Journal articles on the topic 'CICIDS2018 dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CICIDS2018 dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Deng, Miaolei, Chuanchuan Sun, Yupei Kan, Haihang Xu, Xin Zhou, and Shaojun Fan. "Network Intrusion Detection Based on Deep Belief Network Broad Equalization Learning System." Electronics 13, no. 15 (2024): 3014. http://dx.doi.org/10.3390/electronics13153014.
Full textZhao, Jiaqi, Ming Xu, Yunzhi Chen, and Guoliang Xu. "A DNN Architecture Generation Method for DDoS Detection via Genetic Alogrithm." Future Internet 15, no. 4 (2023): 122. http://dx.doi.org/10.3390/fi15040122.
Full textGandhar, Abhishek, Prakhar Priyadarshi, Shashi Gandhar, S. B. Kumar, Arvind Rehalia, and Mohit Tiwari. "An Effective Deep Learning Model Design for Cyber Intrusion Prevention System." Indian Journal Of Science And Technology 18, no. 10 (2025): 811–15. https://doi.org/10.17485/ijst/v18i10.318.
Full textYogi, Aryan. "Hybrid Intrusion Detection System (IDS) Using Machine Learning and Deep Learning." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47975.
Full textIrfa’issurur, Muhammad, and Bony Parulian Josaphat. "Machine Learning for Cybersecurity: Web Attack Detection (Brute Force, XSS, SQL Injection)." InPrime: Indonesian Journal of Pure and Applied Mathematics 7, no. 1 (2025): 1–15. https://doi.org/10.15408/inprime.v7i1.41025.
Full textAbhishek, Gandhar, Priyadarshi Prakhar, Gandhar Shashi, B. Kumar S, Rehalia Arvind, and Tiwari Mohit. "An Effective Deep Learning Model Design for Cyber Intrusion Prevention System." Indian Journal of Science and Technology 18, no. 10 (2025): 811–15. https://doi.org/10.17485/IJST/v18i10.318.
Full textXiao, Yao, Chunying Kang, Hongchen Yu, Tao Fan, and Haofang Zhang. "Anomalous Network Traffic Detection Method Based on an Elevated Harris Hawks Optimization Method and Gated Recurrent Unit Classifier." Sensors 22, no. 19 (2022): 7548. http://dx.doi.org/10.3390/s22197548.
Full textShivakanth, Gandla. "A Performance Analysis of ML-Based Intrusion Detection Systems in Cloud Environments." International Journal of Electrical and Electronic Engineering & Telecommunications 14, no. 4 (2025): 243–52. https://doi.org/10.18178/ijeetc.14.4.243-252.
Full textChimphlee, Witcha, and Siriporn Chimphlee. "Hyperparameters optimization XGBoost for network intrusion detection using CSE-CIC-IDS 2018 dataset." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 817–26. https://doi.org/10.11591/ijai.v13.i1.pp817-826.
Full textZhang, Kunsan, Renguang Zheng, Chaopeng Li, et al. "SE-DWNet: An Advanced ResNet-Based Model for Intrusion Detection with Symmetric Data Distribution." Symmetry 17, no. 4 (2025): 526. https://doi.org/10.3390/sym17040526.
Full textRosline, Gnanam Jeba, and Pushpa Rani. "Intrusion detection based on generative adversarial network with random forest for cloud networks." International Journal of Electrical and Computer Engineering (IJECE) 15, no. 2 (2025): 2491–98. https://doi.org/10.11591/ijece.v15i2.pp2491-2498.
Full textKaushik, Sunil, Akashdeep Bhardwaj, Abdullah Alomari, Salil Bharany, Amjad Alsirhani, and Mohammed Mujib Alshahrani. "Efficient, Lightweight Cyber Intrusion Detection System for IoT Ecosystems Using MI2G Algorithm." Computers 11, no. 10 (2022): 142. http://dx.doi.org/10.3390/computers11100142.
Full textPrihantono, Yuri, and Kalamullah Ramli. "Model-Based Feature Selection for Developing Network Attack Detection and Alerting System." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, no. 2 (2022): 322–29. http://dx.doi.org/10.29207/resti.v6i2.3989.
Full textAlahmed, Shahad, Qutaiba Alasad, Maytham M. Hammood, Jiann-Shiun Yuan, and Mohammed Alawad. "Mitigation of Black-Box Attacks on Intrusion Detection Systems-Based ML." Computers 11, no. 7 (2022): 115. http://dx.doi.org/10.3390/computers11070115.
Full textAldallal, Ammar. "Toward Efficient Intrusion Detection System Using Hybrid Deep Learning Approach." Symmetry 14, no. 9 (2022): 1916. http://dx.doi.org/10.3390/sym14091916.
Full textRosline, Gnanam Jeba, and Pushpa Rani. "Intrusion detection based on generative adversarial network with random forest for cloud networks." International Journal of Electrical and Computer Engineering (IJECE) 15, no. 2 (2025): 2491. https://doi.org/10.11591/ijece.v15i2.pp2491-2498.
Full textZegarra Rodríguez, Demóstenes, Ogobuchi Daniel Okey, Siti Sarah Maidin, Ekikere Umoren Udo, and João Henrique Kleinschmidt. "Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection." PLOS ONE 18, no. 10 (2023): e0286652. http://dx.doi.org/10.1371/journal.pone.0286652.
Full textFransiska, Hera, and Amalyanda Azhari. "Penerapan Transformer Based Deep Learning Untuk Deteksi Dini Serangan Siber Pada Infrastruktur Kritis Berbasis IoT." RIGGS: Journal of Artificial Intelligence and Digital Business 4, no. 2 (2025): 3818–25. https://doi.org/10.31004/riggs.v4i2.1118.
Full textQu, YanZe, HaiLong Ma, and YiMing Jiang. "CRND: An Unsupervised Learning Method to Detect Network Anomaly." Security and Communication Networks 2022 (October 28, 2022): 1–9. http://dx.doi.org/10.1155/2022/9509417.
Full textAlosimy, Hanadi, Jawaher AlZaidi, Samah H. Alajmani, and Ben Soh. "An Algorithm for Detecting Brute Force Attacks on FTP and SSH Services Utilizing Deep Learning with Probabilistic Neural Networks (PNN)." International Journal of Recent Technology and Engineering (IJRTE) 13, no. 6 (2025): 1–9. https://doi.org/10.35940/ijrte.e8187.13060325.
Full textJawaher, AlZaidi. "An Algorithm for Detecting Brute Force Attacks on FTP and SSH Services Utilizing Deep Learning with Probabilistic Neural Networks (PNN)." International Journal of Recent Technology and Engineering (IJRTE) 13, no. 6 (2025): 1–9. https://doi.org/10.35940/ijrte.E8187.13060325.
Full textAdekunle, Temitope Samson, Toheeb Adetoyese Adeleke, Olakunle Sunday Afolabi, et al. "A Framework for Robust Attack Detection and Classification using Rap-Densenet." ParadigmPlus 4, no. 2 (2023): 1–17. http://dx.doi.org/10.55969/paradigmplus.v4n2a1.
Full textRajesh Bingu, Et al. "Performance Comparison Analysis of Classification Methodologies for Effective Detection of Intrusions." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 2860–79. http://dx.doi.org/10.17762/ijritcc.v11i9.9375.
Full textGebremariam, Gebrekiros Gebreyesus, J. Panda, and S. Indu. "Localization and Detection of Multiple Attacks in Wireless Sensor Networks Using Artificial Neural Network." Wireless Communications and Mobile Computing 2023 (January 10, 2023): 1–29. http://dx.doi.org/10.1155/2023/2744706.
Full textAwadh, Nouf, Hawazen Zaid, and Dr Samah Al-ajmani. "A Robust Framework for Detecting Brute-Force Attacks through Deep Learning Techniques." International Journal of Recent Technology and Engineering (IJRTE) 13, no. 5 (2025): 27–42. https://doi.org/10.35940/ijrte.e8182.13050125.
Full textRiyadi, Andri Agung, Fachri Amsury, Irwansyah Saputra, Tiska Pattiasina, and Jupriyanto Jupriyanto. "COMPARATIVE ANALYSIS OF THE K-NEAREST NEIGHBOR ALGORITHM ON VARIOUS INTRUSION DETECTION DATASETS." Jurnal Riset Informatika 4, no. 1 (2022): 127–32. http://dx.doi.org/10.34288/jri.v4i1.341.
Full textFiona Lawrence. "Enhancing Intrusion Detection Systems with Ensemble Models and Hybrid Feature Selection Techniques." Journal of Information Systems Engineering and Management 10, no. 23s (2025): 937–54. https://doi.org/10.52783/jisem.v10i23s.3816.
Full textMohammed, Widad K., Mohammed A. Taha, and Saleh M. Mohammed. "A Novel Hybrid Fusion Model for Intrusion Detection Systems Using Benchmark Checklist Comparisons." Mesopotamian Journal of CyberSecurity 4, no. 3 (2024): 216–32. https://doi.org/10.58496/mjcs/2024/024.
Full textKamal, Hesham, and Maggie Mashaly. "Combined Dataset System Based on a Hybrid PCA–Transformer Model for Effective Intrusion Detection Systems." AI 6, no. 8 (2025): 168. https://doi.org/10.3390/ai6080168.
Full textPangsuban, Preecha, Prachyanun Nilsook, and Panita Wannapiroon. "A Real-time Risk Assessment for Information System with CICIDS2017 Dataset Using Machine Learning." International Journal of Machine Learning and Computing 10, no. 3 (2020): 465–70. http://dx.doi.org/10.18178/ijmlc.2020.10.3.958.
Full textHofer-Schmitz, Katharina, Ulrike Kleb, and Branka Stojanović. "The Influences of Feature Sets on the Detection of Advanced Persistent Threats." Electronics 10, no. 6 (2021): 704. http://dx.doi.org/10.3390/electronics10060704.
Full textZhao, Yifan, Zhanhui Hu, and Rongjun Liu. "TBGD: Deep Learning Methods on Network Intrusion Detection Using CICIDS2017 Dataset." Journal of Physics: Conference Series 2670, no. 1 (2023): 012025. http://dx.doi.org/10.1088/1742-6596/2670/1/012025.
Full textHan, Hyojoon, Hyukho Kim, and Yangwoo Kim. "An Efficient Hyperparameter Control Method for a Network Intrusion Detection System Based on Proximal Policy Optimization." Symmetry 14, no. 1 (2022): 161. http://dx.doi.org/10.3390/sym14010161.
Full textHan, Daoqi, Honghui Li, Xueliang Fu, and Shuncheng Zhou. "Traffic Feature Selection and Distributed Denial of Service Attack Detection in Software-Defined Networks Based on Machine Learning." Sensors 24, no. 13 (2024): 4344. http://dx.doi.org/10.3390/s24134344.
Full textDhoot, A., A. N. Nazarov, and I. M. Voronkov. "Genetic programming support vector machine model for a wireless intrusion detection system." Russian Technological Journal 10, no. 6 (2022): 20–27. http://dx.doi.org/10.32362/2500-316x-2022-10-6-20-27.
Full textGoryunov, Maxim Nikolaevich, Andrey Georgievich Matskevich, and Dmitry Aleksandrovich Rybolovlev. "Synthesis of a Machine Learning Model for Detecting Computer Attacks Based on the CICIDS2017 Dataset." Proceedings of the Institute for System Programming of the RAS 32, no. 5 (2020): 81–94. http://dx.doi.org/10.15514/ispras-2020-32(5)-6.
Full textVasilica, Bogdan-Valentin, Florin-Daniel Anton, Radu Pietraru, Silvia-Oana Anton, and Beatrice-Nicoleta Chiriac. "Enhancing Security in Smart Robot Digital Twins Through Intrusion Detection Systems." Applied Sciences 15, no. 9 (2025): 4596. https://doi.org/10.3390/app15094596.
Full textImran, Faisal Jamil, and Dohyeun Kim. "An Ensemble of a Prediction and Learning Mechanism for Improving Accuracy of Anomaly Detection in Network Intrusion Environments." Sustainability 13, no. 18 (2021): 10057. http://dx.doi.org/10.3390/su131810057.
Full textCoronel Gaviro, Javier, and Akram Boukhamla. "CICIDS2017 Dataset: Performance Improvements and Validation as a Robust Intrusion Detection System Testbed." International Journal of Information and Computer Security 1, no. 1 (2021): 1. http://dx.doi.org/10.1504/ijics.2021.10039325.
Full textBoukhamla, Akram, and Javier Coronel Gaviro. "CICIDS2017 dataset: performance improvements and validation as a robust intrusion detection system testbed." International Journal of Information and Computer Security 16, no. 1/2 (2021): 20. http://dx.doi.org/10.1504/ijics.2021.117392.
Full textAlsameraee, Amer Abulmajeed Abdulrahman, and Mahmood Khalel Ibrahem. "Toward Constructing a Balanced Intrusion Detection Dataset." Samarra Journal of Pure and Applied Science 2, no. 3 (2021): 132–42. http://dx.doi.org/10.54153/sjpas.2020.v2i3.86.
Full textXu, Congyuan, Donghui Li, Zihao Liu, Jun Yang, Qinfeng Shen, and Ningbing Tong. "Few-shot network intrusion detection method based on multi-domain fusion and cross-attention." PLOS One 20, no. 7 (2025): e0327161. https://doi.org/10.1371/journal.pone.0327161.
Full textFarahmandnia, Feraidoon, and Serhat Özekes. "ENHANCED DDoS ATTACK DETECTION THROUGH HYBRID MACHINE LEARNING TECHNIQUES." İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi 7, no. 2 (2025): 275–307. https://doi.org/10.56809/icujtas.1513881.
Full textBibi, Aysha, Gabriel Avelino Sampedro, Ahmad Almadhor, Abdul Rehman Javed, and Tai-hoon Kim. "A Hypertuned Lightweight and Scalable LSTM Model for Hybrid Network Intrusion Detection." Technologies 11, no. 5 (2023): 121. http://dx.doi.org/10.3390/technologies11050121.
Full textBalla, Asaad, Mohamed Hadi Habaebi, Elfatih A. A. Elsheikh, Md Rafiqul Islam, and F. M. Suliman. "The Effect of Dataset Imbalance on the Performance of SCADA Intrusion Detection Systems." Sensors 23, no. 2 (2023): 758. http://dx.doi.org/10.3390/s23020758.
Full textMaseer, Ziadoon Kamil, Robiah Yusof, Nazrulazhar Bahaman, Salama A. Mostafa, and Cik Feresa Mohd Foozy. "Benchmarking of Machine Learning for Anomaly Based Intrusion Detection Systems in the CICIDS2017 Dataset." IEEE Access 9 (2021): 22351–70. http://dx.doi.org/10.1109/access.2021.3056614.
Full textHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne, and Xavier Bellekens. "Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection." Electronics 9, no. 10 (2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Full textAhmed, Meaad, Qutaiba Alasad, Jiann-Shiun Yuan, and Mohammed Alawad. "Re-Evaluating Deep Learning Attacks and Defenses in Cybersecurity Systems." Big Data and Cognitive Computing 8, no. 12 (2024): 191. https://doi.org/10.3390/bdcc8120191.
Full textXu, Congyuan, Yong Zhan, Guanghui Chen, Zhiqiang Wang, Siqing Liu, and Weichen Hu. "Elevated few-shot network intrusion detection via self-attention mechanisms and iterative refinement." PLOS ONE 20, no. 1 (2025): e0317713. https://doi.org/10.1371/journal.pone.0317713.
Full textSalman, Wisam Ali Hussein, and Chan Huah Yong. "Overview of the CICIoT2023 Dataset for Internet of Things Intrusion Detection Systems." Mesopotamian Journal of Big Data 2025 (June 10, 2025): 50–60. https://doi.org/10.58496/mjbd/2025/004.
Full text