Academic literature on the topic 'Circuit booléen'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circuit booléen.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Circuit booléen"

1

Mokhtarnia, Hossein, Shahram Etemadi Borujeni, and Mohammad Saeed Ehsani. "Automatic Test Pattern Generation Through Boolean Satisfiability for Testing Bridging Faults." Journal of Circuits, Systems and Computers 28, no. 14 (2019): 1950240. http://dx.doi.org/10.1142/s0218126619502402.

Full text
Abstract:
Automatic test pattern generation (ATPG) is one of the important issues in testing digital circuits. Due to considerable advances made in the past two decades, the ATPG algorithms that are based on Boolean satisfiability have become an integral part of the digital circuits. In this paper, a new method for ATPG for testing bridging faults is introduced. First of all, the application of Boolean satisfiability to circuit modeling is explained. Afterwards, a new method of testing the nonfeedback bridging faults in the combinational circuits is proposed based on Boolean satisfiability. In the propo
APA, Harvard, Vancouver, ISO, and other styles
2

Matrosova, Angela Yu, Victor A. Provkin, and Valentina V. Andreeva. "Masking of Internal Nodes Faults Based on Applying of Incompletely Specified Boolean Functions." Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics 20, no. 4 (2020): 517–26. http://dx.doi.org/10.18500/1816-9791-2020-20-4-517-526.

Full text
Abstract:
Combinational circuits (combinational parts of sequential circuits) are considered. Masking of internal nodes faults with applying sub-circuit, inputs of which are connected to the circuit inputs and outputs — to the circuit proper internal nodes, is suggested. The algorithm of deriving incompletely specified Boolean function for an internal node of the circuit based on using operations on ROBDDs is described. Masking circuit (patch circuit) design for the given internal fault nodes is reduced to covering of the system of incompletely specified Boolean functions corresponding to the fault node
APA, Harvard, Vancouver, ISO, and other styles
3

Limaye, Nutan, Srikanth Srinivasan, and Sébastien Tavenas. "Superpolynomial Lower Bounds Against Low-Depth Algebraic Circuits." Communications of the ACM 67, no. 2 (2024): 101–8. http://dx.doi.org/10.1145/3611094.

Full text
Abstract:
An Algebraic Circuit for a multivariate polynomial P is a computational model for constructing the polynomial P using only additions and multiplications. It is a syntactic model of computation, as opposed to the Boolean Circuit model, and hence lower bounds for this model are widely expected to be easier to prove than lower bounds for Boolean circuits. Despite this, we do not have superpolynomial lower bounds against general algebraic circuits of depth 3 (except over constant-sized finite fields) and depth 4 (over any field other than F 2 ), while constant-depth Boolean circuit lower bounds ha
APA, Harvard, Vancouver, ISO, and other styles
4

Borodina, Yulia V. "Easily testable circuits in Zhegalkin basis in the case of constant faults of type “1” at gate outputs." Discrete Mathematics and Applications 30, no. 5 (2020): 303–6. http://dx.doi.org/10.1515/dma-2020-0026.

Full text
Abstract:
AbstractWe consider Boolean circuits in Zhegalkin basis and describe all Boolean functions that can be implemented by a circuit admitting a complete fault detection test of length 1 in case of constant faults of type “1” at gate outputs.
APA, Harvard, Vancouver, ISO, and other styles
5

Agrawal, Nishant. "Automatic Test Pattern Generation using Grover’s Algorithm." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 2373–79. http://dx.doi.org/10.22214/ijraset.2021.34837.

Full text
Abstract:
Quantum computing is an exciting new field in the intersection of computer science, physics and mathematics. It refines the central concepts from Quantum mechanics into its least difficult structures, peeling away the complications from the physical world. Any combinational circuit that has only one stuck at fault can be tested by applying a set of inputs that drive the circuit to verify the output response. The outputs of that circuit will be different from the one desired if the faults exist. This project describes a method of generating test patterns using the Boolean satisfaction method. F
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Hongtao, Chunbiao Li, Zeshi Yuan, Wen Hu, and Xiaochen Zhen. "A New Class of Chaotic Circuit with Logic Elements." Journal of Circuits, Systems and Computers 24, no. 09 (2015): 1550136. http://dx.doi.org/10.1142/s0218126615501364.

Full text
Abstract:
When signum operation is applied in chaotic systems to realize piecewise-linearity, the original nonlinearity turns to be a kind of Boolean calculation, and correspondingly the chaotic circuit can be implemented by an analog structure embedded with some logic-gate circuits. In this paper, as examples based on the diffusionless Lorenz system we proposed a couple of chaotic flows with signum piecewise-linearity, which experimentally resorts to digital gate circuits. The experimental chaotic circuit with logic elements was built, and the oscillation in the physical circuit agrees well with the nu
APA, Harvard, Vancouver, ISO, and other styles
7

Prihozhy, Anatoly A. "Synthesis of quantum circuits based on incompletely specified functions and if-decision diagrams." Journal of the Belarusian State University. Mathematics and Informatics, no. 3 (December 14, 2021): 84–97. http://dx.doi.org/10.33581/2520-6508-2021-3-84-97.

Full text
Abstract:
The problem of synthesis and optimisation of logical reversible and quantum circuits from functional descriptions represented as decision diagrams is considered. It is one of the key problems being solved with the aim of creating quantum computing technology and quantum computers. A new method of stepwise transformation of the initial functional specification to a quantum circuit is proposed, which provides for the following project states: reduced ordered binary decision diagram, if-decision diagram, functional if-decision diagram, reversible circuit and quantum circuit. The novelty of the me
APA, Harvard, Vancouver, ISO, and other styles
8

YOUNES, AHMED. "REDUCING QUANTUM COST OF REVERSIBLE CIRCUITS FOR HOMOGENEOUS BOOLEAN FUNCTIONS." Journal of Circuits, Systems and Computers 19, no. 07 (2010): 1423–34. http://dx.doi.org/10.1142/s0218126610006736.

Full text
Abstract:
Homogeneous Boolean functions have many applications in computing systems, e.g., cryptography. This paper presents a factorization algorithm for reducing the quantum cost of the reversible circuits for that class of Boolean functions. The algorithm reduces the multi-calculation of any common parts of the circuit. This allows Homogeneous Boolean related applications to be implemented efficiently on novel computing paradigms such as quantum computers and low power devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Hou, Yue Wei, Xin Xu, Wei Wang, Xiao Bo Tian, and Hai Jun Liu. "Titanium Oxide Memristor Based Digital Encoder Circuit." Applied Mechanics and Materials 644-650 (September 2014): 3430–33. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3430.

Full text
Abstract:
Memristors have the ability to remember their last resistance and quickly switch between different states, such characteristics could make logic circuits simple in structure and fast in boolean computations. A kind of digital encoder circuit utilizing titanium oxide memristors is proposed. A logic NAND gate which acts as key part in the circuit is designed. The works in this letter also provide a practical approach for designing logic gate circuit with memristors.
APA, Harvard, Vancouver, ISO, and other styles
10

Bardales, Andrea C., Quynh Vo, and Dmitry M. Kolpashchikov. "Singleton {NOT} and Doubleton {YES; NOT} Gates Act as Functionally Complete Sets in DNA-Integrated Computational Circuits." Nanomaterials 14, no. 7 (2024): 600. http://dx.doi.org/10.3390/nano14070600.

Full text
Abstract:
A functionally complete Boolean operator is sufficient for computational circuits of arbitrary complexity. We connected YES (buffer) with NOT (inverter) and two NOT four-way junction (4J) DNA gates to obtain IMPLY and NAND Boolean functions, respectively, each of which represents a functionally complete gate. The results show a technological path towards creating a DNA computational circuit of arbitrary complexity based on singleton NOT or a combination of NOT and YES gates, which is not possible in electronic computers. We, therefore, concluded that DNA-based circuits and molecular computatio
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!