Academic literature on the topic 'Cilia and ciliary motion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cilia and ciliary motion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cilia and ciliary motion"

1

Dong, Xiaoguang, Guo Zhan Lum, Wenqi Hu, Rongjing Zhang, Ziyu Ren, Patrick R. Onck, and Metin Sitti. "Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination." Science Advances 6, no. 45 (November 2020): eabc9323. http://dx.doi.org/10.1126/sciadv.abc9323.

Full text
Abstract:
Coordinated nonreciprocal dynamics in biological cilia is essential to many living systems, where the emergentmetachronal waves of cilia have been hypothesized to enhance net fluid flows at low Reynolds numbers (Re). Experimental investigation of this hypothesis is critical but remains challenging. Here, we report soft miniature devices with both ciliary nonreciprocal motion and metachronal coordination and use them to investigate the quantitative relationship between metachronal coordination and the induced fluid flow. We found that only antiplectic metachronal waves with specific wave vector
APA, Harvard, Vancouver, ISO, and other styles
2

Sears, Patrick R., Kristin Thompson, Michael R. Knowles, and C. William Davis. "Human airway ciliary dynamics." American Journal of Physiology-Lung Cellular and Molecular Physiology 304, no. 3 (February 1, 2013): L170—L183. http://dx.doi.org/10.1152/ajplung.00105.2012.

Full text
Abstract:
Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary functio
APA, Harvard, Vancouver, ISO, and other styles
3

Valentine, Megan, and Judith Van Houten. "Using Paramecium as a Model for Ciliopathies." Genes 12, no. 10 (September 24, 2021): 1493. http://dx.doi.org/10.3390/genes12101493.

Full text
Abstract:
Paramecium has served as a model organism for the studies of many aspects of genetics and cell biology: non-Mendelian inheritance, genome duplication, genome rearrangements, and exocytosis, to name a few. However, the large number and patterning of cilia that cover its surface have inspired extraordinary ultrastructural work. Its swimming patterns inspired exquisite electrophysiological studies that led to a description of the bioelectric control of ciliary motion. A genetic dissection of swimming behavior moved the field toward the genes and gene products underlying ciliary function. With the
APA, Harvard, Vancouver, ISO, and other styles
4

Vanaki, Shayan M., David Holmes, Pahala Gedara Jayathilake, and Richard Brown. "Three-Dimensional Numerical Analysis of Periciliary Liquid Layer: Ciliary Abnormalities in Respiratory Diseases." Applied Sciences 9, no. 19 (September 26, 2019): 4033. http://dx.doi.org/10.3390/app9194033.

Full text
Abstract:
Human pulmonary epithelial cells are protected by two layers of fluid—the outer watery periciliary liquid layer (PCL) and the uppermost non-Newtonian mucus layer (ML). Aerosols and inhaled toxic particles are trapped by the ML which must then be removed swiftly to avoid adverse health implications. Epithelial cells are covered with cilia that beat rapidly within the PCL. Such ciliary motion drives the mucus transport. Although cilia can penetrate slightly inside the mucus to assist mucus movement, the motion of the underlying PCL layer within the airway surface liquid (ASL) is significant in m
APA, Harvard, Vancouver, ISO, and other styles
5

Sher Akbar, Noreen, and Z. H. Khan. "Heat transfer analysis of bi-viscous ciliary motion fluid." International Journal of Biomathematics 08, no. 02 (February 25, 2015): 1550026. http://dx.doi.org/10.1142/s1793524515500266.

Full text
Abstract:
The impulsion system of cilia motion is deliberated by biviscosity fluid model. The problem of two-dimensional motion of biviscosity fluid privileged in a symmetric channel with ciliated walls is considered. The features of ciliary structures are resolute by the supremacy of viscous effects above inertial possessions by the long-wavelength and low Reynolds approximation. Closed-form solutions for the longitudinal pressure gradient, temperature and velocities are obtained. The pressure gradient and volume flow rate for different values of the biviscosity are also premeditated. The flow possessi
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Yanan, Kyosuke Shinohara, Huanming Xu, Zhenfeng Li, Tomoki Nishida, Hiroshi Hamada, Yuanqing Xu, et al. "The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization." Cellular Physiology and Biochemistry 51, no. 6 (2018): 2843–57. http://dx.doi.org/10.1159/000496038.

Full text
Abstract:
Background/Aims: Nodal cilia that rotate in the ventral node play an important role in establishing left-right asymmetry during embryogenesis; however, inv mutant cilia present abnormal movement and induce laterality defects. The mechanism of their motility, which is regulated by dynein activation and microtubule arrangement, has not been fully understood. This study analyzed the dynein-triggered ciliary motion in the abnormal ultrastructure of the inv mutant, aiming to quantitatively evaluate the influence of microtubule mislocalization on the movement of the cilium. Methods: We established a
APA, Harvard, Vancouver, ISO, and other styles
7

Flaherty, Justin, Zhe Feng, Zhangli Peng, Y. N. Young, and Andrew Resnick. "Primary cilia have a length-dependent persistence length." Biomechanics and Modeling in Mechanobiology 19, no. 2 (September 9, 2019): 445–60. http://dx.doi.org/10.1007/s10237-019-01220-7.

Full text
Abstract:
Abstract The fluctuating position of an optically trapped cilium tip under untreated and Taxol-treated conditions was used to characterize mechanical properties of the cilium axoneme and its basal body by combining experimental, analytical, and computational tools. We provide, for the first time, evidence that the persistence length of a ciliary axoneme is length-dependent; longer cilia are stiffer than shorter cilia. We demonstrate that this apparent length dependence can be understood by a combination of modeling axonemal microtubules as anisotropic elastic shells and including actomyosin-dr
APA, Harvard, Vancouver, ISO, and other styles
8

Sareh, Sina, Jonathan Rossiter, Andrew Conn, Knut Drescher, and Raymond E. Goldstein. "Swimming like algae: biomimetic soft artificial cilia." Journal of The Royal Society Interface 10, no. 78 (January 6, 2013): 20120666. http://dx.doi.org/10.1098/rsif.2012.0666.

Full text
Abstract:
Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox , and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and bio
APA, Harvard, Vancouver, ISO, and other styles
9

Peabody, Jacelyn E., Ren-Jay Shei, Brent M. Bermingham, Scott E. Phillips, Brett Turner, Steven M. Rowe, and George M. Solomon. "Seeing cilia: imaging modalities for ciliary motion and clinical connections." American Journal of Physiology-Lung Cellular and Molecular Physiology 314, no. 6 (June 1, 2018): L909—L921. http://dx.doi.org/10.1152/ajplung.00556.2017.

Full text
Abstract:
The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision med
APA, Harvard, Vancouver, ISO, and other styles
10

Ito, Hiroaki, Toshihiro Omori, and Takuji Ishikawa. "Swimming mediated by ciliary beating: comparison with a squirmer model." Journal of Fluid Mechanics 874 (July 12, 2019): 774–96. http://dx.doi.org/10.1017/jfm.2019.490.

Full text
Abstract:
The squirmer model of Lighthill and Blake has been widely used to analyse swimming ciliates. However, real ciliates are covered by hair-like organelles, called cilia; the differences between the squirmer model and real ciliates remain unclear. Here, we developed a ciliate model incorporating the distinct ciliary apparatus, and analysed motion using a boundary element–slender-body coupling method. This methodology allows us to accurately calculate hydrodynamic interactions between cilia and the cell body under free-swimming conditions. Results showed that an antiplectic metachronal wave was opt
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cilia and ciliary motion"

1

Overgaard, Christian Edmund Yeaman Charles. "Deciliation dramatically alters epithelial function." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Qiang, and 徐强. "Modeling the deformation of primary cilium." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47250008.

Full text
Abstract:
In this thesis we developed a new mechanics model of the primary cilium and analyzed its bending behavior. The primary cilium that extends from the cell surface can detect the mechanical signals of the surrounding environment. Moreover, through its deflection and bending angle, the primary cilium can communicate with the cell regarding the extracellular. Scientists have shown that dysfunction of primary cilia can lead to many diseases as cilia are believed to play an important role in transmitting signals in cells. A good model of primary cilium can aid in the understanding of the mechani
APA, Harvard, Vancouver, ISO, and other styles
3

Norton, Michael M. "Modeling problems in mucus viscoelasticity and mucociliary clearance /." Online version of thesis, 2009. http://hdl.handle.net/1850/10822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghosh, Rajat. "Designing oscillating cilia for regulating particle motion in microfluidic devices." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33861.

Full text
Abstract:
We design actuated cilia that can maneuver microscopic particles normal to a microfluidic channel wall and transport microscopic particles parallel to the channel wall. For identifying the design specifications, we employ a hybrid LBM/LSM computational model, to simulate hydrodynamic interactions between oscillating elastic cilia and microscopic particles in a microfluidic channel. The oscillating synthetic cilia are elastic filaments tethered to the channel wall and actuated by sinusoidal force acting at their free ends. The cilia are arranged in a square pattern. The microscopic particle is
APA, Harvard, Vancouver, ISO, and other styles
5

Wan, Yixin. "Modulation and synchronization of eukaryotic flagella." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pruski, Michal. "ARL13B and IFT172 truncated primary cilia and misplaced cells." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231675.

Full text
Abstract:
Primary cilia are cellular organelles that protrude into the extracellular space, acting as antennas. They detect a wide range of chemical cues, including SHH and PDGF, as well as fluid flow, and they modulate downstream signalling systems, such as WNT and ERK. Due to this cue-sensing ability and the close association of the primary cilium with the centrosome the organelle is able to influence both cell cycle progression and cell migration. This work investigated the effect of mutations on two genes associated with primary cilia: Arl13b and Ift172. The effects of the HNN genotype of Arl13b and
APA, Harvard, Vancouver, ISO, and other styles
7

Hughes, Rhome. "Immunohistochemical characterization of neuronal cilia in the rat central nervous system." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3136/.

Full text
Abstract:
An anti-G"11 antibody was used to label neuronal cilia throughout the rat central nervous system. Immunoreactive cilia were observed in every examined region of the rat CNS, but not in monkey or mouse tissue. Antibodies to G"q and G"q/11 failed to label cilia. Immunoreactive cilia were observed as early as postnatal day 0 in spinal tissue, and postnatal day 3 in hypothalamic tissue. There was a statistically significant negative correlation between a region's mean cilium length and that region's distance to the nearest ventricle; regions nearest ventricles were those with the longest cilia. T
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, Gabrielle. "The role of the parkin co-regulated gene (PACRG) in male fertility /." Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/5806.

Full text
Abstract:
Thesis (Ph.D.)--University of Melbourne, Dept. of Paediatrics, The Bruce Lefroy Centre for Genetic Health Research, The Murdoch Childrens Research Institute, 2009.<br>Typescript. Includes bibliographical references (leaves 183-207)
APA, Harvard, Vancouver, ISO, and other styles
9

Subedi, Ashok. "Roles of Primary Cilia in the Oligodendrocyte Lineage." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404594/.

Full text
Abstract:
Primary cilia are nonmotile, hair-shaped organelles that extend from the basal body in the centrosome. The present study is the first investigation of this organelle in the oligodendrocyte lineage in vivo. I used immunohistochemical approaches in normal and cilia-deficient mutant mice to study cilia in relation to oligodendrogenesis and myelination. Primary cilia immunoreactive for Arl13b and ACIII were commonly present in NG2+ oligodendrocyte progenitor cells (OPCs), in which cilia-associated pathways control proliferation, differentiation, and migration. The loss of primary cilia is generall
APA, Harvard, Vancouver, ISO, and other styles
10

Mahato, Deependra. "Mutation of Polaris, an Intraflagellar Transport Protein, Shortens Neuronal Cilia." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4856/.

Full text
Abstract:
Primary cilia are non-motile organelles having 9+0 microtubules that project from the basal body of the cell. While the main purpose of motile cilia in mammalian cells is to move fluid or mucus over the cell surface, the purpose of primary cilia has remained elusive for the most part. Primary cilia are shortened in the kidney tubules of Tg737orpk mice, which have polycystic kidney disease due to ciliary defects. The product of the Tg737 gene is polaris, which is directly involved in a microtubule-dependent transport process called intraflagellar transport (IFT). In order to determine the imp
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cilia and ciliary motion"

1

International, Wendlandian Symposium :. Five Decades of Basic Research on Cilia/Flagella and Ciliates/Flagellates (2012 Lüchow Lower Saxony Germany). Cilia and flagella, ciliates and flagellates: Ultrastructure and cell biology, function and systematics, symbiosis and biodiversity. Stuttgart: Schweizerbart Science Publishers, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), ScienceDirect (Online, ed. Primary cilia. Amsterdam: Elsevier/Academic Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Bloodgood Robert, ed. Ciliary and flagellar membranes. New York: Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

L, Baum Gerald, ed. Cilia, mucus, and mucociliary interactions. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1900-, Rensch Bernhard, and Weischer Bernhard, eds. Evolution: Zelle als Organismus, Erregbarkeit, Hirngeschehen : Festschrift für Bernhard Rensch. Münster: Aschendorff, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matthias, Salathe, ed. Cilia and mucus: From development to respiritory defense. New York: Dekker, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Murase, Masatoshi. Dynamics of cellular motility. Chichester: J. Wiley & Sons, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murase, Mosatoshi. Dynamics of cellular motility. Chichester [England]: Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cilia. Cold Spring Harbor Laboratory Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Onck, Patrick R., Alfredo Alexander-Katz, Francis Fahrni, Jeanette Hussong, and Dick Broer. Artificial Cilia. Royal Society of Chemistry, The, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Cilia and ciliary motion"

1

Ishikawa, Takashi. "Structure of Motile Cilia." In Subcellular Biochemistry, 471–94. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00793-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tuomanen, Elaine. "The Surface of Mammalian Respiratory Cilia Interactions between Cilia and Respiratory Pathogens." In Ciliary and Flagellar Membranes, 363–88. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0515-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Witman, George B. "Introduction to Cilia and Flagella." In Ciliary and Flagellar Membranes, 1–30. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0515-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mayne, Richard. "Programming Ciliary Object Manipulation." In Atlas of Cilia Bioengineering and Biocomputing, 37–48. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337287-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loseva, Elizaveta, Jaap van Krugten, Aniruddha Mitra, and Erwin J. G. Peterman. "Single-Molecule Fluorescence Microscopy in Sensory Cilia of Living Caenorhabditis elegans." In Single Molecule Analysis, 133–50. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_7.

Full text
Abstract:
AbstractIntracellular transport of organelles and biomolecules is vital for several cellular processes. Single-molecule fluorescence microscopy can illuminate molecular aspects of the dynamics of individual biomolecules that remain unresolved in ensemble experiments. For example, studying single-molecule trajectories of moving biomolecules can reveal motility properties such as velocity, diffusivity, location and duration of pauses, etc. We use single-molecule imaging to study the dynamics of microtubule-based motor proteins and their cargo in the primary cilia of living C. elegans. To this end, we employ standard fluorescent proteins, an epi-illuminated, widefield fluorescence microscope, and primarily open-source software. This chapter describes the setup we use, the preparation of samples, a protocol for single-molecule imaging in primary cilia of C. elegans, and data analysis.
APA, Harvard, Vancouver, ISO, and other styles
6

Jorissen, Mark, and Martine Jaspers. "Cilia, Ciliary Movement, and Mucociliary Transport." In Nasal Physiology and Pathophysiology of Nasal Disorders, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37250-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jorissen, Mark, and Martine Jaspers. "Cilia, Ciliary Movement, and Mucociliary Transport." In Nasal Physiology and Pathophysiology of Nasal Disorders, 29–40. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12386-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spassky, Nathalie. "Motile Cilia and Brain Function: Ependymal Motile Cilia Development, Organization, Function and Their Associated Pathologies." In Cilia and Nervous System Development and Function, 193–207. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5808-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dentler, William L. "Linkages between Microtubules and Membranes in Cilia and Flagella." In Ciliary and Flagellar Membranes, 31–64. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0515-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hoyer-Fender, Sigrid. "Primary and Motile Cilia: Their Ultrastructure and Ciliogenesis." In Cilia and Nervous System Development and Function, 1–53. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5808-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cilia and ciliary motion"

1

Chen, Duanduan, Kyosuke Shinohara, Jun Ren, and Hiroshi Hamada. "The Protein-Driven Ciliary Motility in Embryonic Nodes: A Computational Model of Ciliary Ultrastructure." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62460.

Full text
Abstract:
The movement of embryonic cilia presents a crucial function in specifying left-right axis for vertebrates. Those mono-cilia are primary (9+0) cilia, whose characteristic architecture is based on a cylindrical arrangement of 9 microtubule doublets. Dynein motors located between adjacent doublets convert the chemical energy of ATP hydrolysis into mechanical work that induces doublet sliding. Passive components, such as the mediated cytoplasm, the ciliary membrane, and other possibly-existent structures constraint the ciliary motion and maintain the cilia structural integrity, thus resulting in t
APA, Harvard, Vancouver, ISO, and other styles
2

Salman, Huseyin Enes, Natalie Jurisch Yaksi, and Huseyin Cagatay Yalcin. "Computational Modeling of Motile Cilia Generated Cerebral Flow Dynamics in Zebrafish Embryo." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0128.

Full text
Abstract:
Background: Motile cilia are hair-like microscopic structures, which move the fluids along the epithelial surfaces. Cilia cover a wide range of regions in the nervous system, such as the nasal cavity, spinal cord central canal, and brain ventricles. Motile cilia-driven cerebrospinal fluid (CSF) flow in the brain ventricles has an important role in the brain development. Embryos lacking motile cilia develop neurological defects due to altered CSF flow. Aim: To investigate the effect of motile-cilia motion on the altered CSF flow, and to understand the role of CSF flow in the brain development a
APA, Harvard, Vancouver, ISO, and other styles
3

Alexeev, Alexander, Rajat Ghosh, Gavin A. Buxton, O. Berk Usta, and Anna C. Balazs. "Using Actuated Cilia to Regulate Motion of Microscopic Particles." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13227.

Full text
Abstract:
Marine animals use microscopic elastic filaments, or cilia, to capture food particles that are suspended in the surrounding solution [1, 2]. In the respiratory tract, active cilial layers facilitate the transport of particulates such as dust or mucous. These motile cilia experience the surrounding fluid as a highly viscous, low Reynolds number environment, where the effects of inertia are negligible [2]. Nevertheless, by oscillating in a periodic, time-irreversible manner, the elastic cilia can generate net currents within the fluid and thereby, effectively transport and direct microscopic par
APA, Harvard, Vancouver, ISO, and other styles
4

Ueno, Hironori, Takuji Ishikawa, Khanh Huy Bui, Kohsuke Gonda, Takashi Ishikawa, and Takami Yamaguchi. "Analysis of Ciliary Motion and the Axonemal Structure in the Mouse Respiratory Cilia." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80232.

Full text
Abstract:
Mucociliary clearance on the surface of the tracheal lumen is an important component of lung defense against dust mites and viruses. However, the axonemal structure that achieves effective ciliary motion and the mechanisms by which discretely distributed ciliary cells generate directional flow are unknown. In this study, we examined individual ciliary motion with 7–9-nm spatial precision by labeling the ciliary tip with quantum dots, and detected an asymmetric beating pattern. Cryo-electron tomography revealed that the densities of two inner dynein arms were missing from at least two doublet m
APA, Harvard, Vancouver, ISO, and other styles
5

Moran, Emma C., Pedro M. Baptista, Kenichiro Nishii, David Wasnick, Shay Soker, and Jessica L. Sparks. "Expression of Primary Cilia on Liver Stem and Progenitor Cells: Potential Role for Mechanosensing in Liver Development." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14122.

Full text
Abstract:
The primary cilium is a non-motile organelle that projects out from the plasma membrane of many cell types in the body. It consists of an axoneme with microtubules arranged in a 9+0 arrangement that extends from the mother centriole contained within the basal body. Once thought to be a non-essential organelle, it is now known that primary cilia have an important role in embryonic and post-natal development, as well as maintenance of adult tissues. Mutations affecting primary ciliary development result in a class of serious diseases known as ciliopathies [1, 2]. Recent research suggests that th
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, L., C. McKenzie, R. Wilcox, and M. Kareta. "Cellular Responses to Motile Cilia Dysfunction in the Mouse Airway Ciliary Microenvironment." In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a7439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Gang, Kate S. Wilson, Ruth J. Okamoto, Jin-Yu Shao, Susan K. Dutcher, and Philip V. Bayly. "The Apparent Flexural Rigidity of the Flagellar Axoneme Depends on Resistance to Inter-Doublet Sliding." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80220.

Full text
Abstract:
Cilia are thin subcellular organelles that bend actively to propel fluid. The ciliary cytoskeleton (the axoneme) consists of nine outer microtubule doublets surrounding a central pair of singlet microtubules. Large bending deformations of the axoneme involve relative sliding of the outer doublets, driven by the motor protein dynein. Ciliary structure and function have been studied extensively, but details of the mechanics and coordination of the axoneme remain unclear. In particular, dynein activity must be switched on and off at specific times and locations to produce an oscillatory, propulsi
APA, Harvard, Vancouver, ISO, and other styles
8

Hanaosge, Srinivas, Peter J. Hesketh, and Alexander Alexeev. "Video: Metachronal motion of synthetic cilia." In 70th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2017. http://dx.doi.org/10.1103/aps.dfd.2017.gfm.v0059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kongthon, Jiradech, Jae-Hyun Chung, James Riley, and Santosh Devasia. "Dynamics of Cilia-Based Microfluidic Devices." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5936.

Full text
Abstract:
This article models the dynamics of cilia-based devices (soft cantilever-type, vibrating devices that are excited by external vibrations) for mixing and manipulating liquids in microfluidic applications. The main contribution of this article is to develop a model, which shows that liquid sloshing and the added mass effect play substantial roles in generating large-amplitude motion of the cilia. Additionally, experimental results are presented to show that (i) mixing is substantially improved with the use of cilia when compared to the case without cilia and (ii) mixing with cilia can be further
APA, Harvard, Vancouver, ISO, and other styles
10

Horani, A., J. Koenitzer, D. Gupta, H. Xu, W. Twan, F. J. Hawkins, S. Dutcher, and S. L. Brody. "Single Cell Transcriptomics of Airway Cells From Primary Ciliary Dyskinesia (PCD) Patients Reveal Activation of Novel Motile Cilia Dedicated Pathways." In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a7145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!