Contents
Academic literature on the topic 'Circuit booléen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circuit booléen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Circuit booléen"
Mokhtarnia, Hossein, Shahram Etemadi Borujeni, and Mohammad Saeed Ehsani. "Automatic Test Pattern Generation Through Boolean Satisfiability for Testing Bridging Faults." Journal of Circuits, Systems and Computers 28, no. 14 (2019): 1950240. http://dx.doi.org/10.1142/s0218126619502402.
Full textMatrosova, Angela Yu, Victor A. Provkin, and Valentina V. Andreeva. "Masking of Internal Nodes Faults Based on Applying of Incompletely Specified Boolean Functions." Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics 20, no. 4 (2020): 517–26. http://dx.doi.org/10.18500/1816-9791-2020-20-4-517-526.
Full textLimaye, Nutan, Srikanth Srinivasan, and Sébastien Tavenas. "Superpolynomial Lower Bounds Against Low-Depth Algebraic Circuits." Communications of the ACM 67, no. 2 (2024): 101–8. http://dx.doi.org/10.1145/3611094.
Full textBorodina, Yulia V. "Easily testable circuits in Zhegalkin basis in the case of constant faults of type “1” at gate outputs." Discrete Mathematics and Applications 30, no. 5 (2020): 303–6. http://dx.doi.org/10.1515/dma-2020-0026.
Full textAgrawal, Nishant. "Automatic Test Pattern Generation using Grover’s Algorithm." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 2373–79. http://dx.doi.org/10.22214/ijraset.2021.34837.
Full textLi, Hongtao, Chunbiao Li, Zeshi Yuan, Wen Hu, and Xiaochen Zhen. "A New Class of Chaotic Circuit with Logic Elements." Journal of Circuits, Systems and Computers 24, no. 09 (2015): 1550136. http://dx.doi.org/10.1142/s0218126615501364.
Full textPrihozhy, Anatoly A. "Synthesis of quantum circuits based on incompletely specified functions and if-decision diagrams." Journal of the Belarusian State University. Mathematics and Informatics, no. 3 (December 14, 2021): 84–97. http://dx.doi.org/10.33581/2520-6508-2021-3-84-97.
Full textYOUNES, AHMED. "REDUCING QUANTUM COST OF REVERSIBLE CIRCUITS FOR HOMOGENEOUS BOOLEAN FUNCTIONS." Journal of Circuits, Systems and Computers 19, no. 07 (2010): 1423–34. http://dx.doi.org/10.1142/s0218126610006736.
Full textHou, Yue Wei, Xin Xu, Wei Wang, Xiao Bo Tian, and Hai Jun Liu. "Titanium Oxide Memristor Based Digital Encoder Circuit." Applied Mechanics and Materials 644-650 (September 2014): 3430–33. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3430.
Full textBardales, Andrea C., Quynh Vo, and Dmitry M. Kolpashchikov. "Singleton {NOT} and Doubleton {YES; NOT} Gates Act as Functionally Complete Sets in DNA-Integrated Computational Circuits." Nanomaterials 14, no. 7 (2024): 600. http://dx.doi.org/10.3390/nano14070600.
Full text