Dissertations / Theses on the topic 'Ciment alumineux'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ciment alumineux.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Michel, Marie. "Accélération de ciment au laitier par du ciment sulfo-alumineux." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0115/these.pdf.
Full textThe use of supplementary cementing materials such as blast furnace slag, in cements contributes to reduce their environmental impact. The industrial development of slag cements is slowed down by their limited early-age mechanical performances and high drying shrinkage. The present study deals with the acceleration of two slag cements: a slag cement CEM III A and a slag cement containing 83,5% blast furnace slag and 15,5% anhydrite. The acceleration results of the partial replacement of slag cement by calcium sulfoaluminate cement. The hydration of calcium sulfoaluminate cement yields ettringite which allows the cement to develop high early strength. Furthermore, drying shrinkage is limited. The presence of Portland clinker in the slag cements is responsible of quick setting time and quick hardening of the mortar due to the activation of yeelimite, the main component of calcium sulfoaluminate clinker, by portlandite yielded by the hydration of calcium silicate phases. To compensate the limited time of workability, some setting time retarders are introduced but they reduce the medium-term mechanical performances. The presence of Portland clinker has detrimental effect at early age, but increases the medium-term activation of slag and therefore leads to an important improvement of strength. The content of each component (slag cement, calcium sulfoaluminate cement and Portland clinker, and calcium sulphate) is optimized by the evaluation of mechanical performances. To follow the process of hydration of binders, XRD and DTA-TGA analyses have been carried out on cement pastes
Bilodeau, Josee. "Influence de polyélectrolytes sur la cinétique d'hydratation et les propriétés rhéologiques de ciments alumineux." Sherbrooke : Université de Sherbrooke, 1997.
Find full textCatalot-Martinent, Valérie. "Étude de suspensions ciment alumineux-eau : corrélations rhéologie-granularité-compacité." Grenoble INPG, 1997. http://www.theses.fr/1997INPG4209.
Full textBeylouni, Mohamed Fouad. "Fillerisation du ciment alumineux : etude de l'influence des conditions thermiques d'hydratation." Toulouse, INSA, 1988. http://www.theses.fr/1988ISAT0006.
Full textBeylouni, Mohamed Fouad. "Fillérisation du ciment alumineux étude de l'influence des conditions thermiques d'hydratation /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37611923z.
Full textAntoun, Marc. "Vers une meilleure compatibilité ciment/mâchefer (MIDND) dans la formulation de matériaux cimentaires intégrant un ciment sulfo-alumineux." Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai, 2019. http://www.theses.fr/2019MTLD0002.
Full textIn a world where circular economy and the valorization of raw materials is taking a greater importance, municipal solid waste incineration (MSWI) bottom ash is identified as potentially renewable resource in the construction field and more specifically in cementitious materials like mortar and concrete. Given the origin of the bottom ash and in order to have a better cement/MSWI bottom ash compatibility, the fraction used was as refined as possible by removing ferrous, non-ferrous and unwanted materials. The choice of the cement used is a critical factor as well because it affects the quality of the end product since MSWI bottom ash has particular physicochemical properties. The work in this PhD studies the advantages of using a sulfo-aluminate cement to valorize an improved 0/2 mm fraction of bottom ash that has been developed to be used in cementitious matrices. The first part presents the results of the mortar sample mixes containing bottom ash in a substitution by volume of the standard sand. To better highlight the effect of using a sulfo-aluminate (CSA), CSA mortars containing bottom ash were compared to a Portland cement (OPC) mortars, with substitution rates of 25 %, 50 %, 75 % and 100 % were used. A study of the porosity was then conducted at 90 days ; it shows that the pores larger to 50 nm are remarkably less present for CSA mortars. This thesis brings forward a major and innovative result : the level of alkalinity of the mortar plays an important role in the release of hydrogen gas after mixing and before setting. The presence of these gases creates large porosity in the hardened mortar samples. The second part studies the physical and microstructural aspects of the mortars after being immersed in aggressive environments : pure water and sulfate solution. The substitution rates used in this experiment were 50 % and 100 % by volume as well as the reference mortars with no bottom ash. These samples were then studied in the SEM which showed that CSA/bottom ash mortars were clearly less affected than the OPC/bottom ash mortars. This was highlighted by the porosity, the cracking and the depth of degraded zone
Simonin, Fabien Olagnon Christian. "Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium." Villeurbanne : Doc'INSA, 2001. http://docinsa.insa-lyon.fr/these/pont.php?id=simonin.
Full textMuller, Arnaud. "Conversion & résistance en compression des ciments d'aluminates de calcium." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27347/27347.pdf.
Full textPeysson, Sandrine. "Contribution à l'étude de la Stabilisation de Déchets par du Ciment Sulfo-alumineux." Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0008/these.pdf.
Full textCalcium sulfoaluminate cement is mainly composed of yeelimite known to be a precursor of ettringite formation. Ettringite is able to incorporate several heavy metals by isomorphous substitutions without altering its crystalline structure. The design of a binder required for immobilising heavy metals was undertaken. The hydration study of clinker, and cement containing 4 amounts of gypsum has been carried out by means of XRD, DTA and IR spectrometry. It was pointed out that the addition of gypsum enhances hydration. Two binders were selected : 80/20 and 70/30. The immobilisation of 7 pollutants was very successfull. Nevertheless, damages appeared with the binder 70/30 containing sodium chromate and dichromate : sodium caused activation of yeelimite reactivity and important dissolution of gypsum leading to important ettringite production. With a great amount of gypsum (30 %), dissolution led to secondary ettringite formation which damaged the hardened paste. Adding polyol enhances the retention of sodium chromate. On the other hand, the immobilisation of two types of weakly radioactive wastes supplied by CEA has been made. Results obtained in terms of setting time, compressive strength and leaching were excellent
Peysson, Sandrine Pera Jean Ambroise Jean. "Contribution à l'étude de la Stabilisation de Déchets par du Ciment Sulfo-alumineux." Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=peysson.
Full textKuryatnyk, Tetyana. "Insensibilisation à l'eau des mélanges à base de sulfate de calcium par ajout de clinker sulfo-alumineux." Lyon, INSA, 2007. http://theses.insa-lyon.fr/publication/2007ISAL0062/these.pdf.
Full textBinders based on calcium sulfate are cheap but vulnerable in water due to their high solubility. The capacity of calcium sulfo-aluminate clinker to stabilize calcium sulfate based binders as well as the influence of the nature of calcium sulfate on the mechanical properties and microstructure of such materials were investigated. Waterproofing of gypsum based binders was carried out by addition of 30, 50 and 70 % of calcium sulfo-aluminate clinker. The present study compares the bihaviour of pastes containing respectively natural gypsum, recristallized gypsum, and β hemi-hydrate. The study of the hydration of calcium sulfate based binders containing 30, 50 and 70 % of calcium sulfo-aluminate clinker has been carried out by means of XRD, DTA, and IR spectrometry. It was pointed out that ettringite and gibbsite are the main hydrates that formed regardless of the calcium sulfate to calcium sulfo-aluminate clinker ratio or the nature of calcium sulfate. The main factors determining the microstructure and thus the physical properties and the durability of material were the following : W / C ratio, conditions of curing (water or in air), percentage of added calcium sulfo-aluminate clinker, and nature of calcium sulfate. From this study, it became possible to determine the minimal quantity (30 %) of calcium sulfo-aluminate clinker ensuring the stability in water of the different mixtures
Kuryatnyk, Tetyana Pera Jean Derevianko Viktor. "Insensibilisation à l'eau des mélanges à base de sulfate de calcium par ajout de clinker sulfo-alumineux." Villeurbanne : Doc'INSA, 2007. http://docinsa.insa-lyon.fr/these/pont.php?&id=kuryatnyk.
Full textSimonin, Fabien. "Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium." Lyon, INSA, 2000. http://theses.insa-lyon.fr/publication/2000ISAL0043/these.pdf.
Full textThe study deals with the thermo-mechanical behaviour of aluminous refractory concretes containing magnesium spinel, synthetic or formed in-situ from the reaction between magnesia and alumina. These materials play a role of major importance in the steel treatment processes. We tried to rely the thermo-mechanical behaviour to the micro-structural and mineralogical properties, in the range 20°C-1600°C. Because of the low development of mechanical characterisation methods for refractories, we had to find more suitable ones. The heterogeneous character of the materials and the presence of many defaults (pores, microcracks. . . ) have a great influence on properties. The concrete presents a complex thermomechanical behaviour that can be simplified and separated in two ways: at low temperatures (until 1000°C), elastic and damage behaviour, and at high temperature, visco-plastic. At low temperatures, original pure tensile tests have been conducted with recording of the acoustic emission. The material presents a non Iinear quasi-brittle behaviour, characterised by a damage firstly diffuse and then localised, which finally leads to the formation of a macrocrack. We showed that classical damage behaviour models used for these materials were very far from the real behaviour. The localized damage has been studied in terms of resistance to crack propagation. Mechanical tests at high temperature have shown that a single value of modulus of rupture, recommended by norms, is not an adequate criteria for these materials. Indeed, important visco-plastic phenomena appear at higher temperature, due to the presence of a vitreous phase. This leads to great deformations and consequent creep
Hajj, Chehade Mohamad. "Biodétérioration de mortiers armés par Acidithiobacillus thiooxidans." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10183/document.
Full textThe aim of this PHD is to study the biodeterioration of reinforced mortar by bacteria of the gender A. thiooxidans known for its fast alteration of mortar and concrete in sewer system. The objectives of this study consisted on the development of a new experimental device that allow on one hand to understand and quantify the different biological, chemical and physical mechanisms that may take place in concrete biodeterioration, and on the other hand to serve as basic reactor for an accelerated biodeterioration test allowing the discrimination of new reinforced mortar formulations mainly Portland cement (OPC) and calcium aluminate cement (CAC) formulations. The experimental device consists of a biolixivation of reinforced mortar by a A. thiooxidans bacterial suspension at pH lower than 2. A study of growth conditions of A. thiooxidans in a specific media for this bacterial strain was necessary to procure a reproducible biolixivation essay. At the end of the biolixiviation test the CAC and OPC mortar presented different mineralogy deteriorated zones. One deeply distorted zone in contact with bacterial suspension, a second intermediate zone less damaged than the first one and the cement untouched core. An estimated attack index confirmed that CAC mortars are much more resistant to biodeterioration than OPC cement. Hence the performed biolixivation essay helped to evaluate the performance of various cementitious material formulations in order to prevent biodeterioration by A. thiooxidans. Electrochemical analysis of mortar incorporated armatures demonstrated that CAC mortar composition shows a more protective effect than OPC cement displaying lower corrosion intensity
Champenois, Jean-Baptiste. "Etude de l’hydratation des ciments sulfo-alumineux par des solutions de borate de sodium : de la spéciation du bore au retard à l'hydratation." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20252/document.
Full textIn the primary circuit of pressurized water reactors, boron helps controlling the fission reactions. The treatment of this solution produces aqueous low-level or intermediate-level and short lived radioactive with a high boron concentration (up to 1 to 3 mol/L). Stabilization/solidification of such wastes with calcium silicate cement is complicated by the strong retarding effect of borate ions on cement hydration. A calcium hydroxide addition is required to precipitate borate ions into hexahydroborite. With this approach, the hydration delay is limited, but not suppressed. Besides, hexahydroborite is unstable in the cement paste and is progressively converted into a hydrated calcium boroaluminate phase. Another strategy may consist in using belite calcium sulfoaluminate cement with high ye'elimite content. During hydration, this binder forms indeed large amounts of AFm and/or AFt phases which can incorporate borate ions into their structure.In this work, hydration of calcium sulfoaluminate cement by borated solutions was investigated at early age, and over a 2-year period, in order to determine the influence of a set of parameters (boron concentration and pH of the waste, gypsum content of the cement) on the hydration rate of the binder, on the phase assemblage formed, and on the properties of the resulting material (mechanical strength, volume change). An analytical approach was adopted, based on a progressive increase in the complexity of the investigated systems. The focus was successively placed on the speciation of boron in alkaline solution, on the study of the phases formed within the {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} and {CaO, Al2O3, B2O3, SO3, H2O} systems, and on the characterization of cement pastes prepared with a borate solution which mimicked the waste. The experimental approach was completed by thermodynamic modelling using a database specially developed for the needs of the study. Gypsum appears to play a key role in controlling the reactivity of cement. The gypsum addition sets, by an indirect mechanism, the interstitial solution pH at a value close to 11, which promotes the precipitation of a poorly crystallized borated compound, ulexite. Dissolution of the anhydrous phases is strongly slowed down until the exhaustion of gypsum, and major delays are observed. Without any gypsum, the hydration delay is shorter. Under these conditions, the pore solution pH reaches higher values after mixing. Ulexite is consequently quickly destabilized. Borate anions are then incorporated into a mixed borate/sulphate AFt type phase. It appears that calcium sulfoaluminate cements with low gypsum contents should be recommended to solidify borated solutions
Le, Bihan Tina. "Etude du comportement des chapes autonivelantes en ciment sulfo-alumineux : outils expérimentaux et de modélisation." Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0056/these.pdf.
Full textIn the area of the construction, the development of floating screeds in building is slowed down because of a lifting of angles, also called curling, which leads to disorders in hard coatings. The aim of the work is to link the physical characteristics of the formulated material of the screed and the volume variations that occur, whether in endogenous configuration or not, to minimize curling. The determination of these parameters allows on an experimental level to characterize the screed right from its casting and to give data for a modelling approach. This one is based on the theory of porous environments, where the hydro-mechanical coupling is based on the mechanism of coupling between capillary pressure and the degree of saturation of the material. A self-levelling and liquid screed of calcium sulfo-aluminate cement is studied. The development and the adaptation of techniques of characterizing during the very early age (during the first 24 hours) are a key point of the study. We will follow the vertical movements of the surface of the screed before 24 hours (measured by stereo-correlation), the lineic deformations right since the beginning, the hydration and its consequences on the physical properties of the material. The experimental and numerical studies show that the hydration of the material, the modulus of elasticity and the porous distributions play a major role on the kinetics of evolution of the dimensional variations. A swelling component has been showed. The driving force of the swelling is related to the crystallization pressure according to the observations in the environmental SEM and in the evolution of the solid phase according to the modelling
Soro, Julien. "Elaboration par coulage en bande et caractérisation de composites fibreux à matrice à base de ciment alumineux." Limoges, 2005. https://aurore.unilim.fr/theses/nxfile/default/277b6612-aad6-4cc7-b012-240bd5893755/blobholder:0/2005LIMO0003.pdf.
Full textFor "large public" utilisation, corresponding to materials with good thermo-mechanical properties at temperatures about 1200°C, a research program was undertaken to apply the tape casting method in to great diffusion materials such as aluminous cements (SECAR 71 – Lafarge-Alumitnates). The object is to manufacture composite materials with low cost mineral matrix reinforced with fibres in 1D or 2D configuration, which can be used in oxidizing atmosphere. The results we have obtained, show that it is possible to make by tape casting, composites with hydraulic binder matrix reinforced by ceramic fibres, presenting a non-fragile behaviour and preserving a good level of rupture strength after dehydration
Crépault, Étienne, and Étienne Crépault. "Rhéologie des bétons frais à base de ciment d’aluminates de calcium." Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23358.
Full textL’objet de ce projet est l’étude de la rhéologie des bétons frais à base de ciment d’aluminate de calcium, soit: le LBC et le Ciment Fondu. L’utilisation de ce type de liant hydraulique présente un intérêt substantiel dans le domaine des bétons, tant pour les ouvrages structuraux que pour les réparations en béton. La motivation derrière cette recherche est de mieux comprendre le comportement rhéologique de ce type de béton et ainsi faciliter et élargir leur utilisation dans le domaine du génie civil. Le projet de recherche s’attarde sur différents paramètres spécifiques tels que l’influence du type d’adjuvant, de leurs dosages et de leurs combinaisons, ainsi que l’effet du type de malaxage employé et de sa durée. Pour répondre aux objectifs, la recherche est divisée en deux phases. Une première phase, où les adjuvants sont évalués individuellement, a permis de lancer la seconde, plus complexe, où des conditions de malaxage réalistes, camion toupie et bétonnière mobile, et une combinaison d'adjuvants complète sont mises à l’épreuve. Des résultats forts intéressants ont été obtenus dans cette deuxième phase. L’utilisation d’un superplastifiant en combinaison avec un accélérateur de prise simule l’usage d’une bétonnière mobile. Il est possible d'obtenir, de cette combinaison, de compenser le retard de prise occasionné par le superplastifiant en dosant convenablement l’accélérateur de prise, tout en conservant des propriétés rhéologiques adéquates pour une bonne mise en place. En plus, l’utilisation d’un superplastifiant en combinaison à un retardateur de prise, simulant les conditions de transport dans une bétonnière conventionnelle, a permis de retarder et contrôler le début de la prise. Au point de vue de l’évolution rhéologique, cette combinaison est très efficace lors d’un transport prolongé. Il est possible de retarder la prise en conservant des propriétés rhéologiques adéquates. Pour finir, l’utilisation d’un activateur de prise dans un mélange ayant subi un malaxage prolongé, adjuvanté de superplastifiant et de retardateur de prise, s’est révélée très efficace pour obtenir une durée pratique d’utilisation visée en chantier.
The purpose of this project is to study the rheology of fresh concrete made from calcium aluminates cement, namely: the LBC and Ciment Fondu. Using this type of hydraulic binder has a substantial interest in the field of concrete, both for structural works and concrete repair. The motivation behind this research is to better understand the rheological behaviour of this type of concrete and thus facilitate and expand their use in the field of civil engineering. The research project focuses on specific parameters such as the influence of type of admixture, their dosages and combinations as well, type of the mixing and it duration. In order to meet the objectives, the research is divided in two phases. A first phase, where the admixtures are individually evaluated, was necessary to launch the second and more complex phase, where realistic mixing conditions have been used. Very interesting results were obtained in this second phase. First, superplasticizers in combination with set accelerators were used to simulate a mobile concrete mixer. It is possible with this combination to compensate the set delay caused by the superplasticizer by using an appropriate dosage of set accelerator, while maintaining adequate rheological properties. Secondly, the use of a superplasticizer with a set retarder, simulating the transportation in a ready-mix truck showed promising results in delaying and controlling the setting time. In terms of rheological evolution, this combination is very effective during a prolonged transport; It is possible to delay the setting time while maintaining adequate rheological properties. The use of an activator added to a mixture which has undergone prolonged mixing and including superplasticizer and set retarder was found very effective in obtaining a practical opentime, or “pot life” for a construction site.
The purpose of this project is to study the rheology of fresh concrete made from calcium aluminates cement, namely: the LBC and Ciment Fondu. Using this type of hydraulic binder has a substantial interest in the field of concrete, both for structural works and concrete repair. The motivation behind this research is to better understand the rheological behaviour of this type of concrete and thus facilitate and expand their use in the field of civil engineering. The research project focuses on specific parameters such as the influence of type of admixture, their dosages and combinations as well, type of the mixing and it duration. In order to meet the objectives, the research is divided in two phases. A first phase, where the admixtures are individually evaluated, was necessary to launch the second and more complex phase, where realistic mixing conditions have been used. Very interesting results were obtained in this second phase. First, superplasticizers in combination with set accelerators were used to simulate a mobile concrete mixer. It is possible with this combination to compensate the set delay caused by the superplasticizer by using an appropriate dosage of set accelerator, while maintaining adequate rheological properties. Secondly, the use of a superplasticizer with a set retarder, simulating the transportation in a ready-mix truck showed promising results in delaying and controlling the setting time. In terms of rheological evolution, this combination is very effective during a prolonged transport; It is possible to delay the setting time while maintaining adequate rheological properties. The use of an activator added to a mixture which has undergone prolonged mixing and including superplasticizer and set retarder was found very effective in obtaining a practical opentime, or “pot life” for a construction site.
FRYDA, HERVE. "Piegeage du cesium dans des materiaux a base de ciment alumineux et de fumee de silice." Paris 6, 1995. http://www.theses.fr/1995PA066326.
Full textBerger, Stéphane. "Étude des potentialités des ciments sulfo-alumineux bélitiques pour le conditionnement du zinc : de l’hydratation à la durabilité." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10140/document.
Full textCalcium silicate cements are widely used for low- and intermediate-level radioactive waste conditioning. However, wastes produced by nuclear activities are very diverse and some of their components may chemically react with cement phases. For instance, ashes resulting from the incineration of technological wastes including neoprene and polyvinylchloride may contain substantial amounts of soluble zinc chloride. This compound is known to strongly delay or inhibit Portland cement setting. One approach to limit adverse cement-waste interactions is to select a binder showing a better compatibility with the waste while keeping cement matrix advantages (low cost, simple process, hydration with water provided by the waste…).This work thus investigates the potential of calcium sulfoaluminate cement for zinc ZnII immobilization. Four aspects were considered: hydration (kinetics and products formed), properties of hydrated binders, mechanisms of zinc retention and durability of the cement pastes (based on leaching experiments and modelling). The influence of three main parameters was assessed: the gypsum content of the cement, the concentration of ZnCl2 and the thermal evolution at early age.It follows that materials based on a calcium sulfoaluminate cement containing 20% gypsum are interesting candidates for zinc ZnII stabilization/solidification: there is no delay in hydration, mineralogy of the hydrated phases is slightly dependent on thermal history, mechanical strength is high, dimensional changes are limited and zinc ZnII is well immobilized, even if the cement paste is leached by pure water during a long period (90 d)
Garcia, Emmanuel. "Approche expérimentale et corrélations dans les systèmes complexes : modes de broyages et réactivités du ciment alumineux fondu." Montpellier 2, 1999. http://www.theses.fr/1999MON20110.
Full textGimet-Bréart, Nathalie. "Description des évolutions physico-chimiques d'un ciment alumineux du jeune âge et au cours de son vieillissement : caractérisation ultrasonore in-situ en mode infini et en réflexion." Limoges, 2001. http://www.theses.fr/2001LIMO0004.
Full textKoga, Guilherme Yuuki. "Comportement à la corrosion de renfort en acier noyé dans des matrices de ciment sulfo-alumineux bélitique en fonction de l'hydratation." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI023.
Full textConcrete is the most widely used material in the world. The success lies on its affordability and mechanical performance, especially when reinforced with steel. Once embedded in the concrete, mild steel is naturally protected by the formation of a protecting oxide layer. This is possible thanks to the alkalinity of the concrete which results from the hydration of the Portland cement.However, Portland cement manufacturing is responsible of about 5 to 7% of the global anthropogenic CO2 emissions. The development of Belite-Ye’elimite-Ferrite (BYF) cement as alternative binder is a promising solution with a decrease of 20 to 30% in CO2 emissions compared to Portland production. The properties are being evaluated and the possibility of using mild steel reinforcement without corroding is part of it.This thesis approaches the corrosion of steel embedded in BYF cement based materials from various angles. First, a detailed hydration study was performed to understand the evolution of the “electrolyte”, i.e. of the pore solution and of the phase assemblage. Second, the passivation of ordinary steel rebar embedded in reinforced mortars was investigated. In addition, analyzes were carried out with steel samples immersed in aqueous extracts of equivalent cement pastes to characterize the structure and the thickness of the passive film. Finally, the impact of the initial chlorides on corrosion of reinforced mortars was evaluated.The hydration was characterized by several techniques, at early-age and then over one year, with techniques such as isothermal calorimetry, inductively coupled plasma optical emission spectroscopy, thermogravimetry, X-ray diffraction and mercury intrusion porosimetry. The evolution of steel embedded in mortars was evaluated with several electrochemical techniques. The applicability of current non-destructive techniques (half-cell potential readings, linear polarization resistance and electrochemical impedance spectroscopy) has been validated by large potentiodynamic polarizations and visual inspection. The passive film formed in aqueous extracts of the mortars was characterized with electrochemical techniques coupled to X-ray photoelectron spectroscopy measurements. Once the passivation understood, the impact of the initial chlorides on the reinforced mortars was evaluated.For the BYF, the hydration process and the hydrated phase assemblages are different from Portland cement, but the interstitial solution is finally very basic after one day (pH of 13). The main difference is the pH that is lower (10.6) before setting. The measurements showed that steel was effectively passivated in BYF mortars with the same level of protection as with Portland cement. The difference between the BYF and Portland cement is the time required that to reach the greatest level of protection (28 days instead of 7 days), probably because of initial lower pH value. The steel immersed in Portland and BYF aqueous extracts obtained after 28 days of hydration exhibited similar thickness and composition of protective layer, indicating that BYF media was as protective as Portland ones. Steel passivates in BYF mortars (W/C = 0.5) containing 0.4% chlorides by cement mass which is in agreement with the limit imposed by the European Standard EN-206 to reinforced Portland concretes
Berger, Stéphane. "Etude des potentialités des ciments sulfo-alumineux bélitiques pour le conditionnement du zinc De l'hydratation à la durabilité." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2009. http://tel.archives-ouvertes.fr/tel-00595609.
Full textDhoury, Mélanie. "Influence des ions lithium et borate sur l'hydratation de ciments sulfo-alumineux : application au conditionnement de résines échangeuses d'ions boratées." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS014/document.
Full textIn pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one.In this PhD study, the potential of calcium sulfoaluminate cements (CSAC) to solidify / stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye'elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study.Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye'elimite is strongly slowed down. When sodium borate and lithium hydroxide are simultaneously introduced in the mixing solution, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later converted into a borated AFt phase when hydration accelerates.Finally, based on the achieved results, a cement-based formulation is designed for the encapsulation of borated resins. Its properties fulfill the requirements for a conditioning matrix over the duration of the study
Nguyen, Ngoc Lam. "Étude de la microstructure des liants ettringitiques influence sur les propriétés macroscopiques : Résistance et variation dimensionnelle." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0006/document.
Full textThe ettringite binder whose composition is mainly formed by the calcium aluminate cement and calcium sulfate, are widely used in mortars for technical applications such as patching mortars, the self -leveling screeds, repair mortars etc… thanks to their fast hardening ability and high early strength. However, depending on the amount and types of raw materials used in the composition, the properties of these types of binder have different behaviors at early age and at long-term. And in particular in this work, the influence of the nature and dosage of calcium sulfate on the consequences of ettringite mortars hydration as the beginning of setting time, the change from the liquid state to the solid state, dimensional change, the resistance, porosity, the progress of hydration and ageing until 330 days at different conservation conditions were determined. These characteristics were assessed by different experimental techniques such as rheology, chemical shrinkage, autogenous shrinkage, isothermal calorimetry, infrared spectroscopy, mercury intrusion porosimetry, X-ray diffraction, Thermogravimetric analysis
Tlaiji, Tala. "Développement et caractérisation du comportement thermomécanique des matériaux composites TRC." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1116/document.
Full textIn order to strengthen and protect civil engineering structures from fires, a research program was undertaken for the development of new TRC composite materials. The TRC composite generally consists of two components, the textile reinforcement and the cement matrix. The new composites of the project are formulated with an inorganic phosphate cement or an aluminous matrix with continuous textile reinforcements using glass, carbon or hybrids. The purpose of this work is to examine and develop TRC that meets the thermomechanical performance criteria. The first level of design is to define a characterization methodology, which identifies the thermomechanical characteristics and physicochemical properties of TRC subjected to high temperature. Several coupled thermal and mechanical loading regimes as well as thermal analyses were applied and taken into account for different TRC formulations. In a first experimental part, the nature of the matrix and the cooling effect on the thermomechanical behaviour of TRC were studied. The second part of the experimental work explores the thermomechanical and thermo-physico-chemical behaviour of two families of TRC. The first family of TRC was formed of a phosphate cement and E-glass textile. It examines the bond that can be developed through the fibre-matrix interface by two different geometries of textile. The effectiveness of the reinforcement is then improved by a pre-impregnation by a resin epoxy. The second family of TRC deals with the reinforcement of an aluminous matrix by carbon grids. This family has undergone several changes. Filling of the matrix with alumina and micron glass was not sufficient to improve the behaviour of TRC. A new carbon grid was then used and layers of Mat AR glass fibres were inserted into the matrix. These layers of Mat AR created good thermal insulation but presented a delamination problem. Finally, the addition of polypropylene fibres in an aluminous mortar with graded granulometry showed satisfactory results. After the search and validation of the most efficient TRC, the "heat shield" function of insulating materials was processed to improve the thermomechanical stability of TRC
Kedziora, Charlotte. "Propriétés d’usage et mécanismes d’hydratation du système ternaire [Ciment Alumineux – Sulfate de Calcium – Laitier de Haut Fourneau] à haute teneur en sulfate de calcium : De l’approche expérimentale à la modélisation." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0047/document.
Full textThe potential of activation of a Ground Granulated Blast Furnace Slag has been evaluated into a ternary system comprising of a Calcium Sulfate as major component and a Calcium Aluminate Cement. This system is not well known and the main goal of this study is to determine its main advantages and limitations. From the usage properties point of view, fast setting and initial strengths are governed by the ettringitic binder. Then, and only if the dehydration is avoided, slag reacts. In this case, slag contributes to the increase of mechanical performances at medium and long terms and to limit the expansion under water. From an understanding point of view, the original experimental approach reveals the potential of the slag. It is based on a comparison of performances with different types of curing methods. The potential of hydration of the slag is amplified when the system is dehydrated during a few days and then rehydrated. However, slag contribution is complex to establish because analytical methods to follow-up slag consumption (such as X-ray Diffraction and Differential Scanning Calorimetry analysis) are not well adapted. So, to understand the hydration mechanisms, indirect approaches are used. Semi-quantitative methods by X-ray Diffraction to follow-up the mayenite, calcium sulfate, syngenite and ettringite, ThermoGravimetric Analysis to measure degree of hydration and Mercury Intrusion Porosimetry to identify microstructural changes have been carried. The most important difficulty concerns the identification and quantification of amorphous phases such as slag, C-S-H and AH3. That is why a modelling approach is necessary to understand the role of each compound in the ternary mixture and in particular the obvious contribution of slag during rehydration test. This modelling approach increases knowledge of the physical and chemical phenomena in this ternary binder. It is useful to explain the observed macroscopic properties such as strength and helps to determine the kinetics of hydration in porous environment. Even if this model is still under development, it has allowed identifying the sequences of hydration (ettringitic binder reacts at very initial time, then anhydrite transforms into gypsum and slag reacts at long term) and confirms therefore that the reaction of slag is slow
Nguyen, Hai Trung. "Transfert hydrique dans le milieu poreux réactif : Application à l’étude de séchage d’une pâte pure ettringitique au jeune âge." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI124/document.
Full textSelf-leveling flooring compounds (SLC) are often composed of calcium aluminate cements (CAC) and calcium sulfate to ensure rapid setting. The mineral composition of calcium aluminate cements is usually designed around monocalcium aluminate (CA). Recently, a new cement with the main compound of mayenite (C12A7) has been designed to optimize the application of SLC by increasing the amount of ettringite in the hydration product. However, there is a lack of knowledge related to early-age hydration (during the first 24 hours) of this type of product. The main objective of this study is to evaluate the interaction between early-age hydration and natural drying through a coupling model. This model is applied to the study of an ettringite binder composed of cement rich in C12A7 and plaster First, a kinetic model of hydration, initially developed in a diluted system, has been proposed to study the hydration of an ettringite paste under endogenous conditions. It allows to describe the evolution as a function of time of the porosity, the water content, and the quantities of phases (reactants and hydrates). A model of pore size distribution has also been proposed. This model allows us to obtain the capillary pressure curve at early-age, which is necessary for the modeling of moisture transport. Then, a complete modeling of water transfers was presented. It has shown that the assumption of constant gas pressure leads to an overestimation of mass loss for weakly permeable materials. However, for the case of CAC, this hypothesis can be retained to simplify the coupling with the kinetic model of hydration. Finally, a modeling of the coupling between hydration and desiccation has been developed. The originality of this model concerns the integration of the isothermal curve resulting from the pore size distribution model in the modeling of water transfers via a Matlab function. The model was able to reproduce the kinetics of mass loss of a sample of ettringite binder subjected to early drying. The role of temperature was also elucidated. In addition, the model predicted an early stop of hydration on the drying surface after 10 hours of hydration. The effect of desiccation reaches a depth of 5 mm on a sample with a thickness of 3 cm
Nguyen, Tien Dung. "Apport des aluminates de calcium vis-à-vis de la résistance à l'eau des sulfates de calcium hydratés." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0002.
Full textCalcium sulphate materials are economical and ecological. But their use in the construction is quite limited because of their sensibility to water. The capacity of aluminate cement (CAC) to decrease the water sensibility of calcium sulphate and the mechanisms of insensibilisation were investigated. Waterproofing of gypsum base materials was carried out by addition of small amounts of aluminate cement (≤ 30%). Different nature of calcium sulphates : gypsum, hemihydrate α and β, synthetic anhydrite was studied. The study of mechanisms of insensibilisation to water of calcium sulphate by adding cement Fondu, with different analysis of microstructure : IR, DRX, ATD-TG, MEB, revealed two approaches : formation of ettringite insoluble and formation of gel AH3 that stick soluble grains of calcium sulphate. The nature of phases of aluminate cement has influences on the mechanical properties, sensibility to water and durability of mixtures [calcium sulphate / CAC]. The studies of mixtures [synthetic anhydrite / slag / CAC] offer interesting perspectives for the development of binders with low imprint CO2
Tixier, Raphaël. "Etude mineralogique et mecanique de la phase liante de graves routieres." Toulouse 3, 1987. http://www.theses.fr/1987TOU30133.
Full textBudan, Birsen. "Investigation of the early age hydration of four calcium aluminates in the framework of radioactive waste conditioning." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS067.
Full textThis Ph-D project takes place in the framework of nuclear waste conditioning in cementitious matrices. When an irradiating nuclear waste is stabilized and solidified in a cementitious matrix, the radiolysis of water molecules from the pore solution and from the hydrates themselves yields dihydrogen. In the case of highly irradiating wastes, the release of dihydrogen raises safety issues for storage and/or disposal facilities. The release of hydrogen gas by radiolysis can be limited by reducing the amount of water used for the elaboration of the cement or by choosing a cement binder with hydrates showing a good stability under irradiation. As far as radiolysis is concerned, calcium aluminate-based cements are of significant interest in comparison to calcium silicate cements. The hydration of calcium aluminate cements leads to mineralogical assemblages with a low radiolytic yield of dihydrogen. However, the hydration of these cements is sometimes too fast and incompatible with the industrial process requirements. The objective of this thesis is thus to better understand the underlying mechanisms of the hydration of the calcium aluminates present in calcium aluminate-based cements.Specifically, the course of hydration of four synthetic anhydrous calcium aluminates, varying one from each other by their C/A ratio, is studied at 25°C from the point of view of their hydration rate, their degree of hydration and the resulting mineralogical assemblages by a combination of isothermal calorimetry, thermogravimetric analysis, x-ray diffraction and solid-state nuclear magnetic resonance. Monitoring the hydration by isothermal calorimetry in pastes and by conductimetry in suspensions show that the higher the C/A ratio of the considered anhydrous phase, the higher the hydration rate. Finally, studying the hydration of each of these phases in suspension makes it possible to point out the reaction path followed by each studied system. This work also demonstrated that aluminium hydroxide formation limits the kinetics of hydration of anhydrous phases with a C/A ratio lower than or equal to 1. The results obtained in the framework of this thesis can help optimizing the design of a calcium aluminate cement-based matrix to be used for the conditioning of irradiating wastes
Lahalle, Hugo. "Conditionnement de l'aluminium métallique dans les ciments phospho-magnésiens." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS048/document.
Full textThis work deals with the stabilization / solidification of radioactive waste using cement.More particularly, it aims at assessing the chemical compatibility between metallic aluminum and mortars based on magnesium phosphate cement. The physical and chemical processes leading to setting and hardening of the cement are first investigated. X-ray diffraction (XRD), thermogravimetry (TGA) and nuclear magnetic resonance spectroscopy (31P and11B MAS-NMR) arefirst used to characterize the solid phases formed during hydration, while inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES), electrical conductimetry and pH measurementsprovide information on the pore solution composition. Then,the corrosion of metallic aluminum in magnesium phosphate mortars is studied by monitoring the equilibrium potential and by electrochemical impedance spectroscopy (EIS).Magnesium phosphate cement is prepared from a mix of magnesium oxide (MgO) and potassium dihydrogen orthophosphate (KH2PO4). In the presence of water, hydration occurs according to a dissolution – precipitation process. The main hydrate is K-struvite (MgKPO4.6H2O). Its precipitation is preceded by that of two transient phases: phosphorrösslerite (MgHPO4.7H2O) and Mg2KH(PO4)2.15H2O. Boric acid retards cement hydration by delaying theformation of cement hydrates. Two processes may be involved in this retardation: the initial precipitation of amorphous or poorly crystallized minerals containing boron and phosphorus atoms, and/or the stabilization of cations (Mg2+, K+) in solution.As compared with a Portland cement-based matrix, corrosion of aluminum is strongly limited in magnesium phosphate mortar. The pore solution pH is close to neutrality and falls within the passivation domain of aluminum. Corrosion depends on several parameters: it is promoted by a water-to-cement ratio (w/c) significantly higher than the chemical water demand of cement (w/c = 0.51), and by the addition of boric acid. On the contrary, lithium nitrate, dissolved in the mixing solution, acts as a corrosion inhibitor.A 4-step mechanism makes it possible to model the impedance diagrams. The evolution of the corrosion rate and of the amount of dihydrogen released with ongoing hydration is then calculated The results are in good agreement with the experimental determination of the H2 production by aluminum sheets embedded in magnesium phosphate mortar
Chen, Xiaolin. "Influence des ions aluminates sur la composition, la structure et les propriétés cohésives des hydrosilicates de calcium, constituants principaux de la pate de ciment Portland hydratée." Dijon, 2007. http://www.theses.fr/2007DIJOS072.
Full textPortland cement is mostly constituted of silicates and aluminates phases. When cement is hydrated, the main appearing component is calcium silicate hydrate (C-S-H) which results from the silicate phases hydration. The C-S-H is responsible for the cement paste setting. Aluminate phases after hydration, will produce the aluminate ions in the solution. It is well known that aluminate ions may substitute Si in C-S-H to form calcium alumino-silicate hydrate which is called C-S-A-H. This work aims to determine the effect of the Al/Si substitution on composition, structure and cohesion of C-S-H particles. C-S-H powders have been equilibrated in Ca3Al2O6 (C3A, one of cement components) hydration solutions in order to involve the Al/Si substitution in the solid. The analyses of the equilibrium solutions and solids show that C-S-A-H with tobermorite-like crystallographic structure and different Al/Si ratios have been obtained. AFM and electrokinetic investigations have been performed to describe the C-S-A-H/solution interface. An aluminum speciation on the solid has been achieved thanks to a new decomposition method of NMR 27Al spectra. By this method, we can distinguish and quantify each aluminum site in the solid and give a hypothesis of the structure based on tobermorite. With this structure, we have simulated the NMR 29Si spectra. These calculated spectra are in very good agreement with the experimental ones, which corroborates our C-S-A-H structure hypothesis. Finally, the overall quantitative analysis shows that the Al/Si ratio of C-S-H in a cement paste is around 0. 04
Bilodeau, Josée. "Influence de polyélectrolytes sur la cinétique d'hydratation et les propriétés rhéologiques de ciments alumineux." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq26542.pdf.
Full textVitry, Solweig. "Additifs colloïdaux organiques de ciments alumineux auto-nivelants : synthèse, ineractions, contribution aux propriétés finales." Lyon 1, 2004. http://www.theses.fr/2004LYO10274.
Full textChloup-Bondant, Myriam. "Etude des mécanismes réactionnels dans l'hydratation des silicates et aluminates tricalciques en présence d'un filler calcaire." Nancy 1, 1996. http://docnum.univ-lorraine.fr/public/SCD_T_1996_0003_CHLOUP_BONDANT.pdf.
Full textThis study shows how limestone reacts in the hydration of tricalcium aluminate and silicate, main constituents of Portland cement. The effect of limestone is characterized for different hydration times with different analytical techniques: XRD, SEM, DSC, TGA, 29Si NMR and IR Portland cement hydration gives a pH equal to 12 to 13, so in the first part of this study, limestone solubility in basic solutions is investigated. In the second part, we show the incorporation of coexistence of these phases, the formation of solid solutions CxSyCuHz-CH occurs. Third, C3A hydration with or without limestone agrees with litterature. Endly, we study the hydration of a simple cement (C3S + C3A) with or without calcium carbonate and CaSO4. Formation of CxSyAtCuHz ,ettringite, C4ACH11 and portlandite are noted. The cohabitation of these phases entail the existence of chemical complexes and substitued ettringite. The effect of different atmospheres on the samples is also studied
Benabdillah, Jalil. "Le système alumine khi-CaO-H2O, les aluminates de calcium hydrates et les processus d'hydratation : influence de la composition, de la température et du temps." Montpellier 2, 1997. http://www.theses.fr/1997MON20126.
Full textHanna, Bassam. "Contribution à l'étude de la structuration des mortiers de ciment portland contenant des particules ultra-fines." Toulouse, INSA, 1987. http://www.theses.fr/1987ISAT0004.
Full textBegarin, Farid. "Etude de paramètres endogènes et exogènes au ciment Portland ordinaire influençant l'hydratation de sa phase principale : le silicate tricalcique." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00845948.
Full textBernard, Ellina. "Magnesium silicate hydrate (M-S-H) characterization : temperature, calcium, aluminium and alkali." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK025/document.
Full textThe various options to store radioactive wastes in deep geological strata considered in France or Switzerland include the use of large volumes of cementitious materials for infrastructure in contact with argillaceous rocks. So-called low-pH binders were developed to minimize disruption to the surrounding rock by the alkaline plume. Studies conducted on the interaction zone between concrete and clay systematically highlighted the formation of magnesium silicate phases including magnesium silicate hydrate (M-S-H) at the interfaces, which can presently be modeled only partially due to incomplete thermodynamic data. The purpose of this study was to characterize these phases in temperature, aluminum, calcium, and alkali conditions in order to provide the thermodynamic data and improve the calculations on physicochemical evolutions of low-pH concretes and possibly Portland concretes.M-S-H phases were synthesized from magnesium oxide and silica fume in batch experiments at different temperatures, for various times and varying Mg/Si. A large number of different techniques such as chemical solid characterizations coupled with suspension investigations and liquid analyses were used to characterize the phases synthesized. Initially a M-S-H phase with Mg/Si equal to 1 was precipitated in addition to amorphous silica and brucite whatever the total Mg/Si used for the synthesis. After long equilibration times, 2 to 3 years at 20°C or 1 year at 50 and 70°C, the Mg/Si in M-S-H ranged from ~0.8 to ~1.4. The temperature had little influence on the M-S-H formed even if the M-S-H formation occurred faster and M-S-H was thermodynamically slightly less stable when the temperature was increased. At or near to equilibrium, M-S-H phases were characterized with ill-defined structure comparable to nano-crystallite, hydrated phyllosilicates with a surface area greater than 200 m2/g. A M-S-H solid-solution model was calculated and implemented in the thermodynamic database.It was observed that M-S-H also form from calcium silicate hydrate (C-S-H) with a Ca/Si = 0.8 in the presence of additional magnesium. In batch experiments, a low pH of the suspensions (pH ≤ 10) destabilized C-S-H or prevented its formation and favored the precipitation of M-S-H. Detailed investigations showed that small amounts of calcium could be incorporated in M-S-H (Ca/Si ≤0.10), such that also calcium containing end-members were added to the M-S-H solid-solution. At pH ≥ 10-10.5, two separate silicate phases coexist: C-S-H and M-S-H. The interface between a simplified “low-pH” binder mimicked by C-S-H with Ca/Si = 0.8 and a magnesium-rich environment mimicked by M-S-H with Mg/Si = 0.8 confirmed these phenomena. SEM-EDS observations and reactive transport modelling using the thermodynamic data derived in the batch experiments showed the fast deterioration of the C-S-H and the precipitation of M-S-H in the C-S-H disk at the interface and a homogeneous uptake of calcium in the M-S-H disk.The increase of pH favors the sorption. M-S-H with a sodium uptake up to Na/Si ~ 0.20 and without brucite formation were observed at high pH (12.5). The sorption on M-S-H was favored in the order Na+ < Mg2+ < Ca2+. Finally, aluminum was incorporated into M-S-H to form magnesium alumino-silicate hydrate (M-A-S-H). An Al/Si ratio up to 0.2 was observed in presence of sodium aluminate or metakaolin. 27Al MAS NMR data showed that aluminum was present in both tetrahedral and octahedral sites of M-(A-)S-H. The M-(A-)S-H formed had a similar structure as M-S-H with a comparable polymerization degree of the tetrahedral silicates and a similar surface charge
Costa, Eugenio Bastos da. "Aproveitamento do resíduo de anodização do alumínio na produção do cimento sulfoaluminato de cálcio belítico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/86465.
Full textAlthough currently Portland cement with high alite [(CaO)3.(SiO2)] content is the most used globally, environmental advices call for changes on the production for cements with lower alite and higher belite [(CaO)2.(SiO2)] contents. Alite, having more calcium than belite, releases more CO2 to the atmosphere in the course of cement manufacture, due to limestone decomposition (CaCO3 CaO + CO2 ). Besides, belite is formed at lower temperatures (800- 900ºC) than alite (1350-1450ºC), and for this reason less fuel is necessary for the process. Additionally, clinker is easier to grind, resulting in a less energy demanding and more sustainable process. However, belite cements reach the maximum strength level at later ages, drawing back the fast and active civil construction industry, which aims high productivity in a short time spam. In order to minimize this problem it is possible to accelerate the initial hydration reactions and hardening by combining the belite clinkers with expansive sulfoaluminate base agents, or in a simultaneous clinker production, such as calcium sulfoaluminate belite cements (CSAB). These binders have lower environmental impact. However, CSAB cement requires a higher amount of alumina, which comes from bauxite. As this material is costly, the use of alumina-rich residues comes as an option to aggregate value to the residue and to increase the availability of low environmental impact binders. This work presents an alternative use for alumina-rich residues in CSAB cement production. Physicochemical characterization of the aluminium anodizing sludge is presented together with results of the production of CSAB clinkers from 3 mixtures, with different residue content. Properties of the produced clinkers were evaluated and compared to a control clinker and to an ordinary Portland cement. X-ray diffraction, calorimetry and thermogravimetry analysis track the formation of hydration products in the cement pastes. The use of aluminium anodizing sludge to produce CSAB cement was proved to be technically viable, as the generated product has special characteristics, presenting high mechanical strength development at the first hours of hydration.
Stephant, Sylvain. "Etude de l'influence de l'hydratation des laitiers sur les propriétés de transfert gazeux dans les matériaux cimentaires." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS090/document.
Full textCements with high slag content are currently studied as possible candidate for nuclear waste containment materials. In this context it is important to know their microstructure and the transport properties (permeability and diffusion) of the gases that are formed by the radiolysis of the water present in this material. According to literature, these properties are strongly impacted by the addition of blast furnace slag. The aim of this work is to correlate the hydration processes of slag blended cements with their transport properties. In the first part of this work, the hydration of the slag blended cements, for which only few results have been reported to date, has been studied. Silicon-29 and aluminium-27 Magic-Angle Spinning Nuclear Magnetic Resonance (MAS NMR) were used to follow the variations of anhydrous phases of clinker (C3S, C2S, C3A and C4AF) and of the main oxides of the slag (SiO2, Al2O3, CaO, MgO and SO3). The quantity of calcium dissolved from slag was deduced by fitting the quantity of portlandite [Ca(OH)2] calculated by a geochemical software (PHREEQC - coupled to a thermodynamic database) with TGA measurements. Our approach enabled the evolution of the hydration degree (percentage of reacted material) of various oxides of slag to be determined. A progressive and an incongruent dissolution (the rate of dissolution of the oxides is different) of the slag is observed. The low reactivity of slag could be linked, at a hydration time, to a lower content of bound water, chemical shrinkage and heat of hydration. Quantitatively accounting for the dissolution of clinker and oxide of slag yields a more accurate description of the hydration process. The second part of this work is focused on the microstructure evolution and its influence on the transport properties (diffusion and permeability). Time-evolution of the diffusion coefficients and the intrinsic permeability could be monitored and were then compared to that of the microstructure (global porosity, pore entry size distribution, specific surface area and the degree of connectivity). The results showed a decrease in the diffusion coefficient and permeability over time which is due to the progressive filling of the porosity. A decrease of these parameters with the slag content increasing was also observed. This is a consequence of the diminution of the capillary porosity and augmentation of the nanoporosity resulting from changes in the microstructure of C-S-H. The last part concerns the relation between the hydration processes, the microstructure and the transport properties. To this aim, volumetric balances of reactions involved in the hydration processes were made by considering globally or specifically the hydration of the different phases. Accounting for the hydration of each phase of the cement allowed us to determine the global porosity, the bound water content and the chemical shrinkage with accuracy of the order of 10 %. This description allows the understanding of the transport properties variations in time for a same material To establish this time evolutions for all the cements, the apparent volume of C-S-H was recalculated to account for the microstructure of these hydrates
Maaroufi, Mohamed-Ali. "Étude du comportement hygrothermique de matériaux céramiques réfractaires à liants alumineux pour le confinement de l'aluminium liquide." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0235.
Full textThis thesis aims to find solutions to minimize as much as possible the presence of micro-porosities in conventional and new aerospace alloys. These micro-porosities resulting especially from the reaction of the molten aluminum, during the casting phase, with the hydrogen provided by the steam contained in the refractory castables. Most of these castables are composites obtained with hydraulic binders based on aluminous cements. Firstly, a physico-chemical and mineralogical characterization of the basic materials and processed products was performed. Then, the thermo-hydric behavior of different castables and hardened cement pastes (principal source of the physical water and the chemical water) was then studied by moisture pick up tests made in various hygrothermal conditions, including at high temperatures (300 °C). It was shown that the hydric variations amplitudes strongly depend on the binder’s nature, in particular on its alumina content. The phenomena of physisorption and chemisorption are mobilized. Meanwhile, the transient thermal behavior in the time through the thickness of a refractory launder was modeled as a first step to quantify the water vapor transfer in the materials. Continuous measurements of temperature and pressure were obtained on pastes and concretes samples variously packged, placed in contact with a heated metal band maintained at 700 °C. Other measurements were made. They consisted into immersing samples (cement pastes and castables), previously stored in different hygrothermal conditions in liquid aluminum, in order to compare their reactivity in terms of release of hydrogen, oxygen and water vapor
Haas, Jérémy. "Etude expérimentale et modélisation thermodynamique du système CaO-SiO2-(Al2O3)-H2O." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00845956.
Full textCosta, Eugenio Bastos da. "Aproveitamento de cinza pesada e lodo de anodização do alumínio para a produção do cimento sulfoaluminato de cálcio belítico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/149248.
Full textCement production generates high negative environmental impact, mainly associated to CO2 emissions. Calcium sulfoaluminate belite cement clinker (CSAB) has lower content of calcium oxide, and sintering reduced temperature (about 200°C lower than that used for Portland clinker), being considered as eco-friendly binder. For its production high amount of alumina is required, however the scarcity and high cost of bauxite make these cements costly. Additionally, the generation of waste and by-products becomes a drawback in the industrial processes and the coprocessing of wastes in cement plants is increasing for environmental and energy savings reasons. Alternative sources of alumina would add an economic and sustainable value to the final product and previous work has shown that the aluminum anodizing sludge can replace bauxite in the production process. Other sources of wastes can also be a possibility to increase the production and reduce the raw materials costs of these cements. Thus, the objective of this study was the evaluation of novel CSAB cements produced with bauxite replacement by bottom ash and aluminum anodizing sludge. CSAB cements were produced in the laboratory from different amounts of sludge and ashes. The raw materials, clinkers/cements and hydration products were physicaly-chemicaly and mechanical characterized. Results showed that the mineralogy composition of CSAB clinker was strongly affected due to the addition of bottom ash. The amount of bottom ash waste replacing bauxite controls the belite and periclase formation. Also it influences the early age hydration due the reduced ye’elimite formation and important changes in the crystalline structures of this phase occurs in the clinkers. Clinkers prepared from these replacement, are able to form 12.6% of alite (main phase Portland clinker), not normally found in CSAB clinkers, being sintered at 1250°C.
Vanhamme, Géraldine. "Etude de la réactivité des alitiers du haut-fourneau dans les ciments de type CEM III." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209956.
Full textDans ce contexte, le présent travail a pour but d’investiguer l’influence de la composition chimique et de l’âge des laitiers sur leur réactivité tant par des essais physico-mécaniques que par une caractérisation physico-chimique et minéralogique de CEM III/B à différentes échéances d’hydratation. L’effet néfaste du vieillissement des laitiers est clairement mis en exergue et son impact diffère selon la composition chimique de départ du laitier. Les ions aluminium engendrent une accélération de l’hydratation et une amélioration des résistances physico-mécaniques à jeune âge mais, à long terme, ils conduisent à une perte de ces dernières. Concernant l’influence des ions titane dans les laitiers, la tendance générale observée est une diminution des performances physico-mécaniques.
Sur base de ces résultats, une évaluation de la représentativité de moyens accélérés d’estimation de la réactivité des laitiers est effectuée. Il est mis en évidence que seules les mesures de résistances physico-mécaniques classiques permettent d’évaluer correctement la réactivité des différents laitiers.
Une évaluation de la détermination de la teneur en constituants de CEM III/B par la méthode Rietveld est menée par comparaison avec la méthode de dissolution sélective de la norme EN 196-4 et le dosage des constituants par pesée. Moyennant une utilisation adaptée de cette méthode, les résultats obtenus à l’aide de celle-ci sont très encourageants.
In Europe, following the closure of many steel plants, an increased use of blast furnace slag (BFS) of various age and origin was born for several years. This evolution leads to a diversification of the chemical and mineralogical composition of the BFS. Knowing the influence of these characteristics on the reactivity of slag used in substitution of clinker in blast-furnace cement (CEM III) becomes, therefore, crucial to ensure the performance of such cements.
In this context, this work aims to investigate the influence of chemical composition and age of BFS on their reactivity by both physico-mechanical and physico-chemical and mineralogical characterization of CEM III/B at different times of hydration. The adverse effect of ageing of BFS is clearly highlighted and its impact varies depending on the chemical composition of the BFS. Aluminum ions generate an acceleration of the hydration and improve mechanical strength at early age, but at long term, they lead to a loss of the strength. Regarding the influence of titanium ions in the BFS, the general trend is a decrease of the physical and mechanical performance.
Based on these results, an assessment of the representativeness of accelerated means of estimating, the BFS reactivity is done. It is emphasized that only measures of physical and conventional mechanical strength can accurately assess the reactivity of different BFS.
An evaluation of the determination of the amount of CEM III/B components by the Rietveld method is based upon comparison with the selective dissolution method from the EN 196-4 norm and components determination by weight. Through appropriate use of this method, the results obtained are very encouraging.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Fonollosa, Philippe. "Propriétés mécaniques et microstructurales de nouvelles matrices à ultra haute performance." Thèse, Paris 6, 2002. http://www.theses.fr/2002PA066142.
Full textPereira, Laudenice de Lucena. "Influência de diferentes tratamentos de superfície na durabilidade da união entre um cimento resinoso e uma cerâmica policristalina de zircônia tetragonal parcialmente estabilizada com ítria." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/6663.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Purpose: This study evaluated the influence of air-particle-abrasion and different solutions application on the shear bond strength of resin cement to zirconia ceramic (Y-TZP). Materials and method: Sintered zirconia blocks (N=180) (Lava, 3M ESPE), with final dimensions of 5.25 x 3.74 x 4.5 mm, were embedded in acrylic resin, polished and randomly distributed among 18 groups (n=10), according to the factors: "solution (8 levels) and air-particle-abrasion" (2 levels): Ctr (control without treatment), AP- Alloy Primer/Kuraray, MP- Monobond Plus/Ivoclar, MZP- Metal Zircônia Primer/Ivoclar, MZ- MZ Primer/Angelus, ReX- Relyx Ceramic Primer/3M ESPE, Sg- Signum Zirconia Bond/Kulzer, SbU- Scotchbond Universal/3M ESPE and ZP- Z Prime Plus/Bisco. The same solutions were also used after zirconia sandblasting: Ctr.S, AP.S, MP.S, MZ.S, ReX.S, Sg.S, SbU.S and ZP.S (*.S = sandblasting). Prior sandblasting, the zirconia/acrylic resin assemblents were ultrasonic cleaned for 5min (Vitasonic, Germany). The .S groups were air abraised with Al2O3 particles (110μm, 2.5 bar, 20s at 10mm), with an assistance of a chairside air-abrasion device (Bioart, Brazil) and another ultrasonic cleaned was performed. After dry the solutions were applied according to the manufactors´ recommendations. The resin cement (Rely X ARC, 3M ESPE) cylinders were bonded and polymerized to zirconia surface, with the aid of a silicone mold (Ø = 3.5, height = 3 mm). All samples were stored in distilled water (60 days at 370 C), and after were subjected to shear test (1 mm/min). Data were analyzed by ANOVA (e-way) and Tukey test (α=5%). Results: Air-particle abrasion (p=0.0001) and solution (p=0.0001) factors significantly affected the bond strength (ANOVA) All samples of the groups Ctr, Ctr.S, ReX, MZ.S and MZP, MZP.S showed premature failure (debonding). Thus, they were not included in the statistical analysis. In addition, air-abrasion increased the bond strength (With: 110.78A MPa; Without: 70.92B MPa) and the solution SbU (142.91a MPa) promoted higher adhesion between ceramic/resin cement than MP (100.15bc MPa), AP (90.03c MPa), ReX (34.03d MPa) and MZ (23.66d MPa), and was similar to Sg (131.78ab MPa) and ZP (113.37bc MPa) (Tukey). Conclusion: Air-abrasion with 110 μm Al2O3 followed by solutions application increased the bond strength to zirconia, except for SbU, that presented the highest value of bond strength.
Objetivo: Este estudo avaliou a influência do jateamento com partículas de O2Al3 e de diferentes soluções na resistência ao cisalhamento entre um cimento resinoso e à cerâmica de zircônia (Y-TZP). Materiais e método: Blocos de zircônia sinterizados (N = 180) (Lava, 3M ESPE), com dimensões finais de 5,25 x 3,74 x 4,5 mm foram incluídos em resina acrílica, polidos e aleatoriamente distribuídos em 18 grupos (n = 10), de acordo com os fatores: "solução" (8 níveis) e "jateamento" (2 níveis): Ctr (controle sem tratamento), AP- Alloy Primer/Kuraray, MP- Monobond Plus/Ivoclar, MZP- Metal zircônia Primer/Ivoclar, MZ- MZ Primer/Angelus, Rex- Relyx Primer para Cerâmica/3M ESPE, Sg- Signum Zircônia Bond/Kulzer, SbU- Scotchbond Adesivo Universal/3M ESPE e ZP- Z Prime Plus/Bisco. As mesmas soluções também foram utilizadas após o jateamento da zircônia: Ctr.S, AP.S, MP.S, MZ.S, ReX.S, Sg.S, SbU.S e ZP.S(* S = jateamento). Anteriormente ao Jateamento os bloco de zircônia foram submetidos à limpeza em ultrassom por 5min (Vitasonic, Alemanha). Os grupos ".S" foram jateados com Al2O3 (110μm, 2,5 bar, 20s à 10 mm), com o auxílio de um microjateador (Bioarte, Brasil) e outra limpeza ultrassônica foi realizada. Depois de secos, as soluções foram aplicadas de acordo com as recomendações dos fabricantes. Cilindros do cimento resinoso (Rely X ARC, 3M ESPE) foram colados e polimerizados na superfície da zircônia com auxílio de um molde de silicone (Ø = 3,5, altura= 3 mm). Todas as amostras foram armazenadas em água destilada (60 dias a 370 C), e depois submetidas ao teste de cisalhamento (1mm/min). Os dados foram analisados pela análise de variância (dois- fatores) e teste de Tukey (α=5%). Resultados: "Os fatores jateamento com O2Al3" (p = 0,0001) e "solução" (p=0,0001) afetou significativamente a resistência de união (ANOVA). Todas as amostras dos grupos Ctr, Ctr.S, Rex, MZ.S e MZP, MZP.S mostraram uma falha prematura (descolamento). Assim, não foram incluídos na análise estatística. Além disso, o jateamento aumentou a resistência de união (com: 110.78A MPa; sem: 70.92B MPa) e a solução SbU (142.91a MPa) promoveu maior adesão entre cimento resinoso/cerâmica. O MP (100.15bc MPa), AP (90.03c MPa), ReX (34.03d MPa) e MZ (23.66d MPa), e foi semelhante ao Sg (131.78ab MPa) e ZP (113.37bc MPa) (Tukey). Conclusão: Jateamento com O2Al3 seguido pela aplicação de soluções aumentou a resistência de união à zircônia, com exceção do SbU, que apresentou o maior valor de resistência de união
Crolet, Jean-Marie. "L'ancrage du composant cotyloïdien dans les prothèses totales de hanche : simulation exploratoire." Compiègne, 1985. http://www.theses.fr/1985COMPDE42.
Full text