Journal articles on the topic 'Chromatin Architectural Proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Chromatin Architectural Proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
McBryant, Steven J., Valerie H. Adams, and Jeffrey C. Hansen. "Chromatin architectural proteins." Chromosome Research 14, no. 1 (February 2006): 39–51. http://dx.doi.org/10.1007/s10577-006-1025-x.
Full textThakur, Jitendra, and Steven Henikoff. "Architectural RNA in chromatin organization." Biochemical Society Transactions 48, no. 5 (September 8, 2020): 1967–78. http://dx.doi.org/10.1042/bst20191226.
Full textGrasser, K. "HMG1 and HU proteins: architectural elements in plant chromatin." Trends in Plant Science 3, no. 7 (July 1, 1998): 260–65. http://dx.doi.org/10.1016/s1360-1385(98)01259-x.
Full textvan Holde, Kensal, and Jordanka Zlatanova. "Chromatin architectural proteins and transcription factors: A structural connection." BioEssays 18, no. 9 (September 1996): 697–700. http://dx.doi.org/10.1002/bies.950180903.
Full textZhao, Bo, Yanpeng Xi, Junghyun Kim, and Sibum Sung. "Chromatin architectural proteins regulate flowering time by precluding gene looping." Science Advances 7, no. 24 (June 2021): eabg3097. http://dx.doi.org/10.1126/sciadv.abg3097.
Full textDriessen, Rosalie P. C., and Remus Th Dame. "Structure and dynamics of the crenarchaeal nucleoid." Biochemical Society Transactions 41, no. 1 (January 29, 2013): 321–25. http://dx.doi.org/10.1042/bst20120336.
Full textFoulger, Larus E., Connie Goh Then Sin, Q. Q. Zhuang, Hugh Smallman, James M. Nicholson, Stanley J. Lambert, Colin D. Reynolds, et al. "Efficient purification of chromatin architectural proteins: histones, HMGB proteins and FKBP3 (FKBP25) immunophilin." RSC Advances 2, no. 28 (2012): 10598. http://dx.doi.org/10.1039/c2ra21758a.
Full textAlpsoy, Aktan, Surbhi Sood, and Emily C. Dykhuizen. "At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture." Biology 10, no. 4 (March 27, 2021): 272. http://dx.doi.org/10.3390/biology10040272.
Full textDriessen, Rosalie P. C., and Remus Th Dame. "Nucleoid-associated proteins in Crenarchaea." Biochemical Society Transactions 39, no. 1 (January 19, 2011): 116–21. http://dx.doi.org/10.1042/bst0390116.
Full textBrzeski, Jan, and Andrzej Jerzmanowski. "Plant chromatin - epigenetics linked to ATP-dependent remodeling and architectural proteins." FEBS Letters 567, no. 1 (April 9, 2004): 15–19. http://dx.doi.org/10.1016/j.febslet.2004.03.068.
Full textLlères, David, Yui Imaizumi, and Robert Feil. "Exploring chromatin structural roles of non-coding RNAs at imprinted domains." Biochemical Society Transactions 49, no. 4 (August 2, 2021): 1867–79. http://dx.doi.org/10.1042/bst20210758.
Full textMinervini, Angela, Nicoletta Coccaro, Luisa Anelli, Antonella Zagaria, Giorgina Specchia, and Francesco Albano. "HMGA Proteins in Hematological Malignancies." Cancers 12, no. 6 (June 3, 2020): 1456. http://dx.doi.org/10.3390/cancers12061456.
Full textAdkins, Nicholas L., and Philippe T. Georgel. "MeCP2: structure and functionThis paper is one of a selection of papers published in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process." Biochemistry and Cell Biology 89, no. 1 (February 2011): 1–11. http://dx.doi.org/10.1139/o10-112.
Full textVermunt, Marit W., Di Zhang, and Gerd A. Blobel. "The interdependence of gene-regulatory elements and the 3D genome." Journal of Cell Biology 218, no. 1 (November 15, 2018): 12–26. http://dx.doi.org/10.1083/jcb.201809040.
Full textLuijsterburg, Martijn S., Malcolm F. White, Roel van Driel, and Remus Th Dame. "The Major Architects of Chromatin: Architectural Proteins in Bacteria, Archaea and Eukaryotes." Critical Reviews in Biochemistry and Molecular Biology 43, no. 6 (January 2008): 393–418. http://dx.doi.org/10.1080/10409230802528488.
Full textParisi, Silvia, Silvia Piscitelli, Fabiana Passaro, and Tommaso Russo. "HMGA Proteins in Stemness and Differentiation of Embryonic and Adult Stem Cells." International Journal of Molecular Sciences 21, no. 1 (January 6, 2020): 362. http://dx.doi.org/10.3390/ijms21010362.
Full textCubeñas-Potts, Caelin, M. Jordan Rowley, Xiaowen Lyu, Ge Li, Elissa P. Lei, and Victor G. Corces. "Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture." Nucleic Acids Research 45, no. 4 (November 29, 2016): 1714–30. http://dx.doi.org/10.1093/nar/gkw1114.
Full textValletta, Mariangela, Rosita Russo, Ilaria Baglivo, Veronica Russo, Sara Ragucci, Annamaria Sandomenico, Emanuela Iaccarino, et al. "Exploring the Interaction between the SWI/SNF Chromatin Remodeling Complex and the Zinc Finger Factor CTCF." International Journal of Molecular Sciences 21, no. 23 (November 25, 2020): 8950. http://dx.doi.org/10.3390/ijms21238950.
Full textMcBryant, Steven J., Christine Krause, Christopher L. Woodcock, and Jeffrey C. Hansen. "The Silent Information Regulator 3 Protein, SIR3p, Binds to Chromatin Fibers and Assembles a Hypercondensed Chromatin Architecture in the Presence of Salt." Molecular and Cellular Biology 28, no. 11 (March 24, 2008): 3563–72. http://dx.doi.org/10.1128/mcb.01389-07.
Full textDeng, Tao, Z. Iris Zhu, Shaofei Zhang, Fenfei Leng, Srujana Cherukuri, Loren Hansen, Leonardo Mariño-Ramírez, Eran Meshorer, David Landsman, and Michael Bustin. "HMGN1 Modulates Nucleosome Occupancy and DNase I Hypersensitivity at the CpG Island Promoters of Embryonic Stem Cells." Molecular and Cellular Biology 33, no. 16 (June 17, 2013): 3377–89. http://dx.doi.org/10.1128/mcb.00435-13.
Full textNalabothula, Narasimharao, Graham McVicker, John Maiorano, Rebecca Martin, Jonathan K. Pritchard, and Yvonne N. Fondufe-Mittendorf. "The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation." BMC Genomics 15, no. 1 (2014): 92. http://dx.doi.org/10.1186/1471-2164-15-92.
Full textKamagata, Kiyoto, Kana Ouchi, Cheng Tan, Eriko Mano, Sridhar Mandali, Yining Wu, Shoji Takada, Satoshi Takahashi, and Reid C. Johnson. "The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA." Nucleic Acids Research 48, no. 19 (September 30, 2020): 10820–31. http://dx.doi.org/10.1093/nar/gkaa799.
Full textSenigagliesi, Beatrice, Carlotta Penzo, Luisa Ulloa Severino, Riccardo Maraspini, Sara Petrosino, Hernan Morales-Navarrete, Enrico Pobega, et al. "The High Mobility Group A1 (HMGA1) Chromatin Architectural Factor Modulates Nuclear Stiffness in Breast Cancer Cells." International Journal of Molecular Sciences 20, no. 11 (June 4, 2019): 2733. http://dx.doi.org/10.3390/ijms20112733.
Full textTessari, Michela A., Monica Gostissa, Sandro Altamura, Riccardo Sgarra, Alessandra Rustighi, Clio Salvagno, Giuseppina Caretti, et al. "Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2." Molecular and Cellular Biology 23, no. 24 (December 15, 2003): 9104–16. http://dx.doi.org/10.1128/mcb.23.24.9104-9116.2003.
Full textQin, L., A. M. Erkelens, F. Ben Bdira, and R. T. Dame. "The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins." Open Biology 9, no. 12 (December 2019): 190223. http://dx.doi.org/10.1098/rsob.190223.
Full textNiu, Longjian, Wei Shen, Zhaoying Shi, Yongjun Tan, Na He, Jing Wan, Jialei Sun, et al. "Three-dimensional folding dynamics of the Xenopus tropicalis genome." Nature Genetics 53, no. 7 (June 7, 2021): 1075–87. http://dx.doi.org/10.1038/s41588-021-00878-z.
Full textChikhirzhina, Elena, Tatyana Starkova, Anton Beljajev, Alexander Polyanichko, and Alexey Tomilin. "Functional Diversity of Non-Histone Chromosomal Protein HmgB1." International Journal of Molecular Sciences 21, no. 21 (October 26, 2020): 7948. http://dx.doi.org/10.3390/ijms21217948.
Full textDunigan, David D., Ronald L. Cerny, Andrew T. Bauman, Jared C. Roach, Leslie C. Lane, Irina V. Agarkova, Kurt Wulser, et al. "Paramecium bursaria Chlorella Virus 1 Proteome Reveals Novel Architectural and Regulatory Features of a Giant Virus." Journal of Virology 86, no. 16 (June 13, 2012): 8821–34. http://dx.doi.org/10.1128/jvi.00907-12.
Full textSgarra, Riccardo, Silvia Pegoraro, Daniela D’Angelo, Gloria Ros, Rossella Zanin, Michela Sgubin, Sara Petrosino, Sabrina Battista, and Guidalberto Manfioletti. "High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network." International Journal of Molecular Sciences 21, no. 3 (January 22, 2020): 717. http://dx.doi.org/10.3390/ijms21030717.
Full textSzerlong, H. "The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling." EMBO Journal 22, no. 12 (June 16, 2003): 3175–87. http://dx.doi.org/10.1093/emboj/cdg296.
Full textVisone, Valeria, Antonella Vettone, Mario Serpe, Anna Valenti, Giuseppe Perugino, Mosè Rossi, and Maria Ciaramella. "Chromatin Structure and Dynamics in Hot Environments: Architectural Proteins and DNA Topoisomerases of Thermophilic Archaea." International Journal of Molecular Sciences 15, no. 9 (September 25, 2014): 17162–87. http://dx.doi.org/10.3390/ijms150917162.
Full textWillemin, Andréa, Lucille Lopez-Delisle, Christopher Chase Bolt, Marie-Laure Gadolini, Denis Duboule, and Eddie Rodriguez-Carballo. "Induction of a chromatin boundary in vivo upon insertion of a TAD border." PLOS Genetics 17, no. 7 (July 22, 2021): e1009691. http://dx.doi.org/10.1371/journal.pgen.1009691.
Full textLuijsterburg, Martijn S., Maarten C. Noom, Gijs J. L. Wuite, and Remus Th Dame. "The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective." Journal of Structural Biology 156, no. 2 (November 2006): 262–72. http://dx.doi.org/10.1016/j.jsb.2006.05.006.
Full textCreamer, K. M., and J. B. Lawrence. "XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1733 (September 25, 2017): 20160360. http://dx.doi.org/10.1098/rstb.2016.0360.
Full textPathak, Rashmi U., Nandini Rangaraj, Satish Kallappagoudar, Krishnaveni Mishra, and Rakesh K. Mishra. "Boundary Element-Associated Factor 32B Connects Chromatin Domains to the Nuclear Matrix." Molecular and Cellular Biology 27, no. 13 (May 7, 2007): 4796–806. http://dx.doi.org/10.1128/mcb.00305-07.
Full textBecker, Matthias, Antje Becker, Faiçal Miyara, Zhiming Han, Maki Kihara, David T. Brown, Gordon L. Hager, Keith Latham, Eli Y. Adashi, and Tom Misteli. "Differential In Vivo Binding Dynamics of Somatic and Oocyte-specific Linker Histones in Oocytes and During ES Cell Nuclear Transfer." Molecular Biology of the Cell 16, no. 8 (August 2005): 3887–95. http://dx.doi.org/10.1091/mbc.e05-04-0350.
Full textCesarini, Elisa, Anna D'Alfonso, and Giorgio Camilloni. "H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae." Molecular Biology of the Cell 23, no. 14 (July 15, 2012): 2770–81. http://dx.doi.org/10.1091/mbc.e12-02-0095.
Full textBecker, Nicole A., and L. James Maher. "High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli." Proceedings of the National Academy of Sciences 112, no. 23 (May 26, 2015): 7177–82. http://dx.doi.org/10.1073/pnas.1500412112.
Full textSoler-Vila, Paula, Pol Cuscó, Irene Farabella, Marco Di Stefano, and Marc A. Marti-Renom. "Hierarchical chromatin organization detected by TADpole." Nucleic Acids Research 48, no. 7 (February 21, 2020): e39-e39. http://dx.doi.org/10.1093/nar/gkaa087.
Full textBell, P., C. Mais, B. McStay, and U. Scheer. "Association of the nucleolar transcription factor UBF with the transcriptionally inactive rRNA genes of pronuclei and early Xenopus embryos." Journal of Cell Science 110, no. 17 (September 1, 1997): 2053–63. http://dx.doi.org/10.1242/jcs.110.17.2053.
Full textBenavente, R., and G. Krohne. "Involvement of nuclear lamins in postmitotic reorganization of chromatin as demonstrated by microinjection of lamin antibodies." Journal of Cell Biology 103, no. 5 (November 1, 1986): 1847–54. http://dx.doi.org/10.1083/jcb.103.5.1847.
Full textGosalia, Nehal, Daniel Neems, Jenny L. Kerschner, Steven T. Kosak, and Ann Harris. "Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus." Nucleic Acids Research 42, no. 15 (July 31, 2014): 9612–22. http://dx.doi.org/10.1093/nar/gku648.
Full textPopova, Evgenya Y., Sharon Wald Krauss, Sarah A. Short, Gloria Lee, Jonathan Villalobos, Joan Etzell, Mark J. Koury, Paul A. Ney, Joel Anne Chasis, and Sergei A. Grigoryev. "Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation." Chromosome Research 17, no. 1 (January 2009): 47–64. http://dx.doi.org/10.1007/s10577-008-9005-y.
Full textRaghuram, Nikhil, Gustavo Carrero, John Th’ng, and Michael J. Hendzel. "Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process." Biochemistry and Cell Biology 87, no. 1 (February 2009): 189–206. http://dx.doi.org/10.1139/o08-127.
Full textBouallaga, Isabelle, Sébastien Teissier, Moshe Yaniv, and Françoise Thierry. "HMG-I(Y) and the CBP/p300 Coactivator Are Essential for Human Papillomavirus Type 18 Enhanceosome Transcriptional Activity." Molecular and Cellular Biology 23, no. 7 (April 1, 2003): 2329–40. http://dx.doi.org/10.1128/mcb.23.7.2329-2340.2003.
Full textRitt, Christoph, Rudi Grimm, Silvia Fernandez, Juan C. Alonso, and Klaus D. Grasser. "Four differently chromatin-associated maize HMG domain proteins modulate DNA structure and act as architectural elements in nucleoprotein complexes." Plant Journal 14, no. 5 (June 1998): 623–31. http://dx.doi.org/10.1046/j.1365-313x.1998.00154.x.
Full textGonzález-Huici, Víctor, Martín Alcorlo, Margarita Salas, and José M. Hermoso. "Phage φ29 Proteins p1 and p17 Are Required for Efficient Binding of Architectural Protein p6 to Viral DNA In Vivo." Journal of Bacteriology 186, no. 24 (December 15, 2004): 8401–6. http://dx.doi.org/10.1128/jb.186.24.8401-8406.2004.
Full textScaffidi, Paola, and Marco E. Bianchi. "Spatially Precise DNA Bending Is an Essential Activity of the Sox2 Transcription Factor." Journal of Biological Chemistry 276, no. 50 (October 2, 2001): 47296–302. http://dx.doi.org/10.1074/jbc.m107619200.
Full textAgoston, D. v., and A. Dobi. "Complexity of transcriptional control in neuropeptide gene expression; enkephalin gene regulation during neurodevelopment." Biochemical Society Transactions 28, no. 4 (August 1, 2000): 446–51. http://dx.doi.org/10.1042/bst0280446.
Full textGuelman, Sebastián, Kenji Kozuka, Yifan Mao, Victoria Pham, Mark J. Solloway, John Wang, Jiansheng Wu, Jennie R. Lill, and Jiping Zha. "The Double-Histone-Acetyltransferase Complex ATAC Is Essential for Mammalian Development." Molecular and Cellular Biology 29, no. 5 (December 22, 2008): 1176–88. http://dx.doi.org/10.1128/mcb.01599-08.
Full text