000011222.
Full textSelig, M. S., and V. L. Coverstone-Carroll. "Application of a Genetic Algorithm to Wind Turbine Design." Journal of Energy Resources Technology 118, no. 1 (1996): 22–28. http://dx.doi.org/10.1115/1.2792688.
Full textRahgozar, Saeed, Abolfazl Pourrajabian, Syed Ali Abbas Kazmi, and Syed Muhammad Raza Kazmi. "Performance analysis of a small horizontal axis wind turbine under the use of linear/nonlinear distributions for the chord and twist angle." Energy for Sustainable Development 58 (October 2020): 42–49. http://dx.doi.org/10.1016/j.esd.2020.07.003.
Full textChattot, Jean-Jacques. "Optimization of Wind Turbines Using Helicoidal Vortex Model." Journal of Solar Energy Engineering 125, no. 4 (2003): 418–24. http://dx.doi.org/10.1115/1.1621675.
Full textAlkhabbaz, Ali, Ho-Seong Yang, A. H. Samitha Weerakoon, and Young-Ho Lee. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine." Renewable Energy 178 (November 2021): 1398–420. http://dx.doi.org/10.1016/j.renene.2021.06.077.
Full textChaudhary, Manoj Kumar, and Anindita Roy. "Design & optimization of a small wind turbine blade for operation at low wind speed." World Journal of Engineering 12, no. 1 (2015): 83–94. http://dx.doi.org/10.1260/1708-5284.12.1.83.
Full textJimenez-Garcia, A., M. Biava, G. N. Barakos, K. D. Baverstock, S. Gates, and P. Mullen. "Tiltrotor CFD Part II - aerodynamic optimisation of tiltrotor blades." Aeronautical Journal 121, no. 1239 (2017): 611–36. http://dx.doi.org/10.1017/aer.2017.21.
Full textWang, Qing, and Qijun Zhao. "Rotor blade aerodynamic shape optimization based on high-efficient optimization method." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 2 (2019): 375–87. http://dx.doi.org/10.1177/0954410019865700.
Full textWang, Yong Zhi, Feng Li, Xu Zhang, and Wei Min Zhang. "Composite Wind Turbine Blade Aerodynamic and Structural Integrated Design Optimization Based on RBF Meta-Model." Materials Science Forum 813 (March 2015): 10–18. http://dx.doi.org/10.4028/www.scientific.net/msf.813.10.
Full textKhalil, Yassine, Lhoussaine Tenghiri, Farid Abdi, and Anas Bentamy. "Improvement of aerodynamic performance of a small wind turbine." Wind Engineering 44, no. 1 (2019): 21–32. http://dx.doi.org/10.1177/0309524x19849847.
Full textIemma, Umberto, Caterina Poggi, Monica Rossetti, and Giovanni Bernardini. "Techniques for adaptive metamodelling of propeller arrays far-field noise." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 4 (2021): 2674–86. http://dx.doi.org/10.3397/in-2021-2203.
Full textStanley, Andrew P. J., and Andrew Ning. "Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines." Wind Energy Science 4, no. 1 (2019): 99–114. http://dx.doi.org/10.5194/wes-4-99-2019.
Full textDing, Jiao Jiao, Hao Wang, Li Ping Sun, and Bing Ma. "Optimal Design of Wind Turbine Blades with Wilson and BEM Method Integrated." Applied Mechanics and Materials 404 (September 2013): 286–91. http://dx.doi.org/10.4028/www.scientific.net/amm.404.286.
Full textBir, Gunjit S. "Computerized Method for Preliminary Structural Design of Composite Wind Turbine Blades." Journal of Solar Energy Engineering 123, no. 4 (2001): 372–81. http://dx.doi.org/10.1115/1.1413217.
Full textEncarnacion, Job Immanuel, Cameron Johnstone, and Stephanie Ordonez-Sanchez. "Design of a Horizontal Axis Tidal Turbine for Less Energetic Current Velocity Profiles." Journal of Marine Science and Engineering 7, no. 7 (2019): 197. http://dx.doi.org/10.3390/jmse7070197.
Full textModarres, Ramin, and David A. Peters. "Optimum Actuator-Disk Performance in Hover and Axial Flight by a Compact Momentum Theory with Swirl." Journal of the American Helicopter Society 60, no. 1 (2015): 1–10. http://dx.doi.org/10.4050/jahs.60.012003.
Full textMa, Yong, Aiming Zhang, Lele Yang, Chao Hu, and Yue Bai. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization." Energies 12, no. 10 (2019): 1972. http://dx.doi.org/10.3390/en12101972.
Full textSerré, Ronan, Hugo Fournier, and Jean-Marc Moschetta. "A design methodology for quiet and long endurance MAV rotors." International Journal of Micro Air Vehicles 11 (January 2019): 175682931984593. http://dx.doi.org/10.1177/1756829319845937.
Full text., Sutrisno, Prajitno ., Purnomo ., and B. W. Setyawan. "The Performance & Flow Visualization Studies of Three dimensional (3-D) Wind Turbine Blade Models." Modern Applied Science 10, no. 5 (2016): 132. http://dx.doi.org/10.5539/mas.v10n5p132.
Full textBurger, C., and W. Ruland. "Analysis of chord-length distributions." Acta Crystallographica Section A Foundations of Crystallography 57, no. 5 (2001): 482–91. http://dx.doi.org/10.1107/s0108767301005098.
Full textPons, Marie-Noëlle, Kim Milferstedt, and Eberhard Morgenroth. "Modeling of chord length distributions." Chemical Engineering Science 61, no. 12 (2006): 3962–73. http://dx.doi.org/10.1016/j.ces.2006.01.036.
Full textBarron, Nicholas R., Shawn D. Ryan, and Thijs Heus. "Reconciling Chord Length Distributions and Area Distributions for Fields of Fractal Cumulus Clouds." Atmosphere 11, no. 8 (2020): 824. http://dx.doi.org/10.3390/atmos11080824.
Full textNorthum, Jeremy D., and Stephen B. Guetersloh. "The Application of Microdosimetric Principles to Radiation Hardness Testing." Science and Technology of Nuclear Installations 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/828921.
Full textGille, Wilfried. "Chord Length Distributions of the Hemisphere." Journal of Mathematics and Statistics 1, no. 1 (2005): 24–28. http://dx.doi.org/10.3844/jmssp.2005.24.28.
Full textGates, J. "Some properties of chord length distributions." Journal of Applied Probability 24, no. 4 (1987): 863–74. http://dx.doi.org/10.2307/3214211.
Full textGates, J. "Some properties of chord length distributions." Journal of Applied Probability 24, no. 04 (1987): 863–74. http://dx.doi.org/10.1017/s0021900200116742.
Full textRen, Delin. "Random chord distributions and containment functions." Advances in Applied Mathematics 58 (July 2014): 1–20. http://dx.doi.org/10.1016/j.aam.2014.05.003.
Full textБыстров, В., V. Bystrov, В. Андреев, et al. "Innovative manufacturing technology of billets of wide-chord blades of gas turbine engines." Science intensive technologies in mechanical engineering 1, no. 2 (2016): 12–18. http://dx.doi.org/10.12737/17797.
Full textVidovic, Zoran. "Limit Distributions of Maximal Random Chord Length." Journal of Statistics Applications & Probability 5, no. 2 (2016): 213–20. http://dx.doi.org/10.18576/jsap/050202.
Full textGille, W. "Chord length distributions and small-angle scattering." European Physical Journal B 17, no. 3 (2000): 371–83. http://dx.doi.org/10.1007/s100510070116.
Full textvan Rooij, R. P. J. O. M., and J. G. Schepers. "The Effect of Blade Geometry on Blade Stall Characteristics." Journal of Solar Energy Engineering 127, no. 4 (2005): 496–502. http://dx.doi.org/10.1115/1.2037090.
Full textNagel, W. "Orientation-dependent chord length distributions characterize convex polygons." Journal of Applied Probability 30, no. 3 (1993): 730–36. http://dx.doi.org/10.2307/3214779.
Full textNagel, W. "Orientation-dependent chord length distributions characterize convex polygons." Journal of Applied Probability 30, no. 03 (1993): 730–36. http://dx.doi.org/10.1017/s0021900200044442.
Full textClark, N. N., and R. Turton. "Chord length distributions related to bubble size distributions in multiphase flows." International Journal of Multiphase Flow 14, no. 4 (1988): 413–24. http://dx.doi.org/10.1016/0301-9322(88)90019-5.
Full textBurkardt, Matthias. "Higher-twist parton distributions in QCD2." Nuclear Physics B 373, no. 3 (1992): 613–29. http://dx.doi.org/10.1016/0550-3213(92)90268-g.
Full textSimmons, M. J. H., P. A. Langston, and A. S. Burbidge. "Particle and droplet size analysis from chord distributions." Powder Technology 102, no. 1 (1999): 75–83. http://dx.doi.org/10.1016/s0032-5910(98)00197-1.
Full textGille, Wilfried. "Chord length distributions of infinitely long geometric figures." Powder Technology 123, no. 2-3 (2002): 292–98. http://dx.doi.org/10.1016/s0032-5910(01)00455-7.
Full textMazzolo, Alain, Benoı̂t Roesslinger, and Wilfried Gille. "Properties of chord length distributions of nonconvex bodies." Journal of Mathematical Physics 44, no. 12 (2003): 6195. http://dx.doi.org/10.1063/1.1622446.
Full textHansen, Steen. "Estimation of chord length distributions from small-angle scattering using indirect Fourier transformation." Journal of Applied Crystallography 36, no. 5 (2003): 1190–96. http://dx.doi.org/10.1107/s0021889803014262.
Full textPhillips, W. F., and D. F. Hunsaker. "Designing Wing Twist or Planform Distributions for Specified Lift Distributions." Journal of Aircraft 56, no. 2 (2019): 847–49. http://dx.doi.org/10.2514/1.c035206.
Full text