To see the other types of publications on this topic, follow the link: Circuit quantum electrodynamics.

Journal articles on the topic 'Circuit quantum electrodynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Circuit quantum electrodynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

NAKAMURA, Yasunobu. "Circuit Quantum Electrodynamics in Superconducting Circuits." Review of Laser Engineering 41, no. 7 (2013): 502. http://dx.doi.org/10.2184/lsj.41.7_502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clerk, A. A., K. W. Lehnert, P. Bertet, J. R. Petta, and Y. Nakamura. "Hybrid quantum systems with circuit quantum electrodynamics." Nature Physics 16, no. 3 (March 2020): 257–67. http://dx.doi.org/10.1038/s41567-020-0797-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haroche, S., M. Brune, and J. M. Raimond. "From cavity to circuit quantum electrodynamics." Nature Physics 16, no. 3 (March 2020): 243–46. http://dx.doi.org/10.1038/s41567-020-0812-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carusotto, Iacopo, Andrew A. Houck, Alicia J. Kollár, Pedram Roushan, David I. Schuster, and Jonathan Simon. "Photonic materials in circuit quantum electrodynamics." Nature Physics 16, no. 3 (March 2020): 268–79. http://dx.doi.org/10.1038/s41567-020-0815-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kollár, Alicia J., Mattias Fitzpatrick, and Andrew A. Houck. "Hyperbolic lattices in circuit quantum electrodynamics." Nature 571, no. 7763 (July 2019): 45–50. http://dx.doi.org/10.1038/s41586-019-1348-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burkard, Guido, Michael J. Gullans, Xiao Mi, and Jason R. Petta. "Superconductor–semiconductor hybrid-circuit quantum electrodynamics." Nature Reviews Physics 2, no. 3 (January 29, 2020): 129–40. http://dx.doi.org/10.1038/s42254-019-0135-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wustmann, Waltraut, and Vitaly Shumeiko. "Parametric effects in circuit quantum electrodynamics." Low Temperature Physics 45, no. 8 (August 2019): 848–69. http://dx.doi.org/10.1063/1.5116533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Didier, Nicolas, and Rosario Fazio. "Putting mechanics into circuit quantum electrodynamics." Comptes Rendus Physique 13, no. 5 (June 2012): 470–79. http://dx.doi.org/10.1016/j.crhy.2012.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hays, M., V. Fatemi, D. Bouman, J. Cerrillo, S. Diamond, K. Serniak, T. Connolly, et al. "Coherent manipulation of an Andreev spin qubit." Science 373, no. 6553 (July 22, 2021): 430–33. http://dx.doi.org/10.1126/science.abf0345.

Full text
Abstract:
Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit–quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time TS = 17 microseconds and a spin coherence time T2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.
APA, Harvard, Vancouver, ISO, and other styles
10

Dan-Dan, Lv, Lu Hong, Yu Ya-Fei, Feng Xun-Li, and Zhang Zhi-Ming. "Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics." Chinese Physics Letters 27, no. 2 (February 2010): 020302. http://dx.doi.org/10.1088/0256-307x/27/2/020302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Viennot, Jérémie J., Matthieu R. Delbecq, Laure E. Bruhat, Matthieu C. Dartiailh, Matthieu M. Desjardins, Matthieu Baillergeau, Audrey Cottet, and Takis Kontos. "Towards hybrid circuit quantum electrodynamics with quantum dots." Comptes Rendus Physique 17, no. 7 (August 2016): 705–17. http://dx.doi.org/10.1016/j.crhy.2016.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brookes, Paul, Giovanna Tancredi, Andrew D. Patterson, Joseph Rahamim, Martina Esposito, Themistoklis K. Mavrogordatos, Peter J. Leek, Eran Ginossar, and Marzena H. Szymanska. "Critical slowing down in circuit quantum electrodynamics." Science Advances 7, no. 21 (May 2021): eabe9492. http://dx.doi.org/10.1126/sciadv.abe9492.

Full text
Abstract:
Critical slowing down of the time it takes a system to reach equilibrium is a key signature of bistability in dissipative first-order phase transitions. Understanding and characterizing this process can shed light on the underlying many-body dynamics that occur close to such a transition. Here, we explore the rich quantum activation dynamics and the appearance of critical slowing down in an engineered superconducting quantum circuit. Specifically, we investigate the intermediate bistable regime of the generalized Jaynes-Cummings Hamiltonian (GJC), realized by a circuit quantum electrodynamics (cQED) system consisting of a transmon qubit coupled to a microwave cavity. We find a previously unidentified regime of quantum activation in which the critical slowing down reaches saturation and, by comparing our experimental results with a range of models, we shed light on the fundamental role played by the qubit in this regime.
APA, Harvard, Vancouver, ISO, and other styles
13

Blais, Alexandre, Steven M. Girvin, and William D. Oliver. "Quantum information processing and quantum optics with circuit quantum electrodynamics." Nature Physics 16, no. 3 (March 2020): 247–56. http://dx.doi.org/10.1038/s41567-020-0806-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Petersson, K. D., L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R. Petta. "Circuit quantum electrodynamics with a spin qubit." Nature 490, no. 7420 (October 2012): 380–83. http://dx.doi.org/10.1038/nature11559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barends, R., N. Vercruyssen, A. Endo, P. J. de Visser, T. Zijlstra, T. M. Klapwijk, P. Diener, S. J. C. Yates, and J. J. A. Baselmans. "Minimal resonator loss for circuit quantum electrodynamics." Applied Physics Letters 97, no. 2 (July 12, 2010): 023508. http://dx.doi.org/10.1063/1.3458705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Göppl, M., A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff. "Coplanar waveguide resonators for circuit quantum electrodynamics." Journal of Applied Physics 104, no. 11 (December 2008): 113904. http://dx.doi.org/10.1063/1.3010859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Chui-Ping, Zhen-Fei Zheng, and Yu Zhang. "Universal quantum gate with hybrid qubits in circuit quantum electrodynamics." Optics Letters 43, no. 23 (November 21, 2018): 5765. http://dx.doi.org/10.1364/ol.43.005765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mallet, François, Florian R. Ong, Agustin Palacios-Laloy, François Nguyen, Patrice Bertet, Denis Vion, and Daniel Esteve. "Single-shot qubit readout in circuit quantum electrodynamics." Nature Physics 5, no. 11 (September 27, 2009): 791–95. http://dx.doi.org/10.1038/nphys1400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Niemczyk, T., F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, et al. "Circuit quantum electrodynamics in the ultrastrong-coupling regime." Nature Physics 6, no. 10 (July 25, 2010): 772–76. http://dx.doi.org/10.1038/nphys1730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Matyas, Alpar, Christian Jirauschek, Federico Peretti, Paolo Lugli, and Gyorgy Csaba. "Linear Circuit Models for On-Chip Quantum Electrodynamics." IEEE Transactions on Microwave Theory and Techniques 59, no. 1 (January 2011): 65–71. http://dx.doi.org/10.1109/tmtt.2010.2090406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hu, Ling, Yue-Chi Ma, Yuan Xu, Wei-Ting Wang, Yu-Wei Ma, Ke Liu, Hai-Yan Wang, Yi-Pu Song, Man-Hong Yung, and Lu-Yan Sun. "Simulation of molecular spectroscopy with circuit quantum electrodynamics." Science Bulletin 63, no. 5 (March 2018): 293–99. http://dx.doi.org/10.1016/j.scib.2018.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Viennot, J. J., J. Palomo, and T. Kontos. "Stamping single wall nanotubes for circuit quantum electrodynamics." Applied Physics Letters 104, no. 11 (March 17, 2014): 113108. http://dx.doi.org/10.1063/1.4868868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Delanty, M., S. Rebić, and J. Twamley. "Superradiance and phase multistability in circuit quantum electrodynamics." New Journal of Physics 13, no. 5 (May 19, 2011): 053032. http://dx.doi.org/10.1088/1367-2630/13/5/053032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

DiVincenzo, David P., and Firat Solgun. "Multi-qubit parity measurement in circuit quantum electrodynamics." New Journal of Physics 15, no. 7 (July 2, 2013): 075001. http://dx.doi.org/10.1088/1367-2630/15/7/075001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhu, Meng-Zheng, and Liu Ye. "Implementing phase-covariant cloning in circuit quantum electrodynamics." Annals of Physics 373 (October 2016): 512–20. http://dx.doi.org/10.1016/j.aop.2016.07.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mi, X., J. V. Cady, D. M. Zajac, J. Stehlik, L. F. Edge, and J. R. Petta. "Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon." Applied Physics Letters 110, no. 4 (January 23, 2017): 043502. http://dx.doi.org/10.1063/1.4974536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kokkoniemi, R., J. P. Girard, D. Hazra, A. Laitinen, J. Govenius, R. E. Lake, I. Sallinen, et al. "Bolometer operating at the threshold for circuit quantum electrodynamics." Nature 586, no. 7827 (September 30, 2020): 47–51. http://dx.doi.org/10.1038/s41586-020-2753-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Borjans, F., X. Croot, S. Putz, X. Mi, S. M. Quinn, A. Pan, J. Kerckhoff, et al. "Split-gate cavity coupler for silicon circuit quantum electrodynamics." Applied Physics Letters 116, no. 23 (June 8, 2020): 234001. http://dx.doi.org/10.1063/5.0006442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Novikov, S., T. Sweeney, J. E. Robinson, S. P. Premaratne, B. Suri, F. C. Wellstood, and B. S. Palmer. "Raman coherence in a circuit quantum electrodynamics lambda system." Nature Physics 12, no. 1 (November 9, 2015): 75–79. http://dx.doi.org/10.1038/nphys3537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Arakawa, Yasuhiko, Jonathan Finley, Rudolf Gross, Fabrice Laussy, Enrique Solano, and Jelena Vuckovic. "Focus on cavity and circuit quantum electrodynamics in solids." New Journal of Physics 17, no. 1 (January 27, 2015): 010201. http://dx.doi.org/10.1088/1367-2630/17/1/010201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Pirkkalainen, J. M., S. U. Cho, Jian Li, G. S. Paraoanu, P. J. Hakonen, and M. A. Sillanpää. "Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator." Nature 494, no. 7436 (February 2013): 211–15. http://dx.doi.org/10.1038/nature11821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Marcos, D., A. Tomadin, S. Diehl, and P. Rabl. "Photon condensation in circuit quantum electrodynamics by engineered dissipation." New Journal of Physics 14, no. 5 (May 1, 2012): 055005. http://dx.doi.org/10.1088/1367-2630/14/5/055005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mariantoni, Matteo, H. Wang, Radoslaw C. Bialczak, M. Lenander, Erik Lucero, M. Neeley, A. D. O’Connell, et al. "Photon shell game in three-resonator circuit quantum electrodynamics." Nature Physics 7, no. 4 (January 30, 2011): 287–93. http://dx.doi.org/10.1038/nphys1885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Slichter, D. H., C. Müller, R. Vijay, S. J. Weber, A. Blais, and I. Siddiqi. "Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics." New Journal of Physics 18, no. 5 (May 17, 2016): 053031. http://dx.doi.org/10.1088/1367-2630/18/5/053031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

ZHAO Ying-yan, 赵英燕, 高贵龙 GAO Gui-long, 唐龙英 TANG Long-ying, and 姜年权 JIANG Nian-quan. "One-dimensional Cluster State Produced Via Circuit Quantum Electrodynamics System." Acta Sinica Quantum Optica 20, no. 1 (2014): 46–50. http://dx.doi.org/10.3788/asqo20142001.0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Joo, Jaewoo, Matthew Elliott, Daniel K. L. Oi, Eran Ginossar, and Timothy P. Spiller. "Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics." New Journal of Physics 18, no. 2 (February 5, 2016): 023028. http://dx.doi.org/10.1088/1367-2630/18/2/023028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hoffmann, E., F. Deppe, T. Niemczyk, T. Wirth, E. P. Menzel, G. Wild, H. Huebl, et al. "A superconducting 180° hybrid ring coupler for circuit quantum electrodynamics." Applied Physics Letters 97, no. 22 (November 29, 2010): 222508. http://dx.doi.org/10.1063/1.3522650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sandberg, M., F. Persson, I. C. Hoi, C. M. Wilson, and P. Delsing. "Exploring circuit quantum electrodynamics using a widely tunable superconducting resonator." Physica Scripta T137 (December 2009): 014018. http://dx.doi.org/10.1088/0031-8949/2009/t137/014018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Choi, Mahn‐Soo. "Exotic Quantum States of Circuit Quantum Electrodynamics in the Ultra‐Strong Coupling Regime." Advanced Quantum Technologies 3, no. 12 (November 9, 2020): 2000085. http://dx.doi.org/10.1002/qute.202000085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Yan, Shu-Xiao Li, Hai-Ou Li, Guang-Wei Deng, Gang Cao, Ming Xiao, and Guo-Ping Guo. "Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture." Chinese Physics B 27, no. 7 (July 2018): 076105. http://dx.doi.org/10.1088/1674-1056/27/7/076105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huang, Wenhui, Yuxuan Zhou, Ziyu Tao, Libo Zhang, Song Liu, Yuanzhen Chen, Tongxing Yan, and Dapeng Yu. "A superconducting coplanar waveguide ring resonator as quantum bus for circuit quantum electrodynamics." Applied Physics Letters 118, no. 18 (May 3, 2021): 184001. http://dx.doi.org/10.1063/5.0046144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gely, Mario F., Marios Kounalakis, Christian Dickel, Jacob Dalle, Rémy Vatré, Brian Baker, Mark D. Jenkins, and Gary A. Steele. "Observation and stabilization of photonic Fock states in a hot radio-frequency resonator." Science 363, no. 6431 (March 7, 2019): 1072–75. http://dx.doi.org/10.1126/science.aaw3101.

Full text
Abstract:
Detecting weak radio-frequency electromagnetic fields plays a crucial role in a wide range of fields, from radio astronomy to nuclear magnetic resonance imaging. In quantum optics, the ultimate limit of a weak field is a single photon. Detecting and manipulating single photons at megahertz frequencies presents a challenge because, even at cryogenic temperatures, thermal fluctuations are appreciable. Using a gigahertz superconducting qubit, we observed the quantization of a megahertz radio-frequency resonator, cooled it to the ground state, and stabilized Fock states. Releasing the resonator from our control, we observed its rethermalization with nanosecond resolution. Extending circuit quantum electrodynamics to the megahertz regime, we have enabled the exploration of thermodynamics at the quantum scale and allowed interfacing quantum circuits with megahertz systems such as spin systems or macroscopic mechanical oscillators.
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, Young-Wan, Kang-Ho Lee, and Kicheon Kang. "Vacuum-Fluctuation-Induced Dephasing of a Qubit in Circuit Quantum Electrodynamics." Journal of the Physical Society of Japan 83, no. 7 (July 15, 2014): 073704. http://dx.doi.org/10.7566/jpsj.83.073704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Blais, Alexandre, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. "Circuit quantum electrodynamics." Reviews of Modern Physics 93, no. 2 (May 19, 2021). http://dx.doi.org/10.1103/revmodphys.93.025005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Minev, Z. K., K. Serniak, I. M. Pop, Z. Leghtas, K. Sliwa, M. Hatridge, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. "Planar Multilayer Circuit Quantum Electrodynamics." Physical Review Applied 5, no. 4 (April 29, 2016). http://dx.doi.org/10.1103/physrevapplied.5.044021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Malekakhlagh, Moein, Alexandru Petrescu, and Hakan E. Türeci. "Cutoff-Free Circuit Quantum Electrodynamics." Physical Review Letters 119, no. 7 (August 16, 2017). http://dx.doi.org/10.1103/physrevlett.119.073601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mergenthaler, Matthias, Ani Nersisyan, Andrew Patterson, Martina Esposito, Andreas Baumgartner, Christian Schönenberger, G. Andrew D. Briggs, Edward A. Laird, and Peter J. Leek. "Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits." Physical Review Applied 15, no. 6 (June 21, 2021). http://dx.doi.org/10.1103/physrevapplied.15.064050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shen, Chao, Kyungjoo Noh, Victor V. Albert, Stefan Krastanov, M. H. Devoret, R. J. Schoelkopf, S. M. Girvin, and Liang Jiang. "Quantum channel construction with circuit quantum electrodynamics." Physical Review B 95, no. 13 (April 4, 2017). http://dx.doi.org/10.1103/physrevb.95.134501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Haack, G., F. Helmer, M. Mariantoni, F. Marquardt, and E. Solano. "Resonant quantum gates in circuit quantum electrodynamics." Physical Review B 82, no. 2 (July 20, 2010). http://dx.doi.org/10.1103/physrevb.82.024514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Blais, Alexandre, Jay Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. "Quantum-information processing with circuit quantum electrodynamics." Physical Review A 75, no. 3 (March 22, 2007). http://dx.doi.org/10.1103/physreva.75.032329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography