Contents
Academic literature on the topic 'CIC-DDoS2019 dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CIC-DDoS2019 dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CIC-DDoS2019 dataset"
Deris Stiawan, Deris Stiawan, Dimas Wahyudi Deris Stiawan, Tri Wanda Septian Dimas Wahyudi, Mohd Yazid Idris Tri Wanda Septian, and Rahmat Budiarto Mohd Yazid Idris. "The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data." 網際網路技術學刊 24, no. 2 (2023): 345–56. http://dx.doi.org/10.53106/160792642023032402013.
Full textZaki, Rana M., and Inam S. Naser. "Hybrid Classifier for Detecting Zero-Day Attacks on IoT Networks." Mesopotamian Journal of CyberSecurity 4, no. 3 (2024): 59–74. http://dx.doi.org/10.58496/mjcs/2024/016.
Full textMa, Ruikui, Xuebin Chen, and Ran Zhai. "A DDoS Attack Detection Method Based on Natural Selection of Features and Models." Electronics 12, no. 4 (2023): 1059. http://dx.doi.org/10.3390/electronics12041059.
Full textAhmad, Iftikhar, Muhammad Imran, Abdul Qayyum, Muhammad Sher Ramzan, and Madini O. Alassafi. "An Optimized Hybrid Deep Intrusion Detection Model (HD-IDM) for Enhancing Network Security." Mathematics 11, no. 21 (2023): 4501. http://dx.doi.org/10.3390/math11214501.
Full textD’hooge, Laurens, Miel Verkerken, Tim Wauters, Filip De Turck, and Bruno Volckaert. "Investigating Generalized Performance of Data-Constrained Supervised Machine Learning Models on Novel, Related Samples in Intrusion Detection." Sensors 23, no. 4 (2023): 1846. http://dx.doi.org/10.3390/s23041846.
Full textFerrag, Mohamed Amine, Lei Shu, Hamouda Djallel, and Kim-Kwang Raymond Choo. "Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0." Electronics 10, no. 11 (2021): 1257. http://dx.doi.org/10.3390/electronics10111257.
Full textXu, Hao, and Hequn Xian. "SCD: A Detection System for DDoS Attacks based on SAE-CNN Networks." Frontiers in Computing and Intelligent Systems 5, no. 3 (2023): 94–99. http://dx.doi.org/10.54097/fcis.v5i3.13865.
Full textWilliams, Brandon, and Lijun Qian. "Semi-Supervised Learning for Intrusion Detection in Large Computer Networks." Applied Sciences 15, no. 11 (2025): 5930. https://doi.org/10.3390/app15115930.
Full textYzzogh, Hicham, and Hafssa Benaboud. "Enhancing SDN security with a feature-based approach using multiple k-means, Word2Vec, and neural network." Bulletin of Electrical Engineering and Informatics 14, no. 2 (2025): 1456–67. https://doi.org/10.11591/eei.v14i2.8834.
Full textZ, Syauqii Fayyadh Hilal, and Rushendra Rushendra. "The Efficiency of Machine Learning Techniques in Strengthening Defenses Against DDoS Attacks, Such as Random Forest, Logistic Regression, and Neural Networks." sinkron 9, no. 1 (2025): 520–30. https://doi.org/10.33395/sinkron.v9i1.14502.
Full textBook chapters on the topic "CIC-DDoS2019 dataset"
Gondi, Lakshmeeswari, Swathi Sambangi, P. Kundana Priya, and S. Sharika Anjum. "A Machine Learning Approach for DDoS Attack Detection in CIC-DDoS2019 Dataset Using Multiple Linear Regression Algorithm." In Springer Proceedings in Mathematics & Statistics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51167-7_38.
Full textDasari, Kishore Babu, and Srinivas Mekala. "Proactive DDoS Attacks Detection on the Cloud Computing Environment Using Machine Learning Techniques." In Advances in Information Security, Privacy, and Ethics. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9317-5.ch016.
Full text