Academic literature on the topic 'Circulant matrices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circulant matrices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Circulant matrices"

1

Matsuki, Norichika. "Circulant Hadamard matrices and Hermitian circulant complex Hadamard matrices." International Mathematical Forum 16, no. 1 (2021): 19–22. http://dx.doi.org/10.12988/imf.2021.912166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Zhaolin, and Dan Li. "The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant andg-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers." Abstract and Applied Analysis 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/931451.

Full text
Abstract:
Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant andg-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant andg-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant andg-circulant matrices by utilizing the relationship between left circulant,g-circulant matrices and circulant matrix, respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Zhaolin, Yanpeng Gong, and Yun Gao. "Circulant Type Matrices with the Sum and Product of Fibonacci and Lucas Numbers." Abstract and Applied Analysis 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/375251.

Full text
Abstract:
Circulant type matrices have become an important tool in solving differential equations. In this paper, we consider circulant type matrices, including the circulant and left circulant andg-circulant matrices with the sum and product of Fibonacci and Lucas numbers. Firstly, we discuss the invertibility of the circulant matrix and present the determinant and the inverse matrix by constructing the transformation matrices. Furthermore, the invertibility of the left circulant andg-circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the left circulant andg-circulant matrices by utilizing the relation between left circulant, andg-circulant matrices and circulant matrix, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Li, and Zhaolin Jiang. "Explicit Form of the Inverse Matrices of Tribonacci Circulant Type Matrices." Abstract and Applied Analysis 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/169726.

Full text
Abstract:
It is a hot topic that circulant type matrices are applied to networks engineering. The determinants and inverses of Tribonacci circulant type matrices are discussed in the paper. Firstly, Tribonacci circulant type matrices are defined. In addition, we show the invertibility of Tribonacci circulant matrix and present the determinant and the inverse matrix based on constructing the transformation matrices. By utilizing the relation between left circulant,g-circulant matrices and circulant matrix, the invertibility of Tribonacci left circulant and Tribonaccig-circulant matrices is also discussed. Finally, the determinants and inverse matrices of these matrices are given, respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Pan, Hongyan, and Zhaolin Jiang. "VanderLaan Circulant Type Matrices." Abstract and Applied Analysis 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/329329.

Full text
Abstract:
Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, andg-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaang-circulant matrix.
APA, Harvard, Vancouver, ISO, and other styles
6

Gong, Yanpeng, Zhaolin Jiang, and Yun Gao. "On Jacobsthal and Jacobsthal-Lucas Circulant Type Matrices." Abstract and Applied Analysis 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/418293.

Full text
Abstract:
Circulant type matrices have become an important tool in solving fractional order differential equations. In this paper, we consider the circulant and left circulant andg-circulant matrices with the Jacobsthal and Jacobsthal-Lucas numbers. First, we discuss the invertibility of the circulant matrix and present the determinant and the inverse matrix. Furthermore, the invertibility of the left circulant andg-circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the left circulant andg-circulant matrices by utilizing the relation between left circulant,g-circulant matrices, and circulant matrix, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Petrache, Horia I. "Generalized Circulant Matrices." Proceedings 2, no. 1 (January 3, 2018): 19. http://dx.doi.org/10.3390/proceedings2010019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kra, Irwin, and Santiago R. Simanca. "On Circulant Matrices." Notices of the American Mathematical Society 59, no. 03 (March 1, 2012): 368. http://dx.doi.org/10.1090/noti804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Radhakrishnan, M., N. Elumalai, R. Perumal, and R. Arulprakasam. "Idempotent circulant matrices." Journal of Physics: Conference Series 1000 (April 2018): 012154. http://dx.doi.org/10.1088/1742-6596/1000/1/012154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fan, Yun, and Hualu Liu. "Double circulant matrices." Linear and Multilinear Algebra 66, no. 10 (October 19, 2017): 2119–37. http://dx.doi.org/10.1080/03081087.2017.1387513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Circulant matrices"

1

Gutman, Alex James. "Circulant Weighing Matrices." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1244468669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

張明恩 and Ming-yan William Cheung. "Circulant preconditioners for convection diffusion equation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cheung, Ming-yan William. "Circulant preconditioners for convection diffusion equation." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23316743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oliveira, Júnior Pedro Jerônimo Simões de. "Equações polinomiais e matrizes circulantes." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9344.

Full text
Abstract:
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-30T14:02:41Z No. of bitstreams: 1 arquivototal.pdf: 1530287 bytes, checksum: bd20f7e7a563f1aa0ad40d276bc400f9 (MD5)
Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-08-30T14:19:18Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 1530287 bytes, checksum: bd20f7e7a563f1aa0ad40d276bc400f9 (MD5)
Made available in DSpace on 2017-08-30T14:19:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1530287 bytes, checksum: bd20f7e7a563f1aa0ad40d276bc400f9 (MD5) Previous issue date: 2015-07-10
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we discuss the procedures for solving polynomials equations of degree n 4; n 2 N via circulant matrices, highlighting a new perspective to obtain the Cardano- Tartaglia formulae. This brings up a new look on connected subjects, including the elimination of the term of degree (n􀀀1) and the characterization of real polynomials with all real roots. The method is based on searching a circulant matrix whose characteristic polynomial is identical to the one with the same roots we desire to nd. This approach provides us a simple and uni ed method for all equations through degree four.
Neste trabalho abordamos via matrizes circulantes a resolução de equações polinomiais de grau n 4; n 2 N , destacando uma nova perspectiva para obtenção das fórmulas de Cardano-Tartaglia. Além disso, ele oportuniza uma nova maneira de olhar para questões conexas, incluindo a eliminação do termo de grau (n 􀀀 1) e a caracterização de equações reais com todas as raízes reais. O método é baseado na busca de uma matriz circulante cujo polinômio característico seja idêntico ao das raízes que queremos encontrar. Essa metodologia nos fornece um método simples e uni cado para todas equações até quarto grau.
APA, Harvard, Vancouver, ISO, and other styles
5

葉明亨 and Ming-ham Yip. "The best circulant preconditioners for ill-conditioned toeplitz systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31223849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yip, Ming-ham. "The best circulant preconditioners for ill-conditioned toeplitz systems /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21981930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nabavi, Ali. "The spectrum of circulant weighing matrices of weight 16 /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488203552780954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

吳堉榕 and Yuk-yung Ng. "Cyclic menon difference sets, circulant hadamard matrices and barker sequences." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31211823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ng, Yuk-yung. "Cyclic menon difference sets, circulant hadamard matrices and barker sequences /." [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13814291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Parker, Keli Siqueiros. "Multilevel Hadamard Matrices." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1307537681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Circulant matrices"

1

Special matrices of mathematical physics: Stochastic, circulant, and Bell matrices. Singapore: World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davis, Philip J. Circulant Matrices. American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Davis, Philip J. Circulant Matrices. 2nd ed. Chelsea Pub Co, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bose, Arup, and Koushik Saha. Random Circulant Matrices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bose, Arup, and Koushik Saha. Random Circulant Matrices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bose, Arup, and Koushik Saha. Random Circulant Matrices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bose, Arup, and Koushik Saha. Random Circulant Matrices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bose, Arup, and Koushik Saha. Random Circulant Matrices. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Random Circulant Matrices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

M, Gray Robert. Toeplitz and Circulant Matrices: A review (Foundations and Trends in Communications and Information The). Now Publishers Inc, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Circulant matrices"

1

Wong, M. W. "Circulant Matrices." In Discrete Fourier Analysis, 23–25. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0116-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bose, Arup, and Koushik Saha. "Circulants." In Random Circulant Matrices, 1–8. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bose, Arup, and Koushik Saha. "Heavy-tailed input: spectral radius." In Random Circulant Matrices, 159–72. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bose, Arup, and Koushik Saha. "Appendix." In Random Circulant Matrices, 173–204. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bose, Arup, and Koushik Saha. "Symmetric and reverse circulant." In Random Circulant Matrices, 9–28. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bose, Arup, and Koushik Saha. "LSD: normal approximation." In Random Circulant Matrices, 28–36. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bose, Arup, and Koushik Saha. "LSD: dependent input." In Random Circulant Matrices, 37–66. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bose, Arup, and Koushik Saha. "Spectral radius: light tail." In Random Circulant Matrices, 67–78. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bose, Arup, and Koushik Saha. "Spectral radius: k-circulant." In Random Circulant Matrices, 79–98. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bose, Arup, and Koushik Saha. "Maximum of scaled eigenvalues: dependent input." In Random Circulant Matrices, 99–118. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429435508-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Circulant matrices"

1

Malakhov, Stanislav S., and Mikhail I. Rozhkov. "On construction of bi-regular circulant matrices, relating to MDS matrices." In 2021 International Conference Engineering Technologies and Computer Science (EnT). IEEE, 2021. http://dx.doi.org/10.1109/ent52731.2021.00016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Wei, Yong Peng, Feng Xie, Zhonghua Dai, Haihui Gao, and Yang Gao. "Designated Verifier Signature Scheme over Circulant Matrices." In 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2012. http://dx.doi.org/10.1109/iih-msp.2012.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Hongkui, and Xuetting Liu. "The nonsingularity on the r-circulant matrices." In 2009 ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM). IEEE, 2009. http://dx.doi.org/10.1109/cccm.2009.5267905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Daojin, and Wenling Zhao. "On Nonsingularity the Symmetric r-Circulant Matrices." In 2009 Second International Conference on Future Information Technology and Management Engineering (FITME). IEEE, 2009. http://dx.doi.org/10.1109/fitme.2009.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dirksen, Sjoerd, and Alexander Stollenwerk. "Fast binary embeddings with Gaussian circulant matrices." In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Wenling. "The Nonsingularity of FLS r-Circulant Matrices." In 2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/kese.2009.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Valsesia, Diego, and Enrico Magli. "Compressive signal processing with circulant sensing matrices." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6853750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dong, Chuandai. "The Nonsingularity on the Symmetric r-Circulant Matrices." In 2009 International Conference on Computer and Communications Security (ICCCS). IEEE, 2009. http://dx.doi.org/10.1109/icccs.2009.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romberg, Justin. "A uniform uncertainty principle for Gaussian circulant matrices." In 2009 16th International Conference on Digital Signal Processing (DSP). IEEE, 2009. http://dx.doi.org/10.1109/icdsp.2009.5201083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Narayanan, Sathiya, and Anamitra Makur. "Camera motion estimation using circulant compressive sensing matrices." In 2013 9th International Conference on Information, Communications & Signal Processing (ICICS). IEEE, 2013. http://dx.doi.org/10.1109/icics.2013.6782832.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Circulant matrices"

1

Hillier, Grant, and Federico Martellosio. Spatial circular matrices, with applications. Institute for Fiscal Studies, March 2010. http://dx.doi.org/10.1920/wp.cem.2010.0610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Banerjee, Onil, Martin Cicowiez, Gabriela Saborío Muñoz, and Renato Vargas. La Plataforma de Modelación Económica-Ambiental Integrada (IEEM): Guías técnicas de la Plataforma IEEM: Construcción de una matriz de contabilidad social para Costa Rica para el año 2016. Inter-American Development Bank, February 2021. http://dx.doi.org/10.18235/0003017.

Full text
Abstract:
Los modelos de equilibrio general computable (EGC) son sistemas de ecuaciones matemáticas que permiten describir una economía completa. Intensivos en datos, estos requieren que la información utilizada para resolver dichas ecuaciones esté organizada de manera particular que toma la forma de una Matriz de Contabilidad Social (MCS), la cual describe el flujo circular de transacciones entre agentes económicos para un periodo de referencia. En este documento se describe el procedimiento seguido para la construcción de una MCS para Costa Rica para el año 2016, la cual utiliza, tanto los Cuadros de Oferta y Utilización, como las Cuentas Económicas Integradas más recientes del Sistema de Cuentas Nacionales del Banco Central de Costa Rica (BCCR) como fuente principal de datos. La MCS resultante identifica 139 actividades y 183 productos. Además de detallar los pasos tradicionales para la construcción de este tipo de matrices, este documento constituye una contribución importante al estado de la ciencia en Latinoamérica al proveer una descripción detallada de todos los ajustes necesarios para desagregar actividades económicas, productos y factores productivos. A pesar de que la MCS aquí descrita ha sido desarrollada para ser utilizada con la Plataforma de Modelado Económico Ambiental Integrada (IEEM), puede ser utilizada para calibrar cualquier modelo de EGC.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography