To see the other types of publications on this topic, follow the link: CIMEL sun photometer.

Journal articles on the topic 'CIMEL sun photometer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CIMEL sun photometer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Barreto, A., E. Cuevas, B. Damiri, P. M. Romero, and F. Almansa. "Column water vapor determination in night period with a lunar photometer prototype." Atmospheric Measurement Techniques 6, no. 8 (August 29, 2013): 2159–67. http://dx.doi.org/10.5194/amt-6-2159-2013.

Full text
Abstract:
Abstract. In this paper we present the preliminary results of atmospheric column-integrated precipitable water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August 2011. We have compared quasi-simultaneous nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92. Comparison of daytime PWV from CA shows differences between GPS and RS92 up to 0.18 cm. Two different filters, with and approximate bandwidth of 10 nm and central wavelengths at 938 nm (Filter#1) and 937 nm (Filter#2), were mounted onto the LC. Filter#1 is currently used in operational AERONET sun photometers. PWV obtained with LC-Filter#1 showed an overestimation above 0.18 and 0.25 cm compared to GPS and RS92, respectively, and root-mean-square errors (RMSEs) up to 0.27 cm and 0.24 cm, respectively. Filter#2, with a reduced out-of-band radiation, showed very low differences compared with the same references (≤ 0.05 cm) and RMSE values ≤ 0.08 cm in the case of GPS precise orbits. These results demonstrate the ability of the new lunar photometer to obtain accurate and continuous PWV measurements at night, and the remarkable influence of the filter's transmissivity response to PWV determination at nighttime. The use of enhanced bandpass filters in lunar photometry, which is affected by more important inaccuracies than sun photometry, is necessary to infer PWV with similar precision to AERONET.
APA, Harvard, Vancouver, ISO, and other styles
2

Estellés, V., M. Campanelli, T. J. Smyth, M. P. Utrillas, and J. A. Martínez-Lozano. "Evaluation of the new ESR network software for the retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers." Atmospheric Chemistry and Physics 12, no. 23 (December 5, 2012): 11619–30. http://dx.doi.org/10.5194/acp-12-11619-2012.

Full text
Abstract:
Abstract. The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET) products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain), and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.
APA, Harvard, Vancouver, ISO, and other styles
3

Carrer, Dominique, Catherine Meurey, Olivier Hagolle, Guillaume Bigeard, Alexandre Paci, Jean-Marie Donier, Gilles Bergametti, et al. "Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties?" Remote Sensing 13, no. 16 (August 4, 2021): 3072. http://dx.doi.org/10.3390/rs13163072.

Full text
Abstract:
This paper presents an innovative method for observing vegetation health at a very high spatial resolution (~5 × 5 cm) and low cost by upgrading an existing Aerosol RObotic NETwork (AERONET) ground station dedicated to the observation of aerosols in the atmosphere. This study evaluates the capability of a sun/sky photometer to perform additional surface reflectance observations. The ground station of Toulouse, France, which belongs to the AERONET sun/sky photometer network, is used for this feasibility study. The experiment was conducted for a 5-year period (between 2016 and 2020). The sun/sky photometer was mounted on a metallic structure at a height of 2.5 m, and the acquisition software was adapted to add a periodical (every hour) ground-observation scenario with the sun/sky photometer observing the surface instead of being inactive. Evaluation is performed by using a classical metric characterizing the vegetation health: the normalized difference vegetation index (NDVI), using as reference the satellite NDVI derived from a Sentinel-2 (S2) sensor at 10 × 10 m resolution. Comparison for the 5-year period showed good agreement between the S2 and sun/sky photometer NDVIs (i.e., bias = 0.004, RMSD = 0.082, and R = 0.882 for a mean value of S2A NDVI around 0.6). Discrepancies could have been due to spatial-representativeness issues (of the ground measurement compared to S2), the differences between spectral bands, and the quality of the atmospheric correction applied on S2 data (accuracy of the sun/sky photometer instrument was better than 0.1%). However, the accuracy of the atmospheric correction applied on S2 data in this station appeared to be of good quality, and no dependence on the presence of aerosols was observed. This first analysis of the potential of the CIMEL CE318 sun/sky photometer to monitor the surface is encouraging. Further analyses need to be carried out to estimate the potential in different AERONET stations. The occasional rerouting of AERONET stations could lead to a complementary network of surface reflectance observations. This would require an update of the software, and eventual adaptations of the measurement platforms to the station environments. The additional cost, based on the existing AERONET network, would be quite limited. These new surface measurements would be interesting for measurements of vegetation health (monitoring of NDVI, and also of other vegetation indices such as the leaf area and chlorophyll indices), for validation and calibration exercise purposes, and possibly to refine various scientific algorithms (i.e., algorithms dedicated to cloud detection or the AERONET aerosol retrieval algorithm itself). CIMEL is ready to include the ground scenario used in this study in all new sun/sky photometers.
APA, Harvard, Vancouver, ISO, and other styles
4

Toledano, Carlos, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, et al. "Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE." Atmospheric Chemistry and Physics 19, no. 23 (December 2, 2019): 14571–83. http://dx.doi.org/10.5194/acp-19-14571-2019.

Full text
Abstract:
Abstract. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640 nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study.
APA, Harvard, Vancouver, ISO, and other styles
5

Kruczyk, Michał, and Tomasz Liwosz. "Integrated Precipitable Water Vapour Measurements At Polish Polar Station Hornsund From GPS Observations Verified By Aerological Techniques." Reports on Geodesy and Geoinformatics 98, no. 1 (July 1, 2015): 1–17. http://dx.doi.org/10.2478/rgg-2015-0001.

Full text
Abstract:
AbstractWe present results of the comparison of integrated precipitable water measurements from GPS solution and aerological techniques: CIMEL-318 sun-photometer and radiosoundings (RAOB). Integrated Precipitable Water (IPW) - important meteorological parameter is derived from GPS tropospheric solutions by known procedure for GPS station at Polish Polar Station, Hornsund (Svalbard). The relation between 2 m temperature and the mean temperature of atmosphere above, used to convert from wet part of tropospheric delay (ZWD) to IPW, has been derived using local radiosonde data at Ny Alesund. Sunphotometer data have been provided by AERONET. Quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses lead to determination of systematic difference between techniques: GPS IPW and sunphotometer data (not present in case of RAOBs). IPW measured by CIMEL is on average 5% bigger (0.5 mm) than IPW from GPS. This bias changes seasonally and is a function of atmospheric temperature what signals some systematic deficiencies in solar photometry as IPW retrieval technique. CIMEL IPW show some temperature dependent bias also in relation to radiosoundings.
APA, Harvard, Vancouver, ISO, and other styles
6

Barreto, A., E. Cuevas, M. J. Granados-Muñoz, L. Alados-Arboledas, P. M. Romero, J. Gröbner, N. Kouremeti, et al. "The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation." Atmospheric Measurement Techniques Discussions 8, no. 10 (October 28, 2015): 11077–138. http://dx.doi.org/10.5194/amtd-8-11077-2015.

Full text
Abstract:
Abstract. This paper presents the new photometer CE318-T, able to perform daytime and nighttime photometric measurements using the sun and the moon as light source. Therefore, this new device permits to extract a complete cycle of diurnal aerosol and water vapor measurements valuable to enhance atmospheric monitoring. In this study we have found significantly higher triplets precision when comparing the CE318-T master and the Cimel AErosol RObotic NETwork (AERONET) master (CE318-AERONET) triplets as a result of the new CE318-T tracking system. Regarding the instrument calibration, a new methodology to transfer the calibration from a master (Sun Ratio technique) is presented and discussed. It allows us to reduce the previous complexities inherent to nocturnal calibration. A quantitative estimation of CE318-T AOD uncertainty by means of error propagation theory during daytime revealed AOD uncertainties (uDAOD) for Langley-calibrated instruments similar to the expected values for other reference instruments (0.002–0.009). We have also found uDAOD values similar to the values reported in sun photometry for field instruments (~ 0.015). In the case of nighttime period, the CE318-T estimated uncertainty (uNAOD) is dependent not only on the calibration technique but also on illumination conditions and the instrumental noise. These values range from 0.011–0.019 for Lunar Langley calibrated instruments to 0.012–0.021 for instruments calibrated using the Sun Ratio technique. A subsequent performance evaluation including CE318-T and collocated measurements from independent reference instruments has served to assess the CE318-T performance as well as to confirm its estimated uncertainty. Daytime AOD evaluation performed at Izaña station from March to June 2014, encompassed measurements from a reference CE318-T, a CE318-AERONET master, a Precision Filter Radiometer (PFR) and a Precision SpectroRadiometer (PSR) prototype, reporting low AOD discrepancies between the four instruments (up to 0.006). The nocturnal AOD evaluation was performed using CE318-T and star photometer collocated measurements and also by means of a day/night coherence transition test using the master CE318-T and the CE318 daytime data from the CE318-AERONET master. Results showed low discrepancies with star photometer at 870 and 500 nm channels (≤ 0.013) and differences with AERONET daytime data (1 h after and before sunset and sunrise) in agreement with the estimated uNAOD values at all illumination conditions in case of channels within the visible spectral range, and only for high moon's illumination conditions in case of near infrared channels. Precipitable water vapor (PWV) validation showed a good agreement between CE318-T and Global Navigation Satellite System (GNSS) PWV values for all illumination conditions, within the expected precision for sun photometry. Finally, two case studies have been included to highlight the ability of the new CE318-T to capture the diurnal cycle of aerosols and water vapor as well as short-term atmospheric variations, critical for climate studies.
APA, Harvard, Vancouver, ISO, and other styles
7

Barreto, A., E. Cuevas, B. Damiri, P. M. Romero, and F. Almansa. "Column water vapor determination in night period with a lunar photometer prototype." Atmospheric Measurement Techniques Discussions 6, no. 1 (January 22, 2013): 767–93. http://dx.doi.org/10.5194/amtd-6-767-2013.

Full text
Abstract:
Abstract. In this paper we present the preliminary results of atmospheric column integrated water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August, 2011. We have compared nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley Method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92. Comparison of daytime PWV from CA shows differences against GPS and RS92 up to 0.18 cm. Two different filters, with and approximate bandwidth of 10 nm and central wavelengths at 938 nm (Filter#1) and 937 nm (Filter#2), were mounted into the LC. Filter#1 is currently used in operational AERONET sunphotometers. PWV obtained with LC-Filter#1 showed an overestimation above 0.18 and 0.25 cm compared to GPS and RS92, respectively, meanwhile Filter#2, with a reduced out-of-band radiation, showed very low differences compared with the same references (≤0.03 cm). These results demonstrate the ability of the new lunar photometer to obtain accurate and continuous PWV measurements at night in addition to the notably influence of the filter's transmissivity response on PWV determination at nighttime. The use of enhanced bandpass filters in lunar photometry, which is affected by more important inaccuracies than sun-photometry, is necessary to infer PWV with similar precision than AERONET.
APA, Harvard, Vancouver, ISO, and other styles
8

Kazadzis, S., N. Kouremeti, V. Amiridis, A. Arola, and E. Gerasopoulos. "Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment." Atmospheric Measurement Techniques Discussions 5, no. 5 (September 21, 2012): 6991–7023. http://dx.doi.org/10.5194/amtd-5-6991-2012.

Full text
Abstract:
Abstract. We have combined sun and sky radiance measurements from a CIMEL sun-photometer and total and diffuse UV irradiance measurements with a multi-filter rotating shadow-band radiometer (UVMFR), in order to calculate aerosol absorption properties (single scattering albedo) in the UV range, for a 10 month period in Athens, Greece. The aerosol extinction optical thickness measured by the CIMEL instrument has been used for the inter-calibration of the UVMFR. The measurements from both instruments were used as input to a radiative transfer model and the single scattering albedo (SSA) for 368 nm and 332 nm has been calculated. The SSA values at these wavelengths, together with synchronous SSA, CIMEL-derived, retrievals at 440 nm, show a mean of 0.88, 0.86 and 0.80, with lowest values (higher absorption) towards lower wavelengths. In addition, noticeable diurnal variations of the SSA in all wavelengths are revealed, with amplitudes in the order of 0.05. Higher SSA wavelength dependence is found for cases of lower Ångström exponents and also an SSA decrease with decreasing extinction optical depth, suggesting an effect of the different aerosol composition.
APA, Harvard, Vancouver, ISO, and other styles
9

Barreto, África, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, et al. "The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation." Atmospheric Measurement Techniques 9, no. 2 (February 24, 2016): 631–54. http://dx.doi.org/10.5194/amt-9-631-2016.

Full text
Abstract:
Abstract. This paper presents the new photometer CE318-T, able to perform daytime and night-time photometric measurements using the sun and the moon as light source. Therefore, this new device permits a complete cycle of diurnal aerosol and water vapour measurements valuable to enhance atmospheric monitoring to be extracted. In this study we have found significantly higher precision of triplets when comparing the CE318-T master instrument and the Cimel AErosol RObotic NETwork (AERONET) master (CE318-AERONET) triplets as a result of the new CE318-T tracking system. Regarding the instrument calibration, two new methodologies to transfer the calibration from a reference instrument using only daytime measurements (Sun Ratio and Sun-Moon gain factor techniques) are presented and discussed. These methods allow the reduction of the previous complexities inherent to nocturnal calibration. A quantitative estimation of CE318-T AOD uncertainty by means of error propagation theory during daytime revealed AOD uncertainties (uDAOD) for Langley-calibrated instruments similar to the expected values for other reference instruments (0.002–0.009). We have also found uDAOD values similar to the values reported in sun photometry for field instruments ( ∼ 0.015). In the case of the night-time period, the CE318-T-estimated standard combined uncertainty (uNAOD) is dependent not only on the calibration technique but also on illumination conditions and the instrumental noise. These values range from 0.011–0.018 for Lunar Langley-calibrated instruments to 0.012–0.021 for instruments calibrated using the Sun Ratio technique. In the case of moon-calibrated instruments using the Sun-Moon gain factor method and sun-calibrated using the Langley technique, we found uNAOD ranging from 0.016 to 0.017 (up to 0.019 in 440 nm channel), not dependent on any lunar irradiance model.A subsequent performance evaluation including CE318-T and collocated measurements from independent reference instruments has served to assess the CE318-T performance as well as to confirm its estimated uncertainty. Daytime AOD evaluation, performed at Izaña station from March to June 2014, encompassed measurements from a reference CE318-T, a CE318-AERONET master instrument, a Precision Filter Radiometer (PFR) and a Precision Spectroradiometer (PSR) prototype, reporting low AOD discrepancies between the four instruments (up to 0.006). The nocturnal AOD evaluation was performed using CE318-T- and star-photometer-collocated measurements and also by means of a day/night coherence transition test using the CE318-T master instrument and the CE318 daytime data from the CE318-AERONET master instrument. Results showed low discrepancies with the star photometer at 870 and 500 nm channels ( ≤ 0.013) and differences with AERONET daytime data (1 h after and before sunset and sunrise) in agreement with the estimated uNAOD values at all illumination conditions in the case of channels within the visible spectral range, and only for high moon's illumination conditions in the case of near-infrared channels.Precipitable water vapour (PWV) validation showed a good agreement between CE318-T and Global Navigation Satellite System (GNSS) PWV values for all illumination conditions, within the expected precision for sun photometry.Finally, two case studies have been included to highlight the ability of the new CE318-T to capture the diurnal cycle of aerosols and water vapour as well as short-term atmospheric variations, critical for climate studies.
APA, Harvard, Vancouver, ISO, and other styles
10

Landulfo, Eduardo, Alexandros Papayannis, Ani Sobral Torres, Sandro Toshio Uehara, Lucila Maria Viola Pozzetti, Caio Alencar de Matos, Patricia Sawamura, Walter Morinobu Nakaema, and Wellington de Jesus. "A Four-Year Lidar–Sun Photometer Aerosol Study at São Paulo, Brazil." Journal of Atmospheric and Oceanic Technology 25, no. 8 (August 1, 2008): 1463–68. http://dx.doi.org/10.1175/2007jtecha984.1.

Full text
Abstract:
Abstract A backscattering lidar system, the first of this kind in Brazil, has been used to provide the vertical profile of the aerosol backscatter coefficient at 532 nm up to an altitude of 4–6 km above sea level (ASL), in a suburban area in the city of São Paulo. The lidar system has been operational since September 2001. The lidar data products were obtained in a 4-yr period (2001–04) and concerned the aerosol optical thickness (AOT), the aerosol backscattering and extinction coefficients at 532 nm, cloud properties (cloud base, thickness), planetary boundary layer (PBL) heights, aerosol layering, and the structure and dynamics of the lower troposphere. The lidar data are presented and analyzed in synergy with AOT measurements obtained by a Cimel sun-tracking photometer in the visible spectral region, not only to validate the lidar data but also to provide an input value of the so-called extinction-to-backscatter ratio [lidar ratio (LR)]. A correlation between the lidar data and the data obtained by a Cimel sun-tracking photometer [belonging to the Aerosol Robotic Network (AERONET)] is being made to set a temporal database of those data that were collected concomitantly and to cross correlate the information gathered by each instrument. The sun photometer data are used to provide AOT values at selected wavelengths and thus to derive the Ångström exponent (AE) values, single scattering albedo (SSA) and phase function values, and LR values. The analysis of these data showed an important trend in the seasonal signature of the LR indicating a change of the predominant type of aerosol between the dry and wet seasons. Thus, during the wet season the LR lidar values are greater (50–60 sr), which indicates that larger absorption by the aerosols takes place during this period. The corresponding AE values range between 1.3 and 2 for both periods.
APA, Harvard, Vancouver, ISO, and other styles
11

Volkova, K. A., A. V. Poberovsky, Yu M. Timofeev, D. V. Ionov, B. N. Holben, A. Smirnov, and I. Slutsker. "Aerosol Optical Characteristics Retrieved from CIMEL Sun Photometer Measurements (AERONET) near St. Petersburg." Atmospheric and Oceanic Optics 31, no. 6 (November 2018): 635–41. http://dx.doi.org/10.1134/s1024856018060180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cachorro, V. E., A. Berjón, C. Toledano, S. Mogo, N. Prats, A. M. de Frutos, J. M. Vilaplana, et al. "Detailed Aerosol Optical Depth Intercomparison between Brewer and Li-Cor 1800 Spectroradiometers and a Cimel Sun Photometer." Journal of Atmospheric and Oceanic Technology 26, no. 8 (August 1, 2009): 1558–71. http://dx.doi.org/10.1175/2009jtecha1217.1.

Full text
Abstract:
Abstract Aerosol optical depth (AOD) using different instruments during three short and intensive campaigns carried out from 1999 to 2001 at El Arenosillo in Huelva, Spain, are presented and compared. The specific aim of this study is to determine the level of agreement between three different instruments running in operational conditions. This activity, however, is part of a broader objective to recover an extended data series of AOD in the UV range obtained from a Brewer spectroradiometer. This instrument may be used to obtain AOD at the same five UV wavelengths used during normal operation for ozone content determination. As part of the validation of the Brewer AOD data, a Cimel sun photometer and another spectroradiometer, a Li-Cor 1800, were used. A detailed comparison of these three instruments is carried out by means of near-simultaneous measurements, with particular emphasis on examining diurnal AOD variability. Absolute AOD uncertainties range from 0.02 for the Cimel to 0.08 for the Brewer, with intermediate values for the Li-Cor 1800. All data during the comparison are in reasonable agreement, when taking into account the different performance characteristics of each instrument. The comparison also demonstrates current deficiencies in the Brewer data and thus the difficulty to determine AOD values with low errors.
APA, Harvard, Vancouver, ISO, and other styles
13

Ionov, Pavel I., and Andrew K. Mollner. "Aerosol Optical Thickness Measurement with Elevation-Scanning Lidar." Journal of Atmospheric and Oceanic Technology 32, no. 7 (July 2015): 1364–71. http://dx.doi.org/10.1175/jtech-d-14-00183.1.

Full text
Abstract:
AbstractHigh-accuracy measurement of aerosol optical thickness (AOT) τa with an elevation-scanning lidar is demonstrated and the results are compared with a collocated Cimel 318 sun photometer. Linear regression of the time-coincident data from a 2-week measurement campaign with the two instruments is found to be τalidar = (1.00 ± 0.17)τaphot + (0.025 ± 0.019) (1σ). The method proved to have sufficient accuracy to measure AOTs of 0.1–0.2 commonly seen in relatively clear atmosphere. The measurement is absolute and thus does not depend on any external calibration standards.
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Zhengqiang, Kaitao Li, Donghui Li, Jiuchun Yang, Hua Xu, Philippe Goloub, and Stephane Victori. "Simple transfer calibration method for a Cimel Sun–Moon photometer: calculating lunar calibration coefficients from Sun calibration constants." Applied Optics 55, no. 27 (September 20, 2016): 7624. http://dx.doi.org/10.1364/ao.55.007624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bègue, Nelson, Lerato Shikwambana, Hassan Bencherif, Juan Pallotta, Venkataraman Sivakumar, Elian Wolfram, Nkanyiso Mbatha, et al. "Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations." Annales Geophysicae 38, no. 2 (March 26, 2020): 395–420. http://dx.doi.org/10.5194/angeo-38-395-2020.

Full text
Abstract:
Abstract. This study investigates the influence of the 2015 Calbuco eruption (41.2∘ S, 72.4∘ W; Chile) on the total columnar aerosol optical properties over the Southern Hemisphere. The well-known technic of sun photometry was applied for the investigation of the transport and spatio-temporal evolution of the optical properties of the volcanic plume. The CIMEL sun photometer measurements performed at six South American and three African sites were statistically analysed. This study involves the use of the satellite observations and a back-trajectory model. The passage of the Calbuco plume is statistically detectable in the aerosol optical depth (AOD) observations obtained from sun photometer and MODIS observations. This statistical detection confirms that the majority of the plume was transported over the northeastern parts of South America and reached the South African region 1 week after the eruption. The plume impacted the southern parts of South America to a lesser extent. The highest AOD anomalies were observed over the northeastern parts of South America. Over the South African sites, the AOD anomalies induced by the spread of the plume were quite homogeneously distributed between the east and west coasts. The optical characteristics of the plume near the source region were consistent with an ash-bearing plume. Conversely, sites further from the Calbuco volcano were influenced by ash-free plume. The optical properties discussed in this paper will be used as inputs for numerical models for further investigation of the ageing of the Calbuco plume in a forthcoming study.
APA, Harvard, Vancouver, ISO, and other styles
16

Torres, B., C. Toledano, A. Berjón, D. Fuertes, V. Molina, R. Gonzalez, M. Canini, et al. "Measurements on pointing error and field of view of Cimel-318 Sun photometers in the scope of AERONET." Atmospheric Measurement Techniques 6, no. 8 (August 30, 2013): 2207–20. http://dx.doi.org/10.5194/amt-6-2207-2013.

Full text
Abstract:
Abstract. Sensitivity studies indicate that among the diverse error sources of ground-based sky radiometer observations, the pointing error plays an important role in the correct retrieval of aerosol properties. The accurate pointing is specially critical for the characterization of desert dust aerosol. The present work relies on the analysis of two new measurement procedures (cross and matrix) specifically designed for the evaluation of the pointing error in the standard instrument of the Aerosol Robotic Network (AERONET), the Cimel CE-318 Sun photometer. The first part of the analysis contains a preliminary study whose results conclude on the need of a Sun movement correction for an accurate evaluation of the pointing error from both new measurements. Once this correction is applied, both measurements show equivalent results with differences under 0.01° in the pointing error estimations. The second part of the analysis includes the incorporation of the cross procedure in the AERONET routine measurement protocol in order to monitor the pointing error in field instruments. The pointing error was evaluated using the data collected for more than a year, in 7 Sun photometers belonging to AERONET sites. The registered pointing error values were generally smaller than 0.1°, though in some instruments values up to 0.3° have been observed. Moreover, the pointing error analysis shows that this measurement can be useful to detect mechanical problems in the robots or dirtiness in the 4-quadrant detector used to track the Sun. Specifically, these mechanical faults can be detected due to the stable behavior of the values over time and vs. the solar zenith angle. Finally, the matrix procedure can be used to derive the value of the solid view angle of the instruments. The methodology has been implemented and applied for the characterization of 5 Sun photometers. To validate the method, a comparison with solid angles obtained from the vicarious calibration method was developed. The differences between both techniques are below 3%.
APA, Harvard, Vancouver, ISO, and other styles
17

Torres, B., C. Toledano, A. Berjón, D. Fuertes, V. Molina, R. Gonzalez, M. Canini, et al. "Measurements on pointing error and field of view of Cimel-318 Sun photometers in the scope of AERONET-Europe." Atmospheric Measurement Techniques Discussions 6, no. 2 (March 25, 2013): 3013–57. http://dx.doi.org/10.5194/amtd-6-3013-2013.

Full text
Abstract:
Abstract. Sensitivity studies indicate that among the different error sources of ground-based sky radiometer observations, the pointing error has an important role in the correct retrieving of aerosol properties, being specially critical for the characterization of desert dust aerosol. The present work analyzes the first results of two new measurements, cross and matrix, specifically designed for an evaluation of the pointing error in the standard instrument of the Aerosol Robotic Network, the Cimel CE-318 sun-photometer. The first part of the analysis contains a preliminary study whose results conclude on the need of a sun movement correction for the correct evaluation of the pointing error from both new measurements. Once this correction is applied, both measurements show an equivalent behavior with differences under 0.01° in the evaluation of the pointing error. The second part of the analysis includes the incorporation of the cross scenario in the AERONET routine measurement protocol in order to monitor the pointing error in field instruments. Using the data collected for more than a year, the pointing error is evaluated on 7 sun-photometers belonging to AERONET-Europe. The pointing error values registered are generally smaller than 0.01° though in some instruments values up to 0.03° have been observed. Moreover, the pointing error evaluation has shown that this measure can be used to detect mechanical problems in the robots or dirtiness in the quadrant detector due to the stable behavior of the values against time and solar zenith angle. At the same time, the matrix scenario can be used to derive the value of the field of view. The methodology implemented and the characterization of five sun-photometers is presented in the last part of the study. To validate the method, a comparison with field of view values obtained from the vicarious calibration method was developed. The differences between both techniques are under 3%.
APA, Harvard, Vancouver, ISO, and other styles
18

Guerrero-Rascado, J. L., M. J. Costa, A. M. Silva, and F. J. Olmo. "Retrieval and variability analysis of optically thin cloud optical depths from a Cimel sun-photometer." Atmospheric Research 127 (June 2013): 210–20. http://dx.doi.org/10.1016/j.atmosres.2012.10.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rosário, Nilton E., Thamara Sauini, Theotonio Pauliquevis, Henrique M. J. Barbosa, Marcia A. Yamasoe, and Boris Barja. "Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site." Atmospheric Measurement Techniques 12, no. 2 (February 11, 2019): 921–34. http://dx.doi.org/10.5194/amt-12-921-2019.

Full text
Abstract:
Abstract. Extraterrestrial spectral response calibration of a multi-filter rotating shadow band radiometer (MFRSR) under pristine Amazonian Forest atmosphere conditions was performed using the Langley plot method. The MFRSR is installed in central Amazonia as part of a long-term monitoring site, which was used in the context of the GoAmazon2014/5 experiment. It has been operating continuously since 2011 without regular extraterrestrial calibration, preventing its application to accurate monitoring of aerosol particles. Once calibrated, the MFRSR measurements were applied to retrieve aerosol particle columnar optical properties, specifically aerosol optical depth (AODλ) and Ångström exponent (AE), which were evaluated against retrievals from a collocated Cimel Sun photometer belonging to the AErosol RObotic NETwork (AERONET). Results obtained revealed that pristine Amazonian conditions are able to provide MFRSR extraterrestrial spectral response with relative uncertainty lower than 1.0 % in visible channels. The worst estimate (air mass =1) for absolute uncertainty in AODλ retrieval varied from ≈0.02 to ≈0.03, depending on the assumption regarding uncertainty for MFRSR direct normal irradiance measured at the surface. The obtained root mean square error (RMSE ≈0.025) from the evaluation of MFRSR retrievals against AERONET AODλ was, in general, lower than estimated MFRSR AODλ uncertainty, and close to the uncertainty of AERONET field Sun photometers (≈0.02).
APA, Harvard, Vancouver, ISO, and other styles
20

Román, Roberto, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos. "Correction of a lunar-irradiance model for aerosol optical depth retrieval and comparison with a star photometer." Atmospheric Measurement Techniques 13, no. 11 (November 24, 2020): 6293–310. http://dx.doi.org/10.5194/amt-13-6293-2020.

Full text
Abstract:
Abstract. The emergence of Moon photometers is allowing measurements of lunar irradiance over the world and increasing the potential to derive aerosol optical depth (AOD) at night-time, which is very important in polar areas. Actually, new photometers implement the latest technological advances that permit lunar-irradiance measurements together with classical Sun photometry measurements. However, a proper use of these instruments for AOD retrieval requires accurate time-dependent knowledge of the extraterrestrial lunar irradiance over time due to its fast change throughout the Moon's cycle. This paper uses the RIMO (ROLO Implementation for Moon's Observation) model (an implementation of the ROLO – RObotic Lunar Observatory – model) to estimate the AOD at night-time assuming that the calibration of the solar channels can be transferred to the Moon by a vicarious method. However, the obtained AOD values using a Cimel CE318-T Sun–sky–Moon photometer for 98 pristine nights with low and stable AOD at the Izaña Observatory (Tenerife, Spain) are not in agreement with the expected (low and stable) AOD values estimated by linear interpolations from daytime values obtained during the previous evening and the following morning. Actually, AOD calculated using RIMO shows negative values and with a marked cycle dependent on the optical air mass. The differences between the AOD obtained using RIMO and the expected values are assumed to be associated with inaccuracies in the RIMO model, and these differences are used to calculate the RIMO correction factor (RCF). The RCF is a proposed correction factor that, multiplied by the RIMO value, gives an effective extraterrestrial lunar irradiance that provides AOD closer to the expected values. The RCF varies with the Moon phase angle (MPA) and with wavelength, ranging from 1.01 to 1.14, which reveals an overall underestimation of RIMO compared to the lunar irradiance. These obtained RCF values are modelled for each photometer wavelength to a second-order polynomial as a function of MPA. The AOD derived by this proposed method is compared with the independent AOD measurements obtained by a star photometer at Granada (Spain) for 2 years. The mean of the Moon–star AOD differences is between −0.015 and −0.005, and the standard deviation (SD) is between 0.03 and 0.04 (which is reduced to about 0.01 if 1 month of data affected by instrumental issues is not included in the analysis) for 440, 500, 675, and 870 nm; however, for 380 nm, the mean and standard deviation of these differences are higher. The Moon–star AOD differences are also analysed as a function of MPA, showing no significant dependence.
APA, Harvard, Vancouver, ISO, and other styles
21

Kazadzis, Stelios, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster. "Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment." Atmospheric Measurement Techniques 9, no. 12 (December 13, 2016): 5997–6011. http://dx.doi.org/10.5194/amt-9-5997-2016.

Full text
Abstract:
Abstract. We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Ångström exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.
APA, Harvard, Vancouver, ISO, and other styles
22

Queface, Antonio J., Stuart J. Piketh, Harold J. Annegarn, Brent N. Holben, and Rogerio J. Uthui. "Retrieval of aerosol optical thickness and size distribution from the CIMEL Sun photometer over Inhaca Island, Mozambique." Journal of Geophysical Research: Atmospheres 108, no. D13 (July 15, 2003): n/a. http://dx.doi.org/10.1029/2002jd002374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

García-Cabrera, Rosa Delia, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk. "Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation." Atmospheric Measurement Techniques 13, no. 5 (May 20, 2020): 2601–21. http://dx.doi.org/10.5194/amt-13-2601-2020.

Full text
Abstract:
Abstract. Spectral direct UV–visible normal solar irradiance (DNI) has been measured with an EKO MS-711 grating spectroradiometer, which has a spectral range of 300–1100 nm, and 0.4 nm step, at the Izaña Atmospheric Observatory (IZO, Spain). It has been used to determine aerosol optical depth (AOD) at several wavelengths (340, 380, 440, 500, 675, and 870 nm) between April and September 2019, which has been compared with synchronous AOD measurements from a reference Cimel and Aerosol RObotic NETwork (AERONET) sun photometer. The EKO MS-711 has been calibrated at the Izaña Atmospheric Observatory by using the Langley plot method during the study period. Although this instrument has been designed for spectral solar DNI measurements, and therefore has a field of view (FOV) of 5∘ that is twice the recommended amount in solar photometry for AOD determination, the AOD differences compared to the AERONET–Cimel reference instrument (FOV ∼1.2∘) are fairly small. A comparison of the results from the Cimel AOD and EKO MS-711 AOD presents a root mean square (rms) of 0.013 (24.6 %) at 340 and 380 nm, and 0.029 (19.5 %) for longer wavelengths (440, 500, 675, and 870 nm). However, under relatively high AOD, near-forward aerosol scattering might be significant because of the relatively large circumsolar radiation (CSR) due to the large EKO MS-711 FOV, which results in a small but significant AOD underestimation in the UV range. The AOD differences decrease considerably when CSR corrections, estimated from libRadtran radiative transfer model simulations, are performed and obtain an rms of 0.006 (14.9 %) at 340 and 380 nm, and 0.005 (11.1 %) for longer wavelengths. The percentage of 2 min synchronous EKO AOD–Cimel AOD differences within the World Meteorological Organization (WMO) traceability limits were ≥96 % at 500, 675, and 870 nm with no CSR corrections. After applying the CSR corrections, the percentage of AOD differences within the WMO traceability limits increased to >95 % for 380, 440, 500, 675, and 870 nm, while for 340 nm the percentage of AOD differences showed a poorer increase from 67 % to a modest 86 %.
APA, Harvard, Vancouver, ISO, and other styles
24

Fragkos, Konstantinos, Bogdan Antonescu, David M. Giles, Dragoş Ene, Mihai Boldeanu, Georgios A. Efstathiou, Livio Belegante, and Doina Nicolae. "Assessment of the total precipitable water from a sun photometer, microwave radiometer and radiosondes at a continental site in southeastern Europe." Atmospheric Measurement Techniques 12, no. 3 (March 29, 2019): 1979–97. http://dx.doi.org/10.5194/amt-12-1979-2019.

Full text
Abstract:
Abstract. In this study, we discuss the differences in the total precipitable water (TPW), retrieved from a Cimel sun photometer operating at a continental site in southeast Europe, between version 3 (V3) and version 2 (V2) of the AErosol RObotic NETwork (AERONET) algorithms. In addition, we evaluate the performance of the two algorithms comparing their product with the TPW obtained from a collocated microwave radiometer and nearby radiosondes during the period 2007–2017. The TPW from all three instruments was highly correlated, showing the same annual cycle, with lower values during winter and higher values during summer. The sun photometer and the microwave radiometer depict the same daily cycle, with some discrepancies during early morning and late afternoon due to the effect of solar zenith angle on the measurements of the photometer. The TPW from V3 of the AERONET algorithm has small differences compared with V2, mostly related to the use of the new laboratory-based temperature coefficients used in V3. The microwave radiometer measurements are in good agreement with those obtained by the radiosonde, especially during night-time when the differences between the two instruments are almost negligible. The comparison of the sun photometer data with high-quality independent measurements from radiosondes and the radiometer shows that the absolute differences between V3 and the other two datasets are slightly higher compared with V2. However, V3 has a lower dependence from the TPW and the internal sensor temperature, indicating a better performance of the retrieving algorithm. The calculated one-sigma uncertainty for V3 as estimated, from the comparison with the radiosondes, is about 10 %, which is in accordance with previous studies for the estimation of uncertainty for V2. This uncertainty is further reduced to about 6 % when AERONET V3 is compared with the collocated microwave radiometer. To our knowledge, this is the first in-depth analysis of the V3 TPW, and although the findings presented here are for a specific site, we believe that they are representative of other mid-latitude continental stations.
APA, Harvard, Vancouver, ISO, and other styles
25

Bayat, A., A. Masoumi, and H. R. Khalesifard. "Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran." Atmospheric Measurement Techniques 4, no. 5 (May 11, 2011): 857–63. http://dx.doi.org/10.5194/amt-4-857-2011.

Full text
Abstract:
Abstract. We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a CIMEL CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 m a.m.s.l. (above mean sea level). The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sun-photometer through the direct measurements on the sun radiance (sun-mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.28 ± 0.14, 0.57 ± 0.37 cm and 0.73 ± 0.30, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (November 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440–870 nm along with α1 and α2, the coefficients of a second order polynomial fit to the plotted logarithm of aerosol optical depth versus the logarithm of wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 micron. The calculated values for α2 − α1 indicate that 80 % of the aerosols are in the coarse-mode (>1 μm) and 20 % of them are in the fine-mode (<1 μm). Comparison of α2 − α1 for the atmosphere over Zanjan with other regions indicates dust particles are the most dominant aerosols in the region.
APA, Harvard, Vancouver, ISO, and other styles
26

Prats, N., V. E. Cachorro, A. Berjón, C. Toledano, and A. M. De Frutos. "Column-integrated aerosol microphysical properties from AERONET Sun photometer over Southwestern Spain." Atmospheric Chemistry and Physics Discussions 11, no. 6 (June 28, 2011): 18349–84. http://dx.doi.org/10.5194/acpd-11-18349-2011.

Full text
Abstract:
Abstract. The aim of the present work is to carry out a detailed analysis of columnar microphysical properties obtained from Cimel sun-photometer measurements in the Southwest of Spain within the frame of the AERONET-RIMA network. AERONET inversion products are analysed, in particular the particle size distribution together with their associated microphysical parameters for both fine and coarse modes: concentration, effective radius and the fine mode volume fraction. This work complements previous works based on aerosol optical depth (AOD) and the Ångström exponent (AE) for a global characterization of atmospheric aerosol in this representative area of Spain and Europe. The analysed dataset spans between February 2000 and October 2008. Time series and statistical analysis has been carried out for these parameters in order to assess their typical values and seasonality together with their relationships with the AOD and AE. Mean values of volume particle concentration are 0.06 ± 0.07 μm3 μm−2 for total, 0.019 ± 0.015 μm3 μm−2 for fine and 0.04 ± 0.06 μm3 μm−2 for coarse mode; and of effective radius are 0.040 ± 0.19 μm for total, 0.14 ± 0.02 μm for fine and 1.96 ± 0.41 μm for coarse mode. The most relevant features are the clear bimodality of the volume particle size distribution, with a slight dominance of the coarse mode for the total climatology and under the prevailing atmospheric conditions of the site (coastal marine). There is a clear prevalence of the coarse mode in summer months, September and March in coincidence with the occurrence of desert dust intrusions and highest AOD values. During aerosol desert dust arrivals, the particle size distribution is practically mono-modal with strong prevalence of the coarse mode which also shows a shift of the modal radius to lower values. The size particle predominance defines the characteristic of the site and it has been analysed under two different approaches: with respect to particle number, using the Ångström exponent and with respect to particle volume, where the fine mode volume fraction Vf/Vt is taken.
APA, Harvard, Vancouver, ISO, and other styles
27

Prats, N., V. E. Cachorro, A. Berjón, C. Toledano, and A. M. De Frutos. "Column-integrated aerosol microphysical properties from AERONET Sun photometer over southwestern Spain." Atmospheric Chemistry and Physics 11, no. 24 (December 15, 2011): 12535–47. http://dx.doi.org/10.5194/acp-11-12535-2011.

Full text
Abstract:
Abstract. The aim of the present work is to carry out a detailed analysis of columnar microphysical properties obtained from Cimel sun-photometer measurements in the Southwest of Spain within the frame of the Aerosol Robotic Network (AERONET) – Iberian Network for aerosol measurements (RIMA). AERONET level 2 inversion products are analysed, in particular the particle size distribution together with their associated microphysical parameters for both fine and coarse modes: volume concentration, effective radius and the fine mode volume fraction. This work complements previous works based on aerosol optical depth (AOD) and the Ångström exponent (AE) for a global characterization of atmospheric aerosol in this area of southwestern Spain. The analysed dataset spans between February 2000 and October 2008. Time series and statistical analysis has been carried out for these parameters in order to assess their typical values and seasonality together with their relationships with the AOD and AE. Mean values of volume particle concentration are 0.06±0.07 μm3 μm−2 for total, 0.019±0.015 μm3 μm−2 for fine and 0.04±0.06 μm3 μm−2 for coarse mode; mean effective radii are 0.40±0.19 μm for total, 0.14±0.02 μm for fine and 1.96±0.41 μm for coarse mode. The most relevant features are the clear bimodality of the volume particle size distribution, with a slight dominance of the coarse mode in the overall climatology given the prevailing atmospheric conditions at the site (coastal marine). There is a clear prevalence of the coarse mode in summer months plus September and March, in coincidence with the occurrence of desert dust intrusions and highest AOD values. During desert dust outbreaks, the particle size distribution is practically monomodal with strong prevalence of the coarse mode which also shows a shift of the modal radius toward lower values. The size particle predominance defines the characteristic of the site and it has been analysed under two different parameters: the Ångström exponent and the fine mode volume fraction Vf/Vt. We investigated the relationship between them and also their relationship with the effective radius of the size distribution.
APA, Harvard, Vancouver, ISO, and other styles
28

Gasteiger, J., S. Groß, V. Freudenthaler, and M. Wiegner. "Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements." Atmospheric Chemistry and Physics 11, no. 5 (March 11, 2011): 2209–23. http://dx.doi.org/10.5194/acp-11-2209-2011.

Full text
Abstract:
Abstract. Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e. extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m−2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm−3. The uncertainty range for this ratio is from 0.87 g m−2 to 2.32 g m−2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km−1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m−3 (0.65 to 1.8 mg m−3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic utilization of high quality lidar and Sun photometer data, in combination with realistic aerosol models, is recommended for improving ash mass concentration retrievals.
APA, Harvard, Vancouver, ISO, and other styles
29

Wood, John, Tim J. Smyth, and Victor Estellés. "Autonomous marine hyperspectral radiometers for determining solar irradiances and aerosol optical properties." Atmospheric Measurement Techniques 10, no. 5 (May 9, 2017): 1723–37. http://dx.doi.org/10.5194/amt-10-1723-2017.

Full text
Abstract:
Abstract. We have developed two hyperspectral radiometer systems which require no moving parts, shade rings or motorised tracking, making them ideally suited for autonomous use in the inhospitable remote marine environment. Both systems are able to measure direct and diffuse hyperspectral irradiance in the wavelength range 350–1050 nm at 6 nm (Spectrometer 1) or 3.5 nm (Spectrometer 2) resolution. Marine field trials along a 100° transect (between 50° N and 50° S) of the Atlantic Ocean resulted in close agreement with existing commercially available instruments in measuring (1) photosynthetically available radiation (PAR), with both spectrometers giving regression slopes close to unity (Spectrometer 1: 0.960; Spectrometer 2: 1.006) and R2 ∼ 0.96; (2) irradiant energy, with R2 ∼ 0.98 and a regression slope of 0.75 which can be accounted for by the difference in wavelength integration range; and (3) hyperspectral irradiance where the agreement on average was between 2 and 5 %. Two long duration land-based field campaigns of up to 18 months allowed both spectrometers to be well calibrated. This was also invaluable for empirically correcting for the wider field of view (FOV) of the spectrometers in comparison with the current generation of sun photometers ( ∼ 7.5° compared with ∼ 1°). The need for this correction was also confirmed and independently quantified by atmospheric radiative transfer modelling and found to be a function of aerosol optical depth (AOD) and solar zenith angle. Once Spectrometer 2 was well calibrated and the FOV effect corrected for, the RMSE in retrievals of AOD when compared with a CIMEL sun photometer were reduced to ∼ 0.02–0.03 with R2 > 0.95 at wavelengths 440, 500, 670 and 870 nm. Corrections for the FOV as well as ship motion were applied to the data from the marine field trials. This resulted in AOD500 nm ranging between 0.05 in the clear background marine aerosol regions and ∼ 0.5 within the Saharan dust plume. The RMSE between the handheld Microtops sun photometer and Spectrometer 2 was between 0.047 and 0.057 with R2 > 0.94.
APA, Harvard, Vancouver, ISO, and other styles
30

Bayat, A., A. Masoumi, and H. R. Khalesifard. "Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran." Atmospheric Measurement Techniques Discussions 3, no. 3 (June 17, 2010): 2633–49. http://dx.doi.org/10.5194/amtd-3-2633-2010.

Full text
Abstract:
Abstract. We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a Cimel CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 above m.s.l. The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sunphotometer through direct-beam irradiance measurements of sunlight (sun mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.27±0.16, 0.53±0.37 cm and 0.75±0.46, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (January 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440–870 nm along with the coefficients of a second order polynomial fit (α1 and α2) to the log-log plot of aerosol optical depth versus the wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 μm. The values calculated for α2−α1 indicate that 70% of the aerosols are in the coarse-mode (>1 μm) and 30% of them are in the fine-mode (<1 μm). Comparison of α2−α1 for the atmosphere over Zanjan with other regions indicates dust and anthropogenic aerosols are the most dominant aerosols in the region.
APA, Harvard, Vancouver, ISO, and other styles
31

Bayat, A., H. R. Khalesifard, and A. Masoumi. "Retrieval of aerosol single-scattering albedo and polarized phase function from polarized sun-photometer measurements for Zanjan's atmosphere." Atmospheric Measurement Techniques 6, no. 10 (October 15, 2013): 2659–69. http://dx.doi.org/10.5194/amt-6-2659-2013.

Full text
Abstract:
Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.
APA, Harvard, Vancouver, ISO, and other styles
32

Gasteiger, J., S. Groß, V. Freudenthaler, and M. Wiegner. "Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements." Atmospheric Chemistry and Physics Discussions 10, no. 11 (November 8, 2010): 26705–50. http://dx.doi.org/10.5194/acpd-10-26705-2010.

Full text
Abstract:
Abstract. Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e. extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m−2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm−3. The uncertainty range for this ratio is from 0.9 g m−2 to 2.3 g m−2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km−1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m−3 (0.65 to 1.7 mg m−3). We compare the lidar inversion results to results from an independent approach using sky radiance measurements of the CIMEL in the aureole of the Sun. We find good agreement.
APA, Harvard, Vancouver, ISO, and other styles
33

García, Rosa Delia, Emilio Cuevas, Victoria Eugenia Cachorro, Omaira E. García, África Barreto, A. Fernando Almansa, Pedro M. Romero-Campos, et al. "Water Vapor Retrievals from Spectral Direct Irradiance Measured with an EKO MS-711 Spectroradiometer—Intercomparison with Other Techniques." Remote Sensing 13, no. 3 (January 20, 2021): 350. http://dx.doi.org/10.3390/rs13030350.

Full text
Abstract:
Precipitable water vapor retrievals are of major importance for assessing and understanding atmospheric radiative balance and solar radiation resources. On that basis, this study presents the first PWV values measured with a novel EKO MS-711 grating spectroradiometer from direct normal irradiance in the spectral range between 930 and 960 nm at the Izaña Observatory (IZO, Spain) between April and December 2019. The expanded uncertainty of PWV (UPWV) was theoretically evaluated using the Monte-Carlo method, obtaining an averaged value of 0.37 ± 0.11 mm. The estimated uncertainty presents a clear dependence on PWV. For PWV ≤ 5 mm (62% of the data), the mean UPWV is 0.31 ± 0.07 mm, while for PWV > 5 mm (38% of the data) is 0.47 ± 0.08 mm. In addition, the EKO PWV retrievals were comprehensively compared against the PWV measurements from several reference techniques available at IZO, including meteorological radiosondes, Global Navigation Satellite System (GNSS), CIMEL-AERONET sun photometer and Fourier Transform Infrared spectrometry (FTIR). The EKO PWV values closely align with the above mentioned different techniques, providing a mean bias and standard deviation of −0.30 ± 0.89 mm, 0.02 ± 0.68 mm, −0.57 ± 0.68 mm, and 0.33 ± 0.59 mm, with respect to the RS92, GNSS, FTIR and CIMEL-AERONET, respectively. According to the theoretical analysis, MB decreases when comparing values for PWV > 5 mm, leading to a PWV MB between −0.45 mm (EKO vs. FTIR), and 0.11 mm (EKO vs. CIMEL-AERONET). These results confirm that the EKO MS-711 spectroradiometer is precise enough to provide reliable PWV data on a routine basis and, as a result, can complement existing ground-based PWV observations. The implementation of PWV measurements in a spectroradiometer increases the capabilities of these types of instruments to simultaneously obtain key parameters used in certain applications such as monitoring solar power plants performance.
APA, Harvard, Vancouver, ISO, and other styles
34

Knobelspiesse, K., B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker. "Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers." Atmospheric Measurement Techniques 8, no. 3 (March 24, 2015): 1537–54. http://dx.doi.org/10.5194/amt-8-1537-2015.

Full text
Abstract:
Abstract. The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e., if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized) radiance to determine cloud optical depth (COD). This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET), which, if practical, could expand the products of that global instrument network at minimal additional cost. We performed simulations that found, for zenith observations, that cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (positive) or perpendicular (parallel) to that plane. Since the fraction of linearly polarized to total light is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60° are best), and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles). We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometer/radiometer that compose a portion of AERONET. Most algorithms that exploit Cimel polarized observations use the degree of linear polarization (DoLP), not the individual Stokes vector elements (such as Q). Ability to determine cloud thermodynamic phase depends on Q measurement accuracy, which has not been rigorously assessed for Cimel instruments. For this reason, we did not know if cloud phase could be determined from Cimel observations successfully. Indeed, comparisons to ceilometer observations with a single polarized spectral channel version of the Cimel at a site in the Netherlands showed little correlation. Comparisons to lidar observations with a more recently developed, multi-wavelength polarized Cimel in Maryland, USA, show more promise. The lack of well-characterized observations has prompted us to begin the development of a small test instrument called the Sky Polarization Radiometric Instrument for Test and Evaluation (SPRITE). This instrument is specifically devoted to the accurate observation of Q, and the testing of calibration and uncertainty assessment techniques, with the ultimate goal of understanding the practical feasibility of these measurements.
APA, Harvard, Vancouver, ISO, and other styles
35

Knobelspiesse, K., B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker. "Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers." Atmospheric Measurement Techniques Discussions 7, no. 12 (December 2, 2014): 11991–2036. http://dx.doi.org/10.5194/amtd-7-11991-2014.

Full text
Abstract:
Abstract. The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e. if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized) radiance to determine Cloud Optical Depth (COD). This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET), which, if practical, could expand the products of that global instrument network at minimal additional cost. We performed simulations that found, for zenith observations, cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (positive) or perpendicular (negative) to that plane. Since the quantity of polarization is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60° are best), and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles). We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometer/radiometer that comprise AERONET. Most algorithms that exploit Cimel polarized observations use the Degree of Linear Polarization (DoLP), not the individual Stokes vector elements (such as Q). For this reason, we had no information about the accuracy of Cimel observed Q and the potential for cloud phase determination. Indeed, comparisons to ceilometer observations with a single polarized spectral channel version of the Cimel at a site in the Netherlands showed little correlation. Comparisons to Lidar observations with a more recently developed, multi-wavelength polarized Cimel in Maryland, USA, show more promise. The lack of well characterized observations has prompted us to begin the development of a small test instrument called the Sky Polarization Radiometric Instrument for Test and Evaluation (SPRITE). This instrument is specifically devoted to the accurate observation of Q, and the testing of calibration and uncertainty assessment techniques, with the ultimate goal of understanding the practical feasibility of these measurements.
APA, Harvard, Vancouver, ISO, and other styles
36

Mylonaki, Maria, Alexandros Papayannis, Rodanthi Mamouri, Athina Argyrouli, Panagiotis Kokkalis, Georgios Tsaknakis, and Ourania Soupiona. "Aerosol optical properties variability during biomass burning events observed by the eole-aias depolarization lidars over Athens, Greece (2007-2016)." EPJ Web of Conferences 176 (2018): 05022. http://dx.doi.org/10.1051/epjconf/201817605022.

Full text
Abstract:
The EOLE multi-wavelength aerosol Ramandepolarization lidar, and the AIAS depolarization lidar, in synergy with a sun photometer (CIMEL), were used, in the period 2007-2016, to provide the vertical profiles of the aerosol optical properties over Athens, Greece. More than 30 biomass burning events (fresh and aged smoke particles) were observed, with smoke layers between 1.5 up to 4-5 km height, while their duration ranged from 1-3 days. Lidar ratio (LR) values ranged from 40-105 sr (at 355 nm) and from 40-100 sr (at 532 nm), while the linear particle depolarization ratio (LPDR) at both 355 and 532 nm, remained <7%. The extinction-related Ångström exponent (AEa) at 355 nm/532 nm) ranged from 0.3 to 2.1. Additionally, a case of a near-range transport of biomass burning aerosols arriving over Athens up to 4 km height, between 27 and 28 June 2016, was studied. For this case, we found LRs of the order of 70±5 sr (355 nm) and 65±15 sr (532 nm) and AEa(355 nm/532 nm) around 1.
APA, Harvard, Vancouver, ISO, and other styles
37

Ortega, Ivan, Sean Coburn, Larry K. Berg, Kathy Lantz, Joseph Michalsky, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, and Rainer Volkamer. "The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties." Atmospheric Measurement Techniques 9, no. 8 (August 23, 2016): 3893–910. http://dx.doi.org/10.5194/amt-9-3893-2016.

Full text
Abstract:
Abstract. The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ∼ 0.19, and that over oceans is ∼ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), −0.012 ± 0.024 (MFRSR), −0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD − MFRSRAOD) and yields the following expressions for correlations between different instruments: DOASAOD = −(0.019 ± 0.006) + (1.03 ± 0.02) × CIMELAOD (R2 = 0.98), DOASAOD = −(0.006 ± 0.005) + (1.08 ± 0.02) × MFRSRAOD (R2 = 0.98), and CIMELAOD = (0.013 ± 0.004) + (1.05 ± 0.01) × MFRSRAOD (R2 = 0.99). The average g measured by DOAS on both days was 0.66 ± 0.03, with a difference of 0.014 ± 0.05 compared to CIMEL. Active steps to minimize the error in the RSP help to reduce the uncertainty in retrievals of AOD and g. As AOD decreases and SZA increases, the RSP signal-to-noise ratio increases. At AOD430 ∼ 0.4 and 0.10 the absolute AOD errors are ∼ 0.014 and 0.003 at 70° SZA and 0.02 and 0.004 at 35° SZA. Inherently calibrated, precise AOD and g measurements are useful to better characterize the aerosol direct effect in urban polluted and remote pristine environments.
APA, Harvard, Vancouver, ISO, and other styles
38

Kazadzis, S., A. Bais, V. Amiridis, D. Balis, C. Meleti, N. Kouremeti, C. S. Zerefos, et al. "Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece." Atmospheric Chemistry and Physics 7, no. 8 (April 26, 2007): 2091–101. http://dx.doi.org/10.5194/acp-7-2091-2007.

Full text
Abstract:
Abstract. Spectral measurements of the aerosol optical depth (AOD) and the Ångström coefficient were conducted at Thessaloniki, Greece (40.5° N, 22.9° E) between January 1997 and December 2005 with a Brewer MKIII double-monochromator spectroradiometer. The dataset was compared with collocated measurements of a second spectroradiometer (Brewer MKII) and a CIMEL sun-photometer, showing correlations of 0.93 and 0.98, respectively. A seasonal variation of the AOD was observed at Thessaloniki, with AOD values at 340 nm of 0.52 and 0.28 for August and December respectively. Back trajectories of air masses for up to 4 days were used to assess the influence of long-range transport from various regions to the aerosol load over Thessaloniki. It is shown that part of the observed seasonality can be attributed to air masses with high AOD originating from North-Eastern and Eastern directions during summertime. The analysis of the long-term record (9 years) of AOD showed a downward tendency. A similar decreasing tendency was found in the record of the PM$_{10}$ aerosol measurements, which are conducted near the surface at 4 air-quality monitoring stations in the area of the city of Thessaloniki.
APA, Harvard, Vancouver, ISO, and other styles
39

Corr, C. A., N. Krotkov, S. Madronich, J. R. Slusser, B. Holben, W. Gao, J. Flynn, B. Lefer, and S. M. Kreidenweis. "Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO." Atmospheric Chemistry and Physics 9, no. 15 (August 12, 2009): 5813–27. http://dx.doi.org/10.5194/acp-9-5813-2009.

Full text
Abstract:
Abstract. Surface measurements of direct and diffuse voltages at UV wavelengths were made at the T1 site during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006, using a multifilter rotating shadowband radiometer (UV-MFRSR). We used the MFRSR data, together with measurements from a co-located CIMEL Sun photometer at the site operating as part of the AERONET network, to deduce aerosol single scattering albedo (ω) at 368 and 332 nm for four cloud-free days during the study. Our retrievals suggest that T1 aerosols with aerosol extinction optical depth τ368>0.1 that are influenced by Mexico City emissions, blowing dust, and biomass burning, are characterized by low ω368=0.73–0.85 and ω332=0.70–0.86, with small or no spectral variation of ω between 368 and 332 nm. Our findings are consistent with other published estimates of ω for Mexico City aerosols, including those that suggest that the absorption attributable to these aerosols is enhanced at UV wavelengths relative to visible wavelengths. We also demonstrate, via sensitivity tests, the importance of accurate τ and surface albedo measurements in ω retrievals at UV wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
40

Kazadzis, S., A. Bais, V. Amiridis, D. Balis, C. Meleti, N. Kouremeti, C. S. Zerefos, et al. "Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece." Atmospheric Chemistry and Physics Discussions 7, no. 1 (January 15, 2007): 537–67. http://dx.doi.org/10.5194/acpd-7-537-2007.

Full text
Abstract:
Abstract. Spectral measurements of the aerosol optical depth (AOD) and the Angstrom coefficient were conducted at Thessaloniki, Greece (40.5° N, 22.9° E) between January 1997 and December 2005 with a Brewer MKIII double-monochromator spectroradiometer. The dataset was compared with collocated measurements of a second spectroradiometer (Brewer MKII) and a CIMEL sun-photometer, showing correlations of 0.93 and 0.98 respectively. A seasonal variation of the AOD was observed at Thessaloniki, with AOD values at 340 nm of 0.52 and 0.28 for August and December respectively. Back trajectories of air masses for up to 4 days were used to assess the influence of long-range transport from various regions to the aerosol load over Thessaloniki. It is shown that part of the observed seasonality can be attributed to air masses with high AOD originating from North-Eastern and Eastern directions during summertime. The analysis of the long-term record (9 years) of AOD showed a downward tendency. A similar decreasing tendency was found in the record of the PM-10 aerosol measurements, which are conducted near the surface at 4 air-quality monitoring stations in the area of the city of Thessaloniki.
APA, Harvard, Vancouver, ISO, and other styles
41

Corr, C. A., N. Krotkov, S. Madronich, J. R. Slusser, B. Holben, W. Gao, J. Flynn, B. Lefer, and S. M. Kreidenweis. "Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO." Atmospheric Chemistry and Physics Discussions 9, no. 1 (February 25, 2009): 4971–5008. http://dx.doi.org/10.5194/acpd-9-4971-2009.

Full text
Abstract:
Abstract. Surface measurements of direct and diffuse voltages at UV wavelengths were made at the T1 site during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006, using a multifilter rotating shadowband radiometer (UV-MFRSR). We used the MFRSR data, together with measurements from a co-located CIMEL Sun photometer at the site operating as part of the AERONET network, to deduce aerosol single scattering albedo (ω) at 368 and 332 nm for four cloud-free days during the study. Our retrievals suggest that T1 aerosols with aerosol extinction optical depth τ368>0.1 that are influenced by Mexico City emissions, blowing dust, and biomass burning, are characterized by low ω368=0.73–0.85 and ω332=0.70–0.86, with small or no spectral variation of ω between 368 and 332 nm. Our findings are consistent with other published estimates of ω for Mexico City aerosols, including those that suggest that the absorption attributable to these aerosols is enhanced at UV wavelengths relative to visible wavelengths. We also demonstrate, via sensitivity tests, the importance of accurate τ and surface albedo measurements in ω retrievals at UV wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
42

Kokkalis, Panagiotis, Hala K. Al Jassar, Stavros Solomos, Panagiotis-Ioannis Raptis, Hamad Al Hendi, Vassilis Amiridis, Alexandros Papayannis, Hussain Al Sarraf, and Marwan Al Dimashki. "Long-Term Ground-Based Measurements of Aerosol Optical Depth over Kuwait City." Remote Sensing 10, no. 11 (November 15, 2018): 1807. http://dx.doi.org/10.3390/rs10111807.

Full text
Abstract:
We analyze ten years (2008–2017) of ground-based observations of the Aerosol Optical Depth (AOD) in the atmosphere of Kuwait City, in Middle East. The measurements were conducted with a CIMEL sun-sky photometer, at various wavelengths. The daily average AOD at 500 nm (AOD500) is 0.45, while the mean Ångström coefficient (AE), calculated from the pair of wavelengths 440 and 870 nm, is 0.61. The observed high AOD500 values (0.75–2.91), are due to regional sand and dust storm events, which are affecting Kuwait with a mean annual frequency of almost 20 days/year. The long-term record analysis of AOD500 and AE, shows a downward and upward tendency respectively, something which could be attributed to the continuous expansion and industrialization of the main city of Kuwait, in combination with the simultaneous increase of soil moisture over the area. By utilizing back trajectories of air masses for up to 4 days, we assessed the influence of various regions to the aerosol load over Kuwait. The high aerosol loads during spring, are attributed to the dominance of coarse particles from Saudi Arabia (AOD500 0.56–0.74), a source area that contributes the 56% to the mean annual AOD500. Other dust sources affecting significantly Kuwait originated from the regions of Iraq and Iran with contribution of 21%.
APA, Harvard, Vancouver, ISO, and other styles
43

Raptis, Panagiotis-Ioannis, Stelios Kazadzis, Julian Gröbner, Natalia Kouremeti, Lionel Doppler, Ralf Becker, and Constantinos Helmis. "Water vapour retrieval using the Precision Solar Spectroradiometer." Atmospheric Measurement Techniques 11, no. 2 (February 27, 2018): 1143–57. http://dx.doi.org/10.5194/amt-11-1143-2018.

Full text
Abstract:
Abstract. The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos – World Radiation Center (PMOD–WRC), Davos, measuring direct solar irradiance at the surface, in the 300–1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934–948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87–0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96–0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08–0.30 cm and only in extreme cases would reach up to 15 %.
APA, Harvard, Vancouver, ISO, and other styles
44

Toledo, D., P. Rannou, J. P. Pommereau, A. Sarkissian, and T. Foujols. "Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)." Atmospheric Measurement Techniques Discussions 8, no. 9 (September 16, 2015): 9611–48. http://dx.doi.org/10.5194/amtd-8-9611-2015.

Full text
Abstract:
Abstract. A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.
APA, Harvard, Vancouver, ISO, and other styles
45

Ajtai, Nicolae, Horațiu Ștefănie, Alexandru Mereuță, Andrei Radovici, and Camelia Botezan. "Multi-Sensor Observation of a Saharan Dust Outbreak over Transylvania, Romania in April 2019." Atmosphere 11, no. 4 (April 9, 2020): 364. http://dx.doi.org/10.3390/atmos11040364.

Full text
Abstract:
Mineral aerosols are considered to be the second largest source of natural aerosol, the Saharan desert being the main source of dust at global scale. Under certain meteorological conditions, Saharan dust can be transported over large parts of Europe, including Romania. The aim of this paper is to provide a complex analysis of a Saharan dust outbreak over the Transylvania region of Romania, based on the synergy of multiple ground-based and satellite sensors in order to detect the dust intrusion with a higher degree of certainty. The measurements were performed during the peak of the outbreak on April the 24th 2019, with instruments such as a Cimel sun-photometer and a multi-wavelength Raman depolarization lidar, together with an in-situ particle counter measuring at ground level. Remote sensing data from MODIS sensors on Terra and Aqua were also analyzed. Results show the presence of dust aerosol layers identified by the multi-wavelength Raman and depolarization lidar at altitudes of 2500–4000 m, and 7000 m, respectively. The measured optical and microphysical properties, together with the HYSPLIT back-trajectories, NMMB/BSC dust model, and synoptic analysis, confirm the presence of lofted Saharan dust layers over Cluj-Napoca, Romania. The NMMB/BSC dust model predicted dust load values between 1 and 1.5 g/m2 over Cluj-Napoca at 12:00 UTC for April the 24th 2019. Collocated in-situ PM monitoring showed that dry deposition was low, with PM10 and PM2.5 concentrations similar to the seasonal averages for Cluj-Napoca.
APA, Harvard, Vancouver, ISO, and other styles
46

Guerrero-Rascado, J. L., F. J. Olmo, I. Avilés-Rodríguez, F. Navas-Guzmán, D. Pérez-Ramírez, H. Lyamani, and L. Alados Arboledas. "Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite." Atmospheric Chemistry and Physics Discussions 9, no. 4 (July 24, 2009): 15673–723. http://dx.doi.org/10.5194/acpd-9-15673-2009.

Full text
Abstract:
Abstract. This study investigates aerosol optical properties during the extreme Saharan dust event detected from 3 to 7 September 2007 over Granada, southern Iberian Peninsula, with both active and passive remote sensing instrumentation from surface and satellite. The intensity of the event was visualized on the aerosol optical depth series obtained by the sun-photometer Cimel CE 318-4 operated at Granada in the framework of AERONET from August 2004 until December 2008 (level 2 data). A combination of large aerosol optical depth (0.86–1.50) at 500 nm, and reduced Angström exponent (0.1–0.25) in the range 440–870 nm, was detected on 6 September during daytime. This Saharan dust event also affected other Iberian Peninsula stations included in AERONET (El Arenosillo and Évora stations). During the most intense stage, on 6 September, maximum aerosol backscatter values were a factor of 8 higher than other maxima during this Saharan dust event. Values up to 1.5×10−2 km−1 sr−1 at 355 and 532 nm were detected in the layer with the greatest aerosol load between 3–4 km a.s.l., although aerosol particles were also detected up to 5.5 km a.s.l. In this stage of the event, dust particles at these altitudes showed a backscatter-related Angström exponent between −0.44 and 0.53 for the two spectral intervals considered. The results from different measurements (active/passive and ground-based/satellite) reveal the importance of performing multi-instrumental measurements to properly characterize the contribution of different aerosol types from different sources during extreme events.
APA, Harvard, Vancouver, ISO, and other styles
47

Hrabčák, Peter. "Comparison of the optical depth of total ozone and atmospheric aerosols in Poprad-Gánovce, Slovakia." Atmospheric Chemistry and Physics 18, no. 10 (June 1, 2018): 7739–55. http://dx.doi.org/10.5194/acp-18-7739-2018.

Full text
Abstract:
Abstract. The amount of ultraviolet solar radiation reaching the Earth's surface is significantly affected by atmospheric ozone along with aerosols. The present paper is focused on a comparison of the total ozone and atmospheric aerosol optical depth in the area of Poprad-Gánovce, which is situated at the altitude of 706 m a. s. l. in the vicinity of the highest mountain in the Carpathian mountains. The direct solar ultraviolet radiation has been measured here continuously since August 1993 using a Brewer MKIV ozone spectrophotometer. These measurements have been used to calculate the total amount of atmospheric ozone and, subsequently, its optical depth. They have also been used to determine the atmospheric aerosol optical depth (AOD) using the Langley plot method. Results obtained by this method were verified by means of comparison with a method that is part of the Brewer operating software, as well as with measurements made by a Cimel sun photometer. Diffuse radiation, the stray-light effect and polarization corrections were applied to calculate the AOD using the Langley plot method. In this paper, two factors that substantially attenuate the flow of direct ultraviolet solar radiation to the Earth's surface are compared. The paper presents results for 23 years of measurements, namely from 1994 to 2016. Values of optical depth were determined for the wavelengths of 306.3, 310, 313.5, 316.8 and 320 nm. A statistically significant decrease in the total optical depth of the atmosphere was observed with all examined wavelengths. Its root cause is the statistically significant decline in the optical depth of aerosols.
APA, Harvard, Vancouver, ISO, and other styles
48

Toledano, C., V. E. Cachorro, A. M. de Frutos, B. Torres, A. Berjón, M. Sorribas, and R. S. Stone. "Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain)." Journal of Applied Meteorology and Climatology 48, no. 5 (May 1, 2009): 962–81. http://dx.doi.org/10.1175/2008jamc2006.1.

Full text
Abstract:
Abstract The Aerosol Robotic Network (AERONET) site “El Arenosillo,” equipped with a Cimel sun photometer, has been in operation since 2000. The data collected there are analyzed to establish an aerosol synoptic climatological description that is representative of the region. Different air masses and aerosol types are present over the site depending on the synoptic conditions. The frequent intrusion of dust from the Sahara Desert at El Arenosillo suggested the use of back trajectories to determine the airmass origins of other types of aerosol observed there. The focus of this study is to classify the air masses arriving at El Arenosillo by means of back-trajectory analyses and to characterize the aerosol within each type by means of the aerosol optical depth (AOD) and its spectral signature, given as the Ångström exponent (AE). The goal is to determine how aerosols observed over the station (receptor site) differ depending on source region and transport pathways. Two classification methods are used, one based on sectors and a second based on cluster analysis. The period analyzed is from 2000 to 2004. Both methods show that maritime air masses are predominant, occurring 70% of the time and having relatively low AOD (≈0.1 at 440 nm) and a wide range of AE (from about 0 to 2.0). Air masses with continental characteristics are moderately turbid and have values of AE that average ≈1.4. Air masses arriving from the south and southwest show the distinct features of the desert dust, having moderate to high values of AOD (0.30–0.35 at 440 nm) and low values of AE.
APA, Harvard, Vancouver, ISO, and other styles
49

Mielonen, T., R. C. Levy, V. Aaltonen, M. Komppula, G. de Leeuw, J. Huttunen, H. Lihavainen, P. Kolmonen, K. E. J. Lehtinen, and A. Arola. "Evaluating the assumptions of surface reflectance and aerosol type selection within the MODIS aerosol retrieval over land: the problem of dust type selection." Atmospheric Measurement Techniques Discussions 3, no. 4 (August 17, 2010): 3425–53. http://dx.doi.org/10.5194/amtd-3-3425-2010.

Full text
Abstract:
Abstract. Aerosol Optical Depth (AOD) and Ångström exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) were compared with ground based sun photometer measurements in Europe, Asia, Africa, North America and South America. In Finland (Jokioinen and Sodankylä) measurements were done with Precision Filter Radiometer (PFR), while in Estonia (Toravere), Italy (Ispra, Rome Tor Vergata), India (Kanpur), China (Xianghe), GSFC (USA), Mexico (Mexico City), Zambia (Mongu) and Brazil (Alta Floresta) Cimel (AERONET, level 2) measurements were used. Comparison results for AOD were generally good, although there seems to be room for improvement in the MODIS aerosol model selection, particularly how dust is taken into account. At all studied sites, the MODIS algorithm often selects the dust aerosol model even when dust does not seem to be present and the air masses are not coming from arid regions. This happens especially when AOD values are relatively small (<0.3). The selection of the dust model reduces the correlation between ground based and MODIS AOD measurements in dust-free situations. Moreover, the current aerosol model selection scheme produces unphysical AE values. Our study suggests that the aerosol model combining is sensitive to the ratio of 660 nm and 2130 nm surface reflectances (slope(660/2130)). Furthermore, the value of the slope in the algorithm is mainly dependent on the Normalized Difference Vegetation Index (NDVI). The current relationship of these two parameters in the algorithm is not supported by the surface albedo climatology derived from MODIS measurements. The use of a more physical relationship improves the AE retrieval at the studied sites. However, at some sites the AOD correspondence deteriorates when the new relationship is used.
APA, Harvard, Vancouver, ISO, and other styles
50

Mamouri, R. E., A. Papayannis, V. Amiridis, D. Müller, P. Kokkalis, S. Rapsomanikis, E. T. Karageorgos, et al. "Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece." Atmospheric Measurement Techniques 5, no. 7 (July 25, 2012): 1793–808. http://dx.doi.org/10.5194/amt-5-1793-2012.

Full text
Abstract:
Abstract. A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14) μm, ω was 0.63–0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography