Academic literature on the topic 'Chromatin Chromatin Receptors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chromatin Chromatin Receptors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chromatin Chromatin Receptors"

1

Hsiao, Pei-Wen, Bonnie J. Deroo, and Trevor K. Archer. "Chromatin remodeling and tissue-selective responses of nuclear hormone receptors." Biochemistry and Cell Biology 80, no. 3 (2002): 343–51. http://dx.doi.org/10.1139/o02-082.

Full text
Abstract:
Chromatin structure of eukaryotic genes regulates gene expression by controlling the accessibility of regulatory factors. To overcome the inhibitory nature of chromatin, protein complexes that modify higher order chromatin organization and histone–DNA contacts are critical players in regulating transcription. For example, nuclear hormone receptors regulate transcription by interacting with ATP-dependent chromatin-remodeling complexes and coactivators, which include histone acetyltransferases and histone methylases that modify the basic residues of histones. A growing number of tissue-specific
APA, Harvard, Vancouver, ISO, and other styles
2

Hebbar, Pratibha B., and Trevor K. Archer. "Chromatin remodeling by nuclear receptors." Chromosoma 111, no. 8 (2003): 495–504. http://dx.doi.org/10.1007/s00412-003-0232-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hsiao, Pei-Wen, Christy J. Fryer, Kevin W. Trotter, Weidong Wang, and Trevor K. Archer. "BAF60a Mediates Critical Interactions between Nuclear Receptors and the BRG1 Chromatin-Remodeling Complex for Transactivation." Molecular and Cellular Biology 23, no. 17 (2003): 6210–20. http://dx.doi.org/10.1128/mcb.23.17.6210-6220.2003.

Full text
Abstract:
ABSTRACT Nuclear hormone receptors are ligand-dependent transcriptional regulators that modulate chromatin structure. However, the precise molecular mechanisms by which receptors recruit chromatin-remodeling activity are not fully elucidated. We show that in the absence of its ligand-binding domain, the glucocorticoid receptor (GR) is able to interact with both nuclear receptor coactivators and the BRG1 chromatin-remodeling complex in vivo. Individually, the GR makes direct interactions with BRG1-associated factor 60a (BAF60a) and BAF57, but not with BRG1, BAF155, or BAF170. Further, BAF60a po
APA, Harvard, Vancouver, ISO, and other styles
4

Acevedo, Mari Luz, and W. Lee Kraus. "Transcriptional activation by nuclear receptors." Essays in Biochemistry 40 (June 1, 2004): 73–88. http://dx.doi.org/10.1042/bse0400073.

Full text
Abstract:
Transcriptional activation by nuclear receptors (NRs) involves the recruitment of distinct classes of co-activators and other transcription-related factors to target promoters in the chromatin environment of the nucleus. Chromatin has a general repressive effect on transcription, but also provides opportunities for NRs to regulate transcription by directing specific patterns of chromatin remodelling and histone modification. Ultimately, the transcription of hormone-regulated genes by NRs is critically dependent on co-ordinated physical and functional interactions among the receptors, chromatin
APA, Harvard, Vancouver, ISO, and other styles
5

Trotter, Kevin W., and Trevor K. Archer. "Nuclear receptors and chromatin remodeling machinery." Molecular and Cellular Endocrinology 265-266 (February 2007): 162–67. http://dx.doi.org/10.1016/j.mce.2006.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reikhardt, B. A., O. G. Kulikova, and N. S. Sapronov. "Receptors of chromatin for drug discovery." European Neuropsychopharmacology 6 (June 1996): 197–98. http://dx.doi.org/10.1016/0924-977x(96)88230-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Jimin, and Donald B. DeFranco. "Chromatin Recycling of Glucocorticoid Receptors: Implications for Multiple Roles of Heat Shock Protein 90." Molecular Endocrinology 13, no. 3 (1999): 355–65. http://dx.doi.org/10.1210/mend.13.3.0258.

Full text
Abstract:
Abstract Unliganded glucocorticoid receptors (GRs) released from chromatin after hormone withdrawal remain associated with the nucleus within a novel subnuclear compartment that serves as a nuclear export staging area. We set out to examine whether unliganded nuclear receptors cycle between distinct subnuclear compartments or require cytoplasmic transit to regain hormone and chromatin-binding capacity. Hormone-withdrawn rat GrH2 hepatoma cells were permeabilized with digitonin to deplete cytoplasmic factors, and then hormone-binding and chromatin-binding properties of the recycled nuclear GRs
APA, Harvard, Vancouver, ISO, and other styles
8

Gadaleta, Raffaella Maria, and Luca Magnani. "Nuclear receptors and chromatin: an inducible couple." Journal of Molecular Endocrinology 52, no. 2 (2013): R137—R149. http://dx.doi.org/10.1530/jme-13-0170.

Full text
Abstract:
The nuclear receptor (NR) family comprises 48 transcription factors (TFs) with essential and diverse roles in development, metabolism and disease. Differently from other TFs, NRs engage with well-defined DNA-regulatory elements, mostly after ligand-induced structural changes. However, NR binding is not stochastic, and only a fraction of the cognate regulatory elements within the genome actively engage with NRs. In this review, we summarize recent advances in the understanding of the interactions between NRs and DNA. We discuss how chromatin accessibility and epigenetic modifications contribute
APA, Harvard, Vancouver, ISO, and other styles
9

Collingwood, TN, FD Urnov, and AP Wolffe. "Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription." Journal of Molecular Endocrinology 23, no. 3 (1999): 255–75. http://dx.doi.org/10.1677/jme.0.0230255.

Full text
Abstract:
A contemporary view of hormone action at the transcriptional level requires knowledge of the transcription factors including the hormone receptor that may bind to promoters or enhancers, together with the chromosomal context within which these regulatory proteins function. Nuclear receptors provide the best examples of transcriptional control through the targeted recruitment of large protein complexes that modify chromosomal components and reversibly stabilize or destabilize chromatin. Ligand-dependent recruitment of transcriptional coactivators destabilizes chromatin by mechanisms including h
APA, Harvard, Vancouver, ISO, and other styles
10

Hager, G. L., T. M. Fletcher, N. Xiao, C. T. Baumann, W. G. Müller, and J. G. McNally. "Dynamics of gene targeting and chromatin remodelling by nuclear receptors." Biochemical Society Transactions 28, no. 4 (2000): 405–10. http://dx.doi.org/10.1042/bst0280405.

Full text
Abstract:
Activation of the murine-mammary-tumour virus (MMTV) promoter by the glucocorticoid receptor (GR) is associated with a chromatin structural transition in the B nucleosome region of the viral long terminal repeat (LTR). We have reconstituted this nucleoprotein transition with chromatin assembled on MMTV LTR DNA with Drosophila embryo extracts, purified GR, and HeLa nuclear extract. Chromatin remodelling in vitro is ATP-dependent and maps to a region identical with that found in vivo. We demonstrate specific, glucocorticoid response element dependent, binding of purified GR to a large, multi-nuc
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chromatin Chromatin Receptors"

1

Strömberg, Kia. "Notch signaling: from receptor cleavage to chromatin remodeling /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-540-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Yan. "Chromatin Remodeling in Transgenic Mouse Brain: Implications for the Neurobiology of Depression: A Dissertation." eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/423.

Full text
Abstract:
Histone lysine methylation is an important epigenetic mark for regulation of gene expression and chromatin organization. Setdb1 (Set domain, bifurcate 1), one of the histone lysine methyltransferases, specifically methylates histone H3 at lysine 9 (H3K9) and participates in transcriptional repression and heterochromatin formation. The major task of my thesis work was to investigate the epigenetic roles of Setdb1 in regulating brain functions. I started my thesis work by examining Setdb1 expression pattern during mouse brain development. The most robust signal of Setdb1 was detected in the feta
APA, Harvard, Vancouver, ISO, and other styles
3

Bharadwaj, Rahul. "Regulation of Higher Order Chromatin at GRIN2B and GAD1 Genetic Loci in Human and Mouse Brain: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/651.

Full text
Abstract:
Little is known about higher order chromatin structures in the human brain and their function in transcription regulation. We employed chromosome conformation capture (3C) to analyze chromatin architecture within 700 Kb surrounding the transcription start site (TSS) of the NMDA receptor and schizophrenia susceptibility gene, GRIN2B, in human and mouse cerebral cortex. Remarkably, both species showed a higher interaction between the TSS and an intronic sequence, enriched for (KRAB) Krueppel associated Box domain binding sites and selectively targeted by the (H3K9) histone 3 lysine 9 specific me
APA, Harvard, Vancouver, ISO, and other styles
4

Bharadwaj, Rahul. "Regulation of Higher Order Chromatin at GRIN2B and GAD1 Genetic Loci in Human and Mouse Brain: A Dissertation." eScholarship@UMMS, 2002. http://escholarship.umassmed.edu/gsbs_diss/651.

Full text
Abstract:
Little is known about higher order chromatin structures in the human brain and their function in transcription regulation. We employed chromosome conformation capture (3C) to analyze chromatin architecture within 700 Kb surrounding the transcription start site (TSS) of the NMDA receptor and schizophrenia susceptibility gene, GRIN2B, in human and mouse cerebral cortex. Remarkably, both species showed a higher interaction between the TSS and an intronic sequence, enriched for (KRAB) Krueppel associated Box domain binding sites and selectively targeted by the (H3K9) histone 3 lysine 9 specific me
APA, Harvard, Vancouver, ISO, and other styles
5

Guan, Wenyue. "TET proteins, New Cofactors for Nuclear Receptors." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN035/document.

Full text
Abstract:
L'hormone thyroïdienne (T3) contrôle à la fois les processus développementaux et physiologiques. Elle agit via les récepteurs de l'hormone thyroïdienne (TR), membres de la famille des récepteurs hormonaux nucléaires. Ils agissent comme des facteurs de transcription dépendants du ligand. La méthylation de l'ADN en position 5 de la cytosine est une modification épigénétique importante qui affecte la structure de la chromatine et l'expression des gènes. Des études récentes ont établi un rôle important des protéines de la famille TET (Ten-eleven translocation) dans la régulation de la dynamique de
APA, Harvard, Vancouver, ISO, and other styles
6

Lunazzi, Giulia 1981. "Analysis of NFAT5 expression and activity in response to toll-like receptors." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/666120.

Full text
Abstract:
Stimulation of Toll-like receptors (TLRs) in cells of the innate immune system activates the expression of a proinflammatory and antimicrobial gene program controlled by a network of transcriptional regulators. We show that NFAT5, which belongs to the Rel family of transcription factors and was previously characterized as an osmostress responsive factor, is required for the expression of a group of TLR-responsive genes in macrophages, such as Nos2, Il6 and Tnf. NFAT5 recruitment to its target genes is dependent on IKKβ activity, de novo protein synthesis and is sensitive to histone deacetylase
APA, Harvard, Vancouver, ISO, and other styles
7

Harish, S. "Transcriptional Regulation By Nuclear Receptor Homodimers Binding To The Direct Repeat Motif DR1 : Investigations In An in vitro Transcription System Derived From Rat Liver Nuclear Extracts." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/164.

Full text
Abstract:
Nuclear receptors (NRs) are important transcription factors involved in the regulation of a variety of physiological processes such as embryonic development, cell differentiation and homeostasis (for review, see Mangelsdorf et al., 1995 TenBaum and Baniahrned, 1997). In contrast to membrane bound receptors, they bind small lipophilic ligands and function in the nucleus as ligand-modulated transcription factors. The ligands for nuclear receptors include steroids (glucocorticoids, progestins, mineralocorticoids, androgens and estrogens), vitamin D3, retinoids, thyroid hormone, prostaglandins, fa
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Huay-Leng. "Glucocorticoid receptor mediated MMTV chromatin remodelling in vivo." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq28504.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wallberg, Annika. "Chromatin remodeling complexes involved in gene activation by the glucocorticoid receptor /." Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3956-X/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carnesecchi, Julie. "Régulation réciproque et coopération transcriptionnelle du complexe ERRalpha-LSD1." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0935.

Full text
Abstract:
Les récepteurs nucléaires sont des facteurs de transcription qui exercent leur fonction via le contrôle de la transcription de leurs gènes cibles, une régulation qui est dépendante de cofacteurs associés. Les complexes transcriptionnels ainsi formés dialogueront avec l’environnement chromatinien (méthylation de l’ADN, remodelage des nucléosomes, modifications post-traductionnelles des histones) afin de promouvoir la répression ou l’activation transcriptionnelle des cibles géniques de ces récepteurs. Ce projet a identifié une interaction entre la lysine déméthylase LSD1 et le récepteur nucléair
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Chromatin Chromatin Receptors"

1

Vitamin Biosynthesis (Vitamins and Hormones, Volume 60) (Vitamins and Hormones). Academic Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

E, Vance Dennis, and Vance Jean E, eds. Biochemistry of lipids, lipoproteins, and membranes. Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chromatin Chromatin Receptors"

1

Adhikary, Till, and Rolf Müller. "In Vivo Studies of PPAR-Chromatin Interactions: Chromatin Immunoprecipitation for Single-Locus and Genomewide Analyses." In Peroxisome Proliferator-Activated Receptors (PPARs). Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-155-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adhikary, Till, and Rolf Müller. "In Vivo Studies of PPAR-Chromatin Interactions: Chromatin Immunoprecipitation for Single-Locus and Genomewide Analyses." In Peroxisome Proliferator-Activated Receptors (PPARs). Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-155-4_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burd, Craig J., and Trevor K. Archer. "Nuclear Receptors and ATP Dependent Chromatin Remodeling: A Complex Story." In Nuclear Receptors. Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3303-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watson, Catherine E., and Trevor K. Archer. "Chromatin and Steroid-Receptor-Mediated Transcription." In Molecular Biology of Steroid and Nuclear Hormone Receptors. Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1764-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

George, Charlotte L., and Becky L. Conway-Campbell. "Dynamic Regulation of Chromatin Modification and Transcription by GR and the Steroid Receptors." In Epigenetics and Neuroendocrinology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24493-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guan, Wenyue, Romain Guyot, and Frédéric Flamant. "Two Protocols to Study the Interactions of Thyroid Hormone Receptors with Other Proteins and Chromatin." In Methods in Molecular Biology. Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7902-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vicent, Guillermo P., A. Silvina Nacht, Cecilia Ballaré, Roser Zaurin, Daniel Soronellas, and Miguel Beato. "Progesterone Receptor Interaction with Chromatin." In Methods in Molecular Biology. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1346-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benedetti, Rosaria, Mariarosaria Conte, Vincenzo Carafa, et al. "Analysis of Chromatin–Nuclear Receptor Interactions by Laser-Chromatin Immunoprecipitation." In Methods in Molecular Biology. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1346-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edwards, Dean P., and Paul Prendergast. "Facilitated Binding of Steroid Hormone Receptors to Target DNA by the Chromatin High-Mobility Group Protein-1: Protein Manipulation of DNA Structure." In Estrogens, Progestins, and Their Antagonists. Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-2004-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Li, Omar Khalid, Baruch Frenkel, and Gerhard A. Coetzee. "Chromatin Remodeling and Androgen Receptor-Mediated Transcription." In Androgen Action in Prostate Cancer. Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-69179-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chromatin Chromatin Receptors"

1

Burd, Craig J., James M. Ward, Adam B. Burkholder, David C. Fargo, and Trevor K. Archer. "Abstract 3560: The chromatin architecture at gucocorticoid receptor binding sites." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tewari, Alok K., Galip G. Yardimci, Gregory E. Crawford, and Phillip G. Febbo. "Abstract 2923: Androgen receptor activation changes chromatin structure and transcriptional activation." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cai, Changmeng, Housheng Hansen He, Myles Brown, and Steven P. Balk. "Abstract A46: LSD1 globally mediates epigenetic modifications on androgen receptor-dependent enhancers." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jia, Lin, Dinglan Wu, Shan Yu, and Franky Leung Chan. "Abstract A21: Orphan nuclear receptor TLX recruits lysine-specific demethylase 1 to repress androgen receptor gene transcription and functions to promote hormone-resistant growth of prostate cancer cells." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mills, Jamie N., Jonathan Irish, Brittany Turner-Ivey та Stephen P. Ethier. "Abstract B05: WHSC1L1 and estrogen-independent activation of estrogen receptor-alpha (ERα) in 8p11 amplicon-bearing cell lines". У Abstracts: AACR Special Conference: Chromatin and Epigenetics in Cancer; September 24-27, 2015; Atlanta, GA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.chromepi15-b05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xiaming, Yanfei Gao, Changmeng Cai, Steven Balk, and Shaoyong Chen. "Abstract A13: Androgen receptor functions as an adaptor protein for recruitment of protein phosphatase 1a to chromatin and CDK9 mobilization." In Abstracts: AACR Special Conference: Chromatin and Epigenetics in Cancer; September 24-27, 2015; Atlanta, GA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.chromepi15-a13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marck, Lasse, Garima Jain, Marcus V. Cronauer, Felicitas Genze, and Ralf Marienfeld. "Abstract B59: IKK-mediated phosphorylation of the androgen receptor: A mechanism to modulate AR-cofactor interaction." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-b59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miranda, Tina B., Ty C. Voss, Myong-Hee Sung, et al. "Abstract 1075: Steroid receptor reprogramming of the chromatin landscape: crosstalk at the genomic level." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tewari, Alok K., Lingyun Song, Terrence S. Furey, Gregory E. Crawford, and Phillip G. Febbo. "Abstract B44: Chromatin structure impacts androgen receptor transcriptional specificity in prostate cancer cell lines." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-b44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Urbanucci, Alfonso, Biswajyoti Sahu, Janne Seppälä, et al. "Abstract 2942: The effect of AR expression level on the chromatin binding of the receptor." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2942.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Chromatin Chromatin Receptors"

1

Nordeen, Steven. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templates. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada382501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bochar, Daniel A. CHD8, A Novel Beta-Catenin Associated Chromatin Remodeling Enzyme, Regulates Androgen Receptor Mediated Gene Transcription. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada483296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Jiemin. Mechanism of Transcriptional Regulation by Androgen Receptor and its Coactivators in the Context of Chromatin. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada410569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bochar, Daniel A. CHD8, A Novel Beta-Catenin Associated Chromatin Remodeling Enzyme, Regulates Androgen Receptor Mediated Gene Transcription. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada529449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bochar, Daniel A. CHD8, A Novel Beta-Catenin Associated Chromatin Remodeling Enzyme, Regulates Androgen Receptor Mediated Gene Transcription. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada504104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boonyaratanakornkit, Viroj. Chromatin HMG-I (Y) as a Co-regulatory Protein for Estrogen Receptor Action in Breast Cancer Cells. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada368525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boonyaratanakornkit, Viroj. Chromatin HMG-I(Y) as a Co-Regulatory Protein for Estrogen Receptor Action in Breast Cancer Cells. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada391523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Dipali. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada442690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Dipali. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada459221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!