Academic literature on the topic 'Circular Economy in Construction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circular Economy in Construction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Circular Economy in Construction"

1

Cai, Ning, and Min Hui Wu. "The Green Supply Chain Management: A Perspective on Circular Economy." Advanced Materials Research 933 (May 2014): 1004–7. http://dx.doi.org/10.4028/www.scientific.net/amr.933.1004.

Full text
Abstract:
Circular economy is a kind of economic growth pattern that utilizes resource circularly with low consumption, low emission and high efficiency. Upon the basis of circular economy theory to study the construction of green supply chain, with applied case study method, it reached the conclusions that: 1) The circular economys development is a staged process, it needs to plan at industry level; 2) Circular economy involves the whole industrial chain of production layout; and 3) Government can promote the green supply chain management and construction of circular economy through sharing resources and infrastructure.
APA, Harvard, Vancouver, ISO, and other styles
2

Egerter, Amy, Julia Koehler, Cosmina Oltean, Daniel Hall, and Christian Thuesen. "Circular Economy Maturity: How Circular are our Construction Products?" IOP Conference Series: Earth and Environmental Science 1389, no. 1 (2024): 012002. http://dx.doi.org/10.1088/1755-1315/1389/1/012002.

Full text
Abstract:
Abstract The concept of circular economy (CE) has gained momentum in the construction industry to mitigate the effects of climate change and decouple economic growth from environmental impact. There is a growing body of research related to the circularity of specific construction materials, as well as to the entire building. However, there remains a lack of understanding at the construction product level, and this lack of transparency prevents informed decisions when choosing which products to use in projects and how those products support the CE. A maturity assessment is one methodology that can provide insights for both product decisionmakers and product suppliers. Maturity assessments are a way to evaluate the level of development or progress towards a certain goal, whether at the organization, project, or product level. This paper proposes a conceptual framework to assess construction product system circularity maturity. Through a systematic literature review, the authors analyze existing CE maturity assessments and CE indicators for construction products to develop the framework. The functional unit is defined as a construction product, which is defined as an integrated system with multiple materials (i.e. a prefabricated wall system). This research finds that while there are many CE assessment frameworks for the construction sector, these must be translated into a construction product context, which requires a tailored subset of circularity indicators and maturity levels. The paper proposes construction product maturity levels ranging from “initial” to “optimizing” for key circularity indicators at the construction product level, including, material procurement, manufacturing, product use phase, and end-of-life. This conceptual framework serves as a practical tool for decisionmakers and as an educational tool for suppliers on how to support the CE in construction.
APA, Harvard, Vancouver, ISO, and other styles
3

Meng, Xianhai, Simran Das, and Junyu Meng. "Integration of Digital Twin and Circular Economy in the Construction Industry." Sustainability 15, no. 17 (2023): 13186. http://dx.doi.org/10.3390/su151713186.

Full text
Abstract:
As a major industry sector, construction is gradually transitioning from the linear economy to the circular economy. Due to various barriers or challenges, the circular economy within construction progresses at a slow pace. Digital technologies can help construction address these barriers or challenges. As a new generation of digital technologies, the digital twin is still seldom used in construction for the circular economy at the current stage. The purpose of this study is to empirically investigate the implementation of the circular economy, as well as the integration of a digital twin and the circular economy, in construction. Based on a review of the relevant literature, this study adopts a combination of expert interviews as a qualitative research method and questionnaire surveys as a quantitative research method. The findings of this study suggest that design and demolition, which are closely linked to each other with regard to circular economy strategies, are more important than other project phases. The digital twin has great potential to improve circular economy practice. It can play some important roles in different project phases throughout the life cycle of a construction project, to achieve the circular economy. Digital twin–circular economy integration makes it effective for construction to overcome circular economy barriers or challenges, reduce waste, and increase salvage value.
APA, Harvard, Vancouver, ISO, and other styles
4

Man, Cao, and Ye Wenhu. "Construction of Circular Economy Industrial System." Chinese Journal of Population Resources and Environment 5, no. 4 (2007): 26–30. http://dx.doi.org/10.1080/10042857.2007.10677528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gorecki, Jaroslaw. "Circular Economy Maturity in Construction Companies." IOP Conference Series: Materials Science and Engineering 471 (February 23, 2019): 112090. http://dx.doi.org/10.1088/1757-899x/471/11/112090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Molchanova, Regina V. "CIRCULAR ECONOMY IN THE CONSTRUCTION INDUSTRY." EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 4/3, no. 136 (2023): 110–16. http://dx.doi.org/10.36871/ek.up.p.r.2023.04.03.013.

Full text
Abstract:
The article reveals the importance of the circular economy in construction, which allows to reduce material costs, reduce emissions and create new business models. The strategy of the state policy of the Russian Federation is characterized, aimed at preventing the problem of using a linear approach to resource consumption, which does not take in to account the processing and return of materials to the ecosystem. The importance of the circular economy and resource efficiency in the construction sector to achieve zero waste and improve the environmental situation is substantiated. Examples of large construction companies using renewable materials and waste recycling methods are presented. The principles of the circular cycle in the construction industry are described, including the design of buildings with the possibility of their dismantling and recycling of materials, the use of renewable energy sources, recycling of waste, establishing responsibility for the disposal of materials and cooperation between participants in the construction industry. The author considers the need to assess the impact of economic growth on the environment and social problems. The importance of increasing the efficiency of investors and construction companies is emphasized. Options for optimizing processes in construction through the use of modern methods, concepts, innovative technologies and the introduction of digital solutions are presented. It summarizes the use of digital technologies in construction to optimize and control product life cycle stages, reduce design and construction costs, improve operational efficiency and ensure the safety of building components. The transformation of construction is summarized through circular principles that allow optimizing design, reducing resource consumption, improving innovative technologies and products, increasing competitiveness and creating new jobs.
APA, Harvard, Vancouver, ISO, and other styles
7

Phan, Thi Thu Hien, Huu Đuc Tran, and Hoang Tue Minh Pham. "Impact of circular economy practices on financial performance of construction enterprises in Vietnam." Management Science Letters 15, no. 2 (2025): 55–62. http://dx.doi.org/10.5267/j.msl.2024.5.005.

Full text
Abstract:
The objective of the study is to assess the impact of circular economy practices on financial performance of construction enterprises in Vietnam. The study conducted a survey in 3 months using a survey resulting in 233 valid surveys representing 233 construction enterprises in Vietnam. Using Smart PLS 4.1 software to analyze data, the results show that circular economy practice positively impacts financial performance of circular economy construction and innovation enterprises that play a mediate role in the relationship between circular economy practice and financial performance. Finally, enterprise size has a role to play in moderating impact of circular economy practices on financial performance of construction enterprises in Vietnam.
APA, Harvard, Vancouver, ISO, and other styles
8

Marek, Martin, and Zdenek Krejza. "Sustainable building: Circular economy as a key factor for cost reduction." E3S Web of Conferences 550 (2024): 01009. http://dx.doi.org/10.1051/e3sconf/202455001009.

Full text
Abstract:
This article explores the role of the circular economy in achieving sustainability in the construction industry, with a focus on cost reduction. Sustainable building practices are vital for addressing environmental concerns, and the circular economy offers transformative solutions. By emphasizing reuse, recycling, and responsible resource management, the circular economy reshapes traditional construction approaches. The paper examines how adopting circular economy principles can significantly reduce costs throughout a building's life cycle. It discusses case studies and successful implementations, showcasing innovative strategies to minimize waste and optimize resource use. Topics include integrating circular economy practices in design and construction, the economic benefits of material reuse and recycling, and the long-term financial advantages of sustainable building. The article highlights the importance of stakeholder collaboration, policy frameworks, and technological innovations in driving circular economy adoption. By demonstrating the economic benefits of sustainable building through the circular economy, this article aims to promote environmentally conscious construction practices and inspire stakeholders to embrace cost-effective and sustainable solutions for a greener future.
APA, Harvard, Vancouver, ISO, and other styles
9

Behún, Marcel, and Annamária Behúnová. "Advanced Innovation Technology of BIM in a Circular Economy." Applied Sciences 13, no. 13 (2023): 7989. http://dx.doi.org/10.3390/app13137989.

Full text
Abstract:
The traditional concept of the primary, secondary, tertiary and later quaternary economy is based on several structurally divided and related tasks and processes in processing raw materials and earth resources. Gradually, a new concept of the functioning of the economy was created, called “circular economy” or “circular economy”. Its basis is the transformation of linear economic processes managing the use of raw materials to create a sustainable economic growth model. The circular economy transforms economic activity associated with the consumption of limited resources into the more efficient reuse of resources. Based on the above, the presented article aims, based on theoretical and empirical analysis, to identify the potential of processing and using non-energy raw material—recycled aggregate—in the construction industry and to propose a concept for information modeling of the parameters of sustainable construction using this non-energy raw material per the principles of the circular economy. The solution to this research problem is realized through theoretical analysis and comparison of approaches to the circular economy, reuse of non-energy raw materials in the construction industry and analysis for the creation of a concept based on the use of information needed for sustainable construction planning through building information modeling (BIM). Based on my research, my results will be presented, the applicability of which is verified through a case study. The object of the case study is the construction of a new building, which will represent a set of five similar constructions interconnected by underground floors (garages, technical facilities of buildings) and communication spaces (corridor, hall). The priority of the construction of the centre is to build a sustainable building, i.e., to implement the work using sustainable methods with the greatest possible use of sustainable materials and procedures, which will reduce the impact on the ecosystem and support the goals of the circular economy. Traditional, natural raw materials will be replaced by recycled secondary raw materials within individual constructions and elements. When choosing suitable raw materials, the design of the BIM library of sustainable elements will help. The BIM library will act as a link between manufacturers and BIM digital replicas of real building products and components.
APA, Harvard, Vancouver, ISO, and other styles
10

Firoozi, Ali Akbar, and Ali Asghar Firoozi. "Circular Economy for Sustainable Construction Material Management." Journal of Civil Engineering and Urbanism 12, no. 4 (2022): 70–81. https://doi.org/10.54203/jceu.2022.10.

Full text
Abstract:
The construction industry is a major contributor to global resource consumption and environmental degradation, emphasizing the need for sustainable material management. This study explores the integration of circular economy (CE) principles into the construction sector to enhance resource efficiency, reduce waste, and promote the reuse and recycling of materials. We review current practices identify barriers to CE adoption, and propose innovative strategies such as modular design, material passports, and digital platforms for material tracking and exchange. The environmental, economic, and social benefits of adopting these principles are examined through detailed case studies of pioneering projects that showcase significant reductions in environmental impact, operational costs, and enhanced social value. The paper highlights the potential of CE to transform the construction industry towards sustainable practices that align with the Sustainable Development Goals (SDGs) on responsible consumption and production, and sustainable cities and communities. The study concludes by discussing the challenges and opportunities in mainstreaming circular economy practices within the industry, urging a collaborative approach among stakeholders for successful implementation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Circular Economy in Construction"

1

Weinesson, Linnéa. "Climate Neutral Management : Implement Circular Economy in the Construction Industry." Thesis, Karlstads universitet, Science, Mathematics and Engineering Education Research (SMEER), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-73533.

Full text
Abstract:
The construction industry releases a great amount of greenhouse gases to the atmosphere, uses loads of resources and generates a lot of waste. These actions are not sustainable, and the industry has therefore created a roadmap of how to become climate neutral until 2045. A few things highlighted in this roadmap is the importance of management and a shift to circular economy, however, previous research has not covered the connection between these in construction projects. This study aims to understand and assess the influence on management when implementing circular economy in construction industry projects. To fulfill this aim, a theoretical framework was constructed consisting of potential applications of circular economy in construction industry projects. The connection between these applications and project management was thereafter investigated in an empirical study which consisted of a qualitative case study with document reviews, project observations and interviews with different project manager roles of a Swedish construction company. The findings indicate that the implementation influences the managers to focus more on the big picture and think through the choice of methods. Advance planning is essential along with discussing solutions to optimize the use of resource, have good and early communication with the right suppliers and other building sites, and conduct an accurate quantification of approved materials and focus on the handling of these. Additionally, it is vital to do a proper enrollment of new employees and to manage them toward high environmental goals. Lastly, it was found that it is difficult to pinpoint only one manager that gets affected by a specific application since all managers are involved in the implementation of circular economy.<br>Byggbranschen släpper ut en betydande mängd växthusgaser i atmosfären, använder mycket resurser och genererar mycket avfall. Dessa handlingar är inte hållbara och industrin har därför skapat en färdplan över huruvida de ska bli klimatneutrala till 2045. Några saker som lyfts fram i denna färdplan är vikten av ledarskap och en omställning till cirkulär ekonomi, däremot har befintlig forskning inte berört sambandet mellan dessa i byggprojekt. Denna studie syftar till att förstå och bedöma implementeringen av cirkulär ekonomis påverkan på ledarskapet av byggprojekt. För att uppfylla detta syfte utformades ett teoretiskt ramverk bestående av potentiella tillämpningar av cirkulär ekonomi i byggprojekt. Sambandet mellan dessa tillämpningar och projektledningen undersöktes sedan i en empirisk studie som bestod av en kvalitativ fallstudie med dokumentanalyser, projektobservationer och intervjuer med olika projektledarroller inom ett svenskt byggföretag. Resultaten antyder att implementeringen påverkar ledarna till att fokusera mer på helheten och tänka genom metodvalen. Förskottsplanering är väsentligt samt att diskutera lösningar för att optimera resursanvändningen, ha god och tidig kommunikation med rätt leverantörer och andra byggarbetsplatser, och en noggrann mängdning av godkända material samt fokusera på hanteringen av dessa. Dessutom är det viktigt att göra en ordentlig inskrivning av nyanställda samt att leda dessa mot högt satta miljömål. Slutligen visade resultatet att det är svårt att precisera endast en ledare som påverkas av en specifik tillämpning, eftersom alla är involverade i implementeringen av cirkulär ekonomi.
APA, Harvard, Vancouver, ISO, and other styles
2

Tabrizi, Shanar. "Keeping it in the loop : A roadmap to circular economy for NCC." Thesis, KTH, Industriell ekologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189054.

Full text
Abstract:
Resource efficiency and circular economy (CE) has become increasingly relevant to the Swedish construction company NCC in connection to the plans of demolishing the current head office in Stockholm and building a new head office next to it. NCC wants to investigate how to minimize the negative sustainability implications of bringing down a commercial facility well before its life length has expired, through exploring the possibilities of integrating principles of CE in future planning‐and construction processes. This study seeks to understand how the Swedish construction company NCC could work with decision-making for CE in order to keep their materials in the loop. As the concept of CE is broad there are many options for working with its principles. However, the construction industry is relatively new to these and a list of priorities would therefore be helpful in such an initial phase, as focusing on all would be inefficient and rather daunting. Thus, this study suggests a multi-criteria decision analysis (MCDA) as a tool for decision-making and prioritizing between various approaches to CE. Together with NCC, an MCDA was performed where three different options for working with CE were analysed (Waste as Resource, Circular Design and Circular Business Models). In a focus group, 17 criteria that were relevant to NCC were developed as a basis for analysing the options. These were then defined, scored and weighted to reveal a most preferable option. The MCDA showed that the most preferable approach to CE for NCC is working with circular design, i.e. Design for Deconstruction (DfD), followed closely by measures to increase the rate of reuse and recycling of already existing construction- and demolition waste. However, the sensitivity analysis revealed that if economic criteria received a higher weight, increased reuse and recycling is the most preferable option. MCDA was deemed a helpful decision-making tool for CE principles. While the scoring and weighting is subjective and it is challenging to quantify the criteria, the strength lies in bringing a new and innovative topic on the agenda by gathering key decision-makers in focus groups to discuss and learn. A preliminary study to this thesis was conducted at NCC (Tabrizi, 2015) with the aim of conducting a survey of good examples with regard to development of commercial properties that are designed for flexibility and deconstruction during refurbishment and end‐of‐life. It showed that the challenges relate to the hesitant perception of secondary material, design and construction limitations, the need for material documentation, organization and logistics as well as creating sustainable business models. Key success factors for overcoming these challenges for NCC is working towards better communication and promotion of secondary material through information sharing, building up a knowledge base and internal targets, as well as establishing a consistent work methodology for DfD in order to move NCC towards a circular economy.
APA, Harvard, Vancouver, ISO, and other styles
3

López, Ruiz Luis Alberto. "Implementation and evaluation of the circular economy model in the construction and demolition waste sector." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/673359.

Full text
Abstract:
Construction and demolition waste (CDW) is a major environmental concern that requires immediate attention. The large volumes of CDW produced and its associated environmental effects have led to explore new alternatives addressing this problem in more sustainable ways. In this context, the Circular Economy (CE) paradigm emerged as an innovative solution for creating more sustainable production and consumption patterns, fostering economic growth, and providing environmental protection and social welfare. At the global level, the concept of CE has gained increasing interest from government bodies, business organizations and academics. This has resulted in multiple political agendas including CE as a core driver, as well as an emerging trend of research exploring its concept and applications. However, because of the novelty and dynamism of the concept, research developments on practical applications and quantitative assessments are at an early stage. The main aim of this study was to propose an approach to integrate the CE concept in the construction and demolition sector, as well as providing the basis for evaluating the environmental and economic effects of circularity strategies and to monitor their implementation. For this purpose, an integrative framework of strategies for CE adoption in the CDW sector is proposed. This together with a methodological proposal to evaluate and compare the environmental and economic performance of different circularity alternatives incorporating multi-criteria decision analysis. In addition, this work proposes a system of indicators for measuring CE features for CDW products. The proposed framework identifies 14 influential strategies for the circularity of the CDW sector and describes their interaction throughout its lifecycle stages. The methodological proposal incorporates the Life Cycle Analysis (LCA) methodology to assess the environmental dimension., while the economic criteria adopt a complex cost method. The multicriteria VIKOR method was used to perform the multi-criteria analysis. The methodology is applied to evaluate the use of concrete waste in high-grade applications, specifically the production of structural and non-structural concrete mixes in the region of Catalonia, Spain. The indicators framework incorporates a systematic approach considering the most relevant factors and parameters for successful measurement of CE interventions. It consists of 22 measures within the three dimensions of environment, economic and innovation/materials. Preconstruction strategies are highlighted as the most influential in the circularity of the sector. CE strategies presented better environmental and economic performance; however, results are conditioned by the particular context of the study. Transportation and landfilling are identified as the most conditioning parameters affecting both environmental and economic performance.<br>Los residuos de construcción y demolición (RCD) son un grave problema medio ambiental que requiere atención inmediata. Los grandes volúmenes de RCD producidos y sus efectos ambientales han llevado a buscar nuevas alternativas para resolver esta problemática de forma más sostenible. En ese contexto, la Economía Circular (EC) ha emergido como una solución innovadora para crear patrones de producción y consumo más sostenibles, fomentar el crecimiento económico, asegurar la protección medio ambiental y la protección social. A nivel global, el concepto de la EC ha ganado interés entre organismos gubernamentales, sector empresarial y académicos. Ello ha resultado en la incorporación de la EC como eje conductor en múltiples agendas políticas y con una tendencia emergente en la investigación de su concepto y aplicaciones. Sin embargo, la investigación de las potenciales aplicaciones y su evaluación se encuentran en una fase temprana de desarrollo debido a la novedad y dinamismo del concepto. El objeto principal de este estudio fue el de desarrollar una propuesta de integración del concepto de EC en el sector de la construcción y la demolición, así como proveer las bases para evaluar los efectos económicos y ambientales de estrategias de circularidad y monitorear su implementación. Para ello, se propone un marco integrativo de estrategias para la adopción de la EC en el sector de los RCD, además de una propuesta metodológica para evaluar y comparar el desempeño económico y ambiental de diferentes alternativas de circularidad incorporando análisis de decisión multi-criterio. Asimismo, este trabajo propone un sistema de indicadores para medir características de circularidad de los RCD. El sistema propuesto identifica 14 estrategias de influencia para la circularidad del sector de los RCD, describiendo su interacción a lo largo de sus etapas de ciclo de vida. La propuesta metodológica de evaluación incorpora la metodología de Análisis de Ciclo de Vida (ACV) para el criterio ambiental, y el análisis de costes complejos para el criterio económico. Mientras que para el desarrollo del análisis multi-criterio fue utilizado el método VIKOR. La metodología es aplicada en la evaluación del uso de residuos de concreto en aplicaciones de alto grado, específicamente en la producción de hormigón estructural y no estructural en la región de Cataluña, España. El marco de indicadores incorpora un enfoque sistémico que considera los factores y parámetros más relevantes para la adecuada medición de estrategias de EC. Este consiste en 22 medidas contenidas en tres grupos o dimensiones: ambiental, económica y de innovación/materiales. Las estrategias durante la etapa pre-constructiva son identificadas como las más influyentes en la circularidad del sector. Resultados de la evaluación muestran un mejor desempeño económico y ambiental de las alternativas de EC, sin embargo, éstos son condicionados por el contexto específico de la zona de estudio. En particular, el transporte y el vertido son identificados como los parámetros más condicionantes tanto para el aspecto ambiental, como el económico.<br>Els residus de construcció i demolició (RCD) són un greu problema mediambiental que requereix atenció immediata. Els grans volums de RCD produïts i els seus efectes ambientals han conduit a buscar noves alternatives per resoldre aquesta problemàtica en formes més sostenibles. En aquest context, l'Economia Circular (EC) ha emergit com una solució innovadora per a crear patrons de producció i de consum més sostenibles, impulsar el creixement econòmic, assegurar la protecció del medi ambient i la protecció social. A nivell global, el concepte de l'EC ha guanyat l'interès d'organismes governamentals, del sector empresarial i d'acadèmics. Això ha resultat en la incorporació de l'EC com eix conductor en múltiples agendes polítiques i amb una tendència emergent en la investigació del seu concepte i aplicacions. No obstant això, la investigació de les potencials aplicacions i la seva avaluació es troben en fase primerenca de desenvolupament degut a la novetat i dinamisme del concepte. L'objectiu principal d'aquest estudi va ser el desenvolupar una proposta d'integració de l'EC en el sector de la construcció i la demolició, així com proporcionar les bases per avaluar els efectes econòmics i ambientals d'estratègies de circularitat i monitoritzar la seva implementació. Per això, es proposa un marc integratiu d'estratègies per a l'adopció de l'EC en el sector dels RCD. A més, d'una proposta metodològica per avaluar i comparar el rendiment econòmic i ambiental de diferents alternatives de circularitat incorporant un anàlisi de decisió multi-criteri. Seguidament, aquest treball proposa un sistema d'indicadors per mesurar característiques de circularitat dels RCD. Aquest sistema identifica 14 estratègies d'influència per la circularitat del sector dels RCD, descrivint la seva interacció al llarg de les etapes de cicle de vida. La proposta metodològica d'avaluació incorpora la metodologia d'Anàlisis de Cicle de Vida (ACV) per al criteri ambiental, i l'anàlisi de costos complexos per al criteri econòmic. Mentre que per al desenvolupament de l'anàlisi multi-criteri s'ha utilitzat el mètode VIKOR. La metodologia s'aplica en l'avaluació del ús de residus de formigó en aplicacions d'alt grau, específicament en la producció de formigó estructural i no estructural en la regió de Catalunya, Espanya. El marc d'indicadors incorpora un enfocament sistèmic que considera els factors i paràmetres mes rellevants per a l'adequada mesura d'estratègies d'EC. Aquest consisteix en 22 mesures agrupades en 3 grups o dimensions: ambiental, econòmica i d'innovació/materials. S'identifica que les estratègies de l'etapa pre-constructiva són les més influents en la circularitat del sector. Els resultats de l'avaluació demostren que les alternatives d'EC presenten millor rendiment econòmic i ambiental, però, aquests són influenciats per les condicions particulars de la zona d'estudi. Particularment, el transport i abocament són identificats com els paràmetres més condicionants tan per el criteri ambiental, com per l'econòmic.<br>Enginyeria ambiental
APA, Harvard, Vancouver, ISO, and other styles
4

Wikström, Erik. "Construction and demolition waste in Helsinki : Case study of the circular economy hub HSY Ekomo." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234469.

Full text
Abstract:
The limited amount of natural resources on our planet has been actively discussed during the past decade. Recycling materials is becoming increasingly important in order to benefit the economy and the environment. The purpose of this study is to conduct a material flow analysis of the construction and demolition waste in the Helsinki metropolitan area to find out whether or not the goals set by the EU Waste Framework Directive can be reached by 2020. The study aims to map out the flows and suggest improvements wherever needed. The study is conducted by using a case study, HSY Ekomo, the first fully operational circular economy hub in Finland. The results show that both the municipality and private sector are well over the required goal of 70% recyclability rate of construction and demolition waste with a steady positive improvement from the first year of operations. The improvements were over 10% between the year 2016 and 2017. The private sector experiences some turbulence regarding legislation issues such as noise- and environmental permits which limits the economic benefit of recycling construction and demolition waste. Continued monitoring and faster adaption to international standards (such as the EU Waste Framework Directive) is required in order to be able to benefit the most economically and environmentally out of circular economic initiatives.<br>Den begränsade mängden naturresurser som existerar på vår planet har diskuterats under det senaste decenniet aktivt. Återvinning av material blir allt viktigare i dagens samhälle och vi kan se en trend var utvecklingen strävar efter beslut som har rötterna i cirkulär ekonomiskaprinciper. Resultatet av diskussionerna har blivit höga måtsättningar för medlemsländerna i Europeiska Unionen gällande återvinning var målet är att uppnå en återvinningsgrad på 70% innan 2020 för bygg- och rivavfall. Studien använder materialflödes analys (MFA) som metod för att kartlägga och kvantifiera flödnena av bygg- och rivavfall. Materialflödes analysen använder data från årsrapporter och statistik som blivit tillgängligt av HSY (statligt ägt bolag) samt av intervjuerna som utfördes på fältet. För att kvantifiera flödena på basis av den konceptuella modellen avnändes mjukvaran STAN. Avhandlingen strävar efter att ta första steget för att kartlägga materialflöden av bygg- och rivavfall i huvudstadsregionen (Helsingfors). Målet är att skapa en modell som kan användas som botten i framtida undersökningar och att kvantifiera modellen med existerande data för att se ifall målsättningarna stadgade av Europeiska Unionen kommer att uppnås innan 2020. Studien utfördes på cirkulär ekonomi stationen Ekomo för att kunna göra upp modeller för den privata sektorn och den kommunalla sektorn eftersom båda är verksamma på Ekomo. Resultaten av anvhandlingen var följande: Den privata sektorn och staten uppnår en återvinningsgrad på över 90% vilket är väl över stadgan satt av den Europeiska Unionen under året 2017 med en stadig utveckling från året innan med en väldigt liten andel som placeras på soptipp. Resultaten visar en stark utveckling av intresse från hushåll och företag för återvinning eftersom antalet kunder och lastbilar som besökt stationen ökat starkt under de senaste fem åren. Även om målsättningarna inom återvinning är uppnådda finns det ärenden som måste behandlas för att försäkra en fortsatt positiv utveckling. Den privata sektorn upplever att begränsade möjligheter för återanvänd krossbetong minskar efterfrågan på produkten, vilket gör den finansiellt svår att integrera i deras försälning. Buller- och miljötillstånd tvingar för tillfället bolagen att transportera bygg- och rivmaterialet utanför rivmålet, t.ex till Ekomo, för att krossas vilket ytterligare skapar finansiella problem för den privata sektorn. Lösningar för att göra återvinning av riv- och byggnadsmaterial för den privata sektorn lukrativare behövs för att inspirera flera organisationer att ansluta sig till arbete mot ett mera cirkulärt samhälle. Monitorering och snabbare anpassningsförmåga för internationella standarder krävs för att kunna utnyttja cirkulär ekonomiska initiativ på bästa möjliga sättet. För att komplettera avhandlingen skulle det vara intressant att se resultaten av en livcykelanalys (LCA) gällande samma flöden för att identifiera miljörelaterade problem och för att optimera flöden.
APA, Harvard, Vancouver, ISO, and other styles
5

Balestrucci, Federica. "Transition towards circular economy through a multi-readiness level model : An explorative study in the construction equipment industry." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49306.

Full text
Abstract:
Circular economy is considered one of the most viable approaches to sustainability and it has gained a lot of traction in recent years. It challenges the linear approach to production and consumption that generates waste and is unsustainable for the planet and future generations. It is crucial to counteract the negative impacts of production on the environment by implementing new and effective business strategies that are compatible with circular economy. Nowadays, manufacturing industries are struggling to make the transition towards circularity because of the intrinsic complexity of adapting new business models, product development, production processes and supply chain management to a non-linear approach. The literature on the transition towards circular economy extensively covers the aspects connected to either one of the above-mentioned domain-specific areas, developing different tools such as roadmaps and frameworks to support companies in the transition for a specific area. Yet, there is a lack of a systematic tool that can give support in each stage of the process based on the different business areas that need to be adapted to circularity. The purpose of this study is to explore the existing state-of-the-art knowledge with a systematic and holistic approach to factors that are connected to circular economy, so to create a practical tool for facilitating the process of transitioning towards circularity in a step- by-step manner, in connection to activities and strategies that can be implemented in different business domains. An explorative case study in a manufacturing company in the construction equipment industry was carried out, with a twofold purpose: firstly, to gather, analyse and frame the existing state-of-the-art knowledge on the implementation of circular economy. Secondly, to explore the suggested multi readiness level model with the case study company in order to validate it. In order to do so, a set of ten semi-structured interviews with senior managers and experts in the field was carried out to gather valuable insights and practical knowledge. The outcome of this study is a multi-readiness level model for transitioning towards circular economy that explores the most important strategies and activities that should be implemented by a manufacturing company in four different areas of intervention, namely Ecosystem of External Partners, Customer and Business model, Company’s Culture and Internal Capabilities and Design and Product Development. Each area of intervention will be presented in connection to identified strategies and activities that must be implemented to reach circularity.
APA, Harvard, Vancouver, ISO, and other styles
6

Gottmarsson, Jessica, and Sandra Valdani. "Opportunities and Challenges for a Contractor in a Change Towards a Circular Economy." Thesis, KTH, Fastigheter och byggande, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297952.

Full text
Abstract:
Few have missed out on the fact that the world's carbon dioxide emissions need to be reduced, and the need to switch to a circular economy in order to save earth’s resources is increasingly discussed. In Sweden, the construction sector accounts for more than a third of all generated waste and almost a quarter of all hazardous waste. Therefore, it is necessary to prepare for a transition to a circular economy in the construction industry, where reuse and recycling of materials as well as waste management are highly prioritized issues. As the contractor is a crucial actor in achieving circular economy in the construction sector due to their technical competence and potentially large opportunities to influence the degree of climate impact, the focus of the study was chosen to be from a contractor's perspective. Since a contractor's change to a circular economy also includes an organizational change, it becomes an interesting aspect to take into account as well. Furthermore, the study aims to examine the main motivational factors, opportunities, challenges and financial risks the contractor faces in a transition to a circular economy, both internally in the organization and in a broader perspective in relation to other actors. Thus, it enables an examination of what opportunities there are for the contractor to go from "word to action". The study is conducted according to qualitative principles and the data collection is based on semi-structured interviews where a majority of the respondents represent different parts of the construction sector, with relevant knowledge and competence. The results show that the contractors' motivation to make a transition is partly based on seeing future competitive advantages, but also on a more mandatory nature, as new laws and regulations appear to a greater extent. Possibly, the use of financial incentives in procurement can increase the contractor’s motivation. Identified challenges at an organizational level include difficulties in understanding the concept of circular economy and the management’s role in their communication with employees. Other barriers that have been identified are the lack of a well-functioning and mature market for second-hand materials and the difficulty in assessing the quality of these. The largest identified financial risk for the contractor is mainly related to responsibility for the guarantee of reused materials, as repairing measures can be costly. An important question for the contractor is therefore how risk allocation should be designed. Briefly speaking, it seems that much can be achieved and many of the barriers reduced through close collaboration with other actors in the sector, e.g. clients, architects, suppliers, and consultants. In final, there are some first steps that the contractor can start with in a transition. Although risks can be reduced, they are inevitable in the transition to a circular economy, especially in the beginning. The contractor should therefore, provided that they work with a like-minded client, dare to test circularity in smaller steps. This may, for example, be to gradually introduce reused components into projects or carrying out smaller pilot projects to obtain knowledge. Once knowledge is built up, they should invest in the right marketing, not least to make themselves attractive to suitable clients. It is not optimal for the contractor to passively wait for a client's directive or the establishment of a mature secondary market before they begin their work towards a circular economy. There is always an opportunity to start with what they have at their disposal, for instance, focusing on how to reduce internal waste as much as possible and use their technical competence to come up with circular initiatives in construction projects.<br>Att det behöver ske en minskning av världens koldioxidutsläpp har undgått ett fåtal, och det talas alltmer om behovet av att ställa om till en cirkulär ekonomi för att spara på jordens resurser. I Sverige står byggsektorn för mer än en tredjedel av allt genererat avfall, och nästan en fjärdedel av allt farligt avfall. Av den anledningen är det nödvändigt att ställa om till en cirkulär ekonomi i byggbranschen, där återbruk av material och avfallshantering är starkt prioriterade frågor. Då byggentreprenören är en avgörande aktör för att uppnå cirkulär ekonomi i byggsektorn, i och med teknisk kompetens och potentiellt stora möjligheter att påverka graden av klimatpåverkan, valdes studiens inriktning till att utgå från byggentreprenörens perspektiv. En byggentreprenörs förändring till cirkulär ekonomi innefattar i grund och botten även en organisationsförändring, och därför är även den aspekten av intresse att ta i beaktning. Vidare syftar studien till att undersöka vilka huvudsakliga motivationsfaktorer, möjligheter, utmaningar och ekonomiska risker byggentreprenören står inför vid en omställning till cirkulär ekonomi, både internt i organisationen och ur ett bredare perspektiv i relation till andra aktörer. Detta för att se vilka möjligheter som finns för byggentreprenören att gå från “ord till handling”. Studien är utförd enligt kvalitativa principer och datainsamlingen baserad på semistrukturerade intervjuer med till största del respondenter från olika delar av byggsektorn med relevant kunskap och kompetens. Resultaten visar att byggentreprenörernas motivation till att ställa om delvis grundar sig på att de kan se framtida konkurrensfördelar på marknaden men också att den ibland är baserad på en mer tvingande karaktär, då nya lagar och regelverk börjar komma i större utsträckning. Möjligen kan användningen av finansiella incitament i upphandling öka byggentreprenörens motivation. Identifierade hinder på en organisationsnivå innefattar oklarheter kring begreppet cirkulär ekonomi samt ledningens roll i kommunikationen till anställda. Andra hinder som har identifierats är avsaknaden av en välfungerande och mogen andrahandsmarknad samt svårigheten i att bedöma kvaliteten för återbrukade material. Den största ekonomiska risken för byggentreprenören grundar sig främst i garantin för återbrukade material då eventuella garantiåtgärder kan bli kostsamma. En angelägen fråga för byggentreprenören är därför hur ansvarsfördelningen avseende risk bör utformas, och incitament kan troligen komma till nytta även här. I stora drag verkar det som att mycket kan uppnås och många av barriärerna överkommas genom ett tätt samarbete med andra aktörer i sektorn, såsom beställare, arkitekter, leverantörer och konsulter. Slutligen kan konstateras att det finns några första steg som byggentreprenören kan börja med i övergången. Även om risker kan minskas, är de oundvikliga i övergången till en cirkulär ekonomi, särskilt i början. Byggentreprenören bör därför, med förutsättning att de jobbar med en likasinnad beställare, våga testa cirkularitet i mindre steg. Det kan exempelvis handla om att gradvis införa återbrukade komponenter i projekt, eller utföra mindre pilotprojekt för att erhålla kunskap. När kunskap har byggts upp bör de satsa på rätt marknadsföring, inte minst för att göra sig attraktiv för en passande beställare. Det är inte optimalt för byggentreprenören att passivt invänta beställarens direktiv eller en mogen andrahandsmarknad innan de påbörjar sitt arbete mot cirkulär ekonomi. Det finns alltid en möjlighet att börja med det dem själva har rådighet över, exempelvis minska de interna avfallsmängderna så mycket som möjligt samt utnyttja sin tekniska kompetens för att ta cirkulära initiativ i projekt.
APA, Harvard, Vancouver, ISO, and other styles
7

Segura, Montoya Isabel. "Circular resource management in a land clearance scenario: Sollihøgda Plussby case." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235642.

Full text
Abstract:
The construction of cities involves the use of land for new spaces and infrastructure. Construction on undeveloped land poses a dilemma on how to deal with the natural resources found on the construction site. Circular economy could provide guidelines on how to harness these resources, so they become products that circulate through as many cycles as possible, therefore decreasing resource consumption and waste. This research aims to explore alternatives to harness the natural materials extracted during the land clearance process of a new urban district: Sollihøgda plussby. Additionally, a new method to examine the circularity of the suggested products will be tested: the longevity indicator. The method of this thesis consists of three parts: (1) an inventory to define which natural materials are found in the construction site and their main characteristics, (2) interviews with industry experts to gain a technical insight on the possible uses for the materials, and (3) a longevity indicator to measure the circularity of the proposed uses. This research found that the forest in Avtjerna consists of Norway spruce, Scots pine and birch. The sediments are mostly humus with a turf sheet cover, while most of Avtjerna’s bedrock is categorized as rhomb porphyry lava. Norway spruce and rhomb porphyry lava have the required quality to become high-quality products for the construction industry, and they could be used directly in the project. High-quality products have longer lifetimes and more possibilities of recycling and reuse, therefore they scored higher when calculating the longevity indicator, which means a higher material retention. The other materials (Scots pine, birch, other sediments and rocks) have also possibilities of becoming products that could be used in Sollihøgda Plussby, but the longevity indicator for these materials was lower than those of Norway spruce and rhomb porphyry. Despite the usefulness of the longevity indicator to provide a preliminary assessment, this method needs to be upgraded so it incorporates other CE parameters. There should be a distinction on how many times the material is recycled, the lifetime of the recycled products, and the quality of the products obtained from the recycling process. Inventorying the natural resources on a construction site is a practice that should become common, since it allows to determine how materials can be harnessed, but also which areas should be preserved due to their ecological value. Additionally, the longevity indicator should not be used in isolation, but the environmental impacts of each suggested product should be assessed too.
APA, Harvard, Vancouver, ISO, and other styles
8

Pizzulli, Giuseppe. "Life cycle assessment of recycled coal combustion ash: A case study for building a circular economy in construction aggregates." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
The massive presence on the entire land surface of coal-fired power plants leaves room only for the imagination of how many tons of coal ash they must dispose of each year. The elimination of these wastes entails a considerable economic expenditure on the involved parts. Above all, not negligible environmental impact for the protection of the planet. The possibility of recycling coal combustion products coming from power plants could be an alternative solution to this problem. At the same time their reusing ensures saving of resources in terms of energy and economy consumption. The feasibility of generating a lower environmental impact by reusing waste material instead of natural resources is the primary goal of this dissertation. To evaluate these impacts, a Life Cycle Assessment (LCA) method is performed. Life cycle of lightweight aggregates manufactured with raw materials supplied by nature or waste is compared in this study. The data collected, following careful research, has been implemented through GaBi software. For a correct comparison, it is assumed that a ton of raw material is processed for both production cycles of the two different products analyzed. The results obtained take into account two transport scenarios for each evaluated aggregate. They show how to produce lightweight aggregates using coal combustion products as raw material instead of natural resources is more convenient. This involves energy savings ranging between 13% and 57% and greenhouse gas emissions reduced from 12% to 58%.
APA, Harvard, Vancouver, ISO, and other styles
9

Kardell, Isabella, and Klara Björkman. "Drivkrafter och hinder med återbruk inom byggbranschen : En intervjustudie." Thesis, KTH, Byggteknik och design, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302445.

Full text
Abstract:
Aldrig tidigare har det varit så aktuellt som det är idag, år 2021, att arbeta hållbart och spara på jordens resurser. Mängden material som finns i omlopp idag är stor. Ett långsiktigt arbetssätt för hållbarhet och cirkulärt byggande saknas. Byggbranschen står idag för en femtedel av Sveriges utsläpp av växthusgaser. Utsläppen måste minska för att kunna uppnå Sveriges uppsatta klimatmål. För att minska på utsläppen och bidra till ett mer cirkulärt samhälle behöver byggbranschen genomföra konkreta förändringar. En av dessa förändringar är att börja använda återbrukat material. Kunskapen om prisbilden av återbrukat material är idag låg bland de intervjuade i rapporten. En resurseffektivitet krävs för att vända branschen till att bli mer hållbar. Ett sätt att lyckas är att arbeta med de material och komponenter som redan finns och att arbeta cirkulärt, vilket resulterar i att arbeta med återbruk. Återbruk innebär att en komponent återanvänds i så ursprungligt skick som möjligt. I denna rapport har intervjuer med hållbarhetschefer, arkitekter, forskningsinstitut och återbrukscentral genomförts, tillsammans med en litteraturstudie och en utbildning om återbruk. Dessa tre tillvägagångssätt utgör metoden för rapporten. För att lyckas ställa om till cirkulärt byggande kommer det krävas ett övergripande engagemang från alla olika parter som är inblandade i byggprocessen. Ett samspel och samarbete genom hela processen, tillsammans med ökad kunskap är viktiga faktorer för att få arbetet med återbruk att utvecklas. De främsta drivkrafter med att arbeta med återbruk som har identifierats är: Minska klimatpåverkan Ekonomiskt fördelaktigt att handla återbrukat material Unika gestaltningsmöjligheter Möjlighet att sticka ut och marknadsföra sig som företag De främsta hindren som har identifierats är: Okunskap, inrutade vanor Saknad av kvalitet- och garantisystem Brist på lagerhållning och logistik Brist på återbrukat material och komponenter En fördjupad del av rapporten fokuserar på arkitektens perspektiv, och hur arkitekten kan arbeta för att öka återbruk och cirkulärt byggande. Ur arkitektens perspektiv behöver följande genomföras för ett främjat återbruk: Återbruk i åtanke från tidigt skede i byggprocessen Längre medverkan och delaktighet för arkitekten Flexibilitet i gestaltningen Kvalitetssäkring av återbrukade komponenter Med hjälp av resultatet föreslås i denna rapport slutligen åtta åtgärder för att främja återbruk: Kunskap och nya tankesätt måste utvecklas Beställaren behöver ta ansvar och hårdare lagar och regler behövs Generationsskifte och nya arbetsroller ger nytt synsätt Materialleverantörer måste ta ansvar för sina nya och gamla produkter Bygg dyrt och med hög kvalitet Materialbudget bör införas för att få kontroll på mängden jungfruligt material som används Planera och bygg för återbruk från ett tidigt skede Arkitekten behöver medverka längre genom byggprocessen<br>It has never been more relevant than today, in 2021, to work with sustainability and to save the resources of the earth. The amount of material that is in the industry today is large and a long- term program focusing on sustainability and a circular business is missing. The construction industry is responsible for a large part of Sweden’s emissions of greenhouse gases. The level of emissions needs to decrease to be able to achieve the goal of a lower environmental impact. To reduce the gas emissions and to contribute to a more circular society, changes need to be made by the construction industry. One of these changes is to begin to work with reused materials. The knowledge of the price picture of recycled material is currently low among the interviewed in the report. Recourse efficiency is therefore necessary to make the industry more sustainable. One way to make this happen is to work with the materials and components already existing, a circular way of working is to reuse materials. Reuse of materials is when a component is reused with minimal to no reconstruction. In this thesis interviews with sustainability managers, architects, a research institute and a warehouse for reused materials has been conducted, together with a literary study and a course in reused materials. These three techniques outline the method of this thesis. To succeed with the readjustment to circular construction, it will take an overall commitment from all different parties involved in the construction process. A cooperation through the entire process, together with an increased knowledge are two important factors to get the work with reuse of materials forward. Driving forces for sustainable practices that were discovered are: Reduce the environmental impact Economically favourable to use reused materials Unique opportunities when designing buildings Opportinity to stand out and to show your company as a sustainable business Obstacles that were discovered are that the industry is developing slowly: Not enough knowledge and habits that are set Lack of regulation on a national level Lack of a system to store reused materials while waiting to be used again Lack of the materials itself One part of the thesis is focusing more in depth on the architect’s perspective and how the architect can work to include more reused materials when designing buildings. From the architects perspective these following suggestions were made to increase reuse of materials: Reuse needs to be included in the process from day one The architect needs to have a longer participation in the building process Flexibility when designing The quality of the product that is being reused has to be able to be proven The result of this thesis suggests eight ways to include and increase reused materials: Knowledge and new ways of thinking needs to evolve The customer must take its responsibility and laws regulating reuse needs to be made A shift in age groups in the industry will make ways for new systems Grosists producing the materials must take their responsibility Build expensive and with good quality A budget for construction materials and components should be made Planning for reuse of materials early on in the process The architect must be involved longer in the construction process
APA, Harvard, Vancouver, ISO, and other styles
10

Sundlin, Emelie. "Circular economy in the construction industry: An insight into the difficulties and possibilities with improving the concrete recycling rate for housing in Sweden." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446086.

Full text
Abstract:
In accordance with the Paris Agreement and the national goal of climate neutrality by 2045, Sweden needs to lower its greenhouse gas emissions. The second-largest source of CO2 emissions in the country comes from the production of cement, one of the main ingredients of concrete. With concrete being an ideal construction material, and Sweden needing to build more urban housing, Sweden is now in a position where they need to combine a high rate of housing construction with emission cuts to reach the climate goals. Concrete from construction and demolition waste is recyclable and can be used as an aggregate in new concrete and as an input in cement production. This is, however, currently not being done in Sweden and concrete waste is instead used for low-grade purposes such as road construction, landfill infrastructure, and backfilling.  This study, therefore, aims to identify why recycled concrete is not being used to a larger extent in Swedish housing. An interview study has been conducted with actors along the concrete value chain to find out the extent to which housing projects use recycled concrete today, as well as what challenges and possibilities there are for increased use. The results show that recycled concrete within housing projects is currently only used for backfilling. Sweden does not have big enough volumes of high-quality concrete waste for it to be commercially viable to recycle it into recycled aggregate concrete. This recycling process is both costlier and more time-consuming than using conventional methods with raw materials, something Sweden has an abundance and easy access to. There is also a reluctance within the construction industry to use new and unproven methods and materials. Improved on-site sorting of waste materials, leading to higher quality aggregates, and construction standards adapted to the use of recycled materials, are actions to be taken to allow for an increased use of recycled aggregate concrete. All interviewed actors also mentioned the potential of recycled concrete for non-load-bearing walls in housing projects.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Circular Economy in Construction"

1

Ghosh, Sadhan Kumar, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, and Ronald L. Mersky. Circular Economy in the Construction Industry. CRC Press, 2021. http://dx.doi.org/10.1201/9781003217619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duan, Wenhui, Lihai Zhang, and Surendra P. Shah, eds. Nanotechnology in Construction for Circular Economy. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Otasowie, Osamudiamen, Clinton Ohis Aigbavboa, and Ayodeji Emmanuel Oke. Circular Economy Business Model for Construction Organisations. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88322-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Torre, Stefano Della. Regeneration of the Built Environment from a Circular Economy Perspective. Springer Nature, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jensen, Kasper Guldager. Building a circular future. 2nd ed. GXN Innovation, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kopnina, Helen, and Kim Poldner. Circular Economy. Routledge, 2021. http://dx.doi.org/10.4324/9780367816650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muthu, Subramanian Senthilkannan, ed. Circular Economy. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3698-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alvarez-Risco, Aldo, Subramanian Senthilkannan Muthu, and Shyla Del-Aguila-Arcentales, eds. Circular Economy. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0549-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mantel, Barbara. Circular Economy. CQ Press, 2020. http://dx.doi.org/10.4135/cqresrre20200710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lehmacher, Wolfgang, and Johann Bödecker. Circular Economy. Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41311-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Circular Economy in Construction"

1

Vasey, Lauren, Petrus Aejmelaeus-Lindström, David Jenny, et al. "Circular Robotic Construction." In Circular Economy and Sustainability. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39675-5_9.

Full text
Abstract:
AbstractIn situ robotic construction is a type of construction where mobile robotic systems build directly on the building site. To enable on-site navigation, industrial robots can be integrated with mobile bases, while mobile, high-payload construction machines can be adapted for autonomous operation. With parallel advances in sensor processing, these robotic construction processes can become robust and capable of handling non-standard, local, as-found materials.The potential of using autonomous, mobile robotic systems for the development of innovative circular construction processes is presented in three exemplary case studies:(i) robotically jammed structures from bulk materials, (ii) robotic earthworks with local and upcycled materials, and (iii) robotic additive manufacturing with earth-based materials. These processes exemplify key strategies for a circular industry through the utilisation of materials with low embodied greenhouse gas emissions and the implementation of fully reversible construction processes.For each case study, we describe the robotic building process, the enabling technologies and workflows, and the major sustainability and circularity benefits compared to conventional construction methods. Moreover, we discuss the difficulty of industry transfer, considering challenges such as detailing, integration, and engineering validation. We conclude with an outlook towards future research avenues and industry adoption strategies.
APA, Harvard, Vancouver, ISO, and other styles
2

Tomaszewska-Krygicz, Justyna. "Construction Versus Circular Economy." In Springer Proceedings in Materials. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_2.

Full text
Abstract:
AbstractClosing the loop of materials circulation is certainly the right way to decrease the pressure humans place on the environment. Although many efforts have been made toward effective mitigation of anthropogenic impacts, mostly on the policy dimension, there is still much more to do. The transformation affects every phase of the building’s lifecycle, which therefore requires the engagement of all value chain actors and suppliers, often assigning them new roles and responsibilities. The experiences gained from over a decade of the EU’s journey towards CE clearly indicate that, regardless of how good the legal regulations are and how effective the educational efforts are, achieving the goals of maintaining resources in the economy is not possible without the implementation of innovation and proper business models. Considering that materials and resources marketplaces are among the most common areas of Contech investment, it is worth considering what role polymer concrete composites (CPC) may play in the sector's quest for circularity. This article will try to find an answer to this dilemma by discussing the meaning of CE for the sector, its main drivers, and implications for the supply chain.
APA, Harvard, Vancouver, ISO, and other styles
3

Mishra, Dhanada K., and Jing Yu. "Circular Economy in Construction." In Circular Economy in the Construction Industry. CRC Press, 2021. http://dx.doi.org/10.1201/9781003217619-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chadha, Kunaljit, Alexandre Dubor, Edouard Cabay, Yara Tayoun, Lapo Naldoni, and Massimo Moretti. "Additive Manufacturing for the Circular Built Environment: Towards Circular Construction with Earth-Based Materials." In Circular Economy and Sustainability. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39675-5_7.

Full text
Abstract:
AbstractBy making rapid prototyping accessible and inexpensive, additive manufacturing (AM) has transformed the fabrication industry. The adaptability of the process to various materials makes it applicable to multiple fields ranging from complex nanoscale production in the medical field to the manufacturing of large-scale structures in the construction industry. AM methods are constantly evolving, enabling the production of complex products with minimal initial investment. AM processes generate little waste and require no formwork, making them relevant to the construction industry, which conventionally produces significant amounts of waste.This chapter provides a high-level overview of AM as an innovative technique and key developments towards its use for a circular built environment. It further delineates the viability of AM techniques using earth-based materials for implementing a circular economy in the construction sector through a series of case studies developed gradually from the scale of architectural prototypes to realised buildings. These examples address factors such as fabrication processes, techniques, and materials used and their influence on circularity through the production cycle of construction achieved using AM. Through the case studies, the chapter promotes ‘closing the loop’ on resources by reusing and recycling excavated construction materials. The chapter concludes with projections for AM practices and potential commercial applications of the technology. Overall, the chapter is useful for anybody interested in the built environment looking at alternative and sustainable building methods, including users, researchers, and professionals.
APA, Harvard, Vancouver, ISO, and other styles
5

Bruun, Edvard Patrick Grigori, Stefana Parascho, and Sigrid Adriaenssens. "Cooperative Robotic Fabrication for a Circular Economy." In Circular Economy and Sustainability. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39675-5_8.

Full text
Abstract:
AbstractIn a cooperative robotic fabrication (CRF) framework, multiple industrial robots are specifically sequenced to work together, thus allowing them to execute coordinated processes with greater geometric and structural variation. In the context of the construction industry, agents in a cooperative setup can perform complementary functions such as placing or removing building components while simultaneously providing temporary support to a structure. This approach can reduce, or completely remove, the need for temporary external supports and scaffolding that would typically be required for stability during the construction of geometrically complex spanning spatial structures. For a circular economy, this means overall reductions to primary resource inputs and improvements to the disassembly, reuse, and reassembly potential of a structure at the end of its life. This chapter gives a summary of three projects that successfully demonstrate the use of cooperative robotic fabrication to promote several principles of a circular economy through different scaffold-free construction applications. The topics covered in this chapter will be of interest to researchers and professionals interested in the emergent intersection of digital fabrication, robotics, and sustainability applied to the building industry.
APA, Harvard, Vancouver, ISO, and other styles
6

Heisel, Felix, and Joseph McGranahan. "Enabling Design for Circularity with Computational Tools." In Circular Economy and Sustainability. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39675-5_6.

Full text
Abstract:
AbstractCircular construction is a design task that requires new datasets and computational tools for matching supply and demand within an urban circular system. Material passports (MPs) contain detailed inventories of materials and products, as well as their specifications, location, and connection details. Circularity indicators (CIs) allow an assessment of a design’s environmental impacts with respect to circularity: the degree to which solutions minimise extraction and waste in favour of reusable, renewable, or recyclable resources both in construction and at end-of-use. Often implemented as an extension to detailed BIM models, MPs and CIs are presently applied in the permit and documentation phases. However, these metrics also establish parameters in early design phases, where circular design thinking and evaluation are most impactful. Circular construction consequently calls for a new suite of design tools that can be integrated into existing workflows, are applicable within the uncertain context of the early design phase, and ideally offer immediate feedback related to formal deliberations, structural considerations, material selection, and detailing. This chapter describes the importance of CIs as design parameters across phases with a special focus on recent early design developments such as the software application RhinoCircular.
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Weisheng. "Boosting construction waste material circularity." In Circular Economy for the Built Environment. Routledge, 2024. http://dx.doi.org/10.1201/9781003450023-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Costa, Ana Rute, Rachel Hoolahan, and Melanie Martin. "Accelerating material reuse in construction." In Circular Economy for the Built Environment. Routledge, 2024. http://dx.doi.org/10.1201/9781003450023-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Agnusdei, Giulio Paolo, Stefania Massari, Federica De Leo, and Valerio Elia. "Concerns Deriving from the Sand Business and Potential Substitutes for a Sustainable Construction Sector." In Circular Economy and Sustainability. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55206-9_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsui, Tanya, Wendy Wuyts, and Karel Van den Berghe. "Geographic Information Systems for Circular Cities and Regions." In Circular Economy and Sustainability. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39675-5_2.

Full text
Abstract:
AbstractA geographic information system (GIS) stores, manipulates, analyses, and visualises spatial data. GIS enables the mapping of building elements and components and can optimise the location of facilities for circular activities, thus contributing to the closing of material loops and the spatial development of circular cities and regions. This chapter presents use cases of GIS in the circular built environment, with examples from academia, industry, and government. Academics use GIS data for urban mining studies to estimate the location and availability of secondary construction materials. Businesses in industry use GIS analysis to inform the facility location of circular construction hubs and (reverse) logistics. Governments use GIS to monitor and assess the circular spatial development potential of their (industrial) territories. In order to integrate GIS into circular economy solutions, improvements need to be made in making spatial data available and in presenting findings that emerge from it. Finally, present enthusiasm for GIS tools should be balanced by a deeper understanding of the connection between digital tools and governance decisions.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Circular Economy in Construction"

1

Ghafoor, Soheila, Tuba Kocaturk, and M. Reza Hosseini. "Rethinking Housing: Leveraging Product-Service Systems For A Circular Housing Economy." In Creative Construction Conference 2024. Budapest University of Technology and Economics, 2024. http://dx.doi.org/10.3311/ccc2024-138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soliu, Idris, Giovanni C. Migliaccio, and Idris Abdulgafar. "Circular Economy Principles in The Built Environment: A Systematic Literature Review." In Creative Construction Conference 2024. Budapest University of Technology and Economics, 2024. http://dx.doi.org/10.3311/ccc2024-103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Francis, Vishal, Saurav Dixit, and Anna Stefańska. "Circular Economy and Sustainability Aspects Of 3D Printed Parts: Challenges, Opportunities and Barriers." In Creative Construction Conference 2024. Budapest University of Technology and Economics, 2024. http://dx.doi.org/10.3311/ccc2024-170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barakzai, Muhammed Khizar, Mohammed Zajeer Ahmed, Cathal O’Donoghue, and Patrick J. McGetrick. "GREEN PUBLIC PROCUREMENT AND TIMBER IN CONSTRUCTION FOR A CIRCULAR ECONOMY." In World Conference on Timber Engineering 2025. World Conference On Timber Engineering 2025, 2025. https://doi.org/10.52202/080513-0641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rose, Colin M., Jonas Breidenbach, Patrick Quinn, and Julia A. Stegemann. "PILOT PROJECT: MODULAR CONSTRUCTION WITH SECONDARY MATERIALS IN A CIRCULAR ECONOMY." In World Conference on Timber Engineering 2025. World Conference On Timber Engineering 2025, 2025. https://doi.org/10.52202/080513-0463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Szafranko, Elzbieta, Jolanta Harasymiuk, and Marlena Jurczak. "CIRCULAR ECONOMY IN CONSTRUCTION AS AN ELEMENT OF THE GREEN BUILDING PHILOSOPHY." In SGEM International Multidisciplinary Scientific GeoConference. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.21.

Full text
Abstract:
Construction is a branch of the economy that occupies a leading place in waste production. The problem is both the demolition of buildings ending their activity and the construction process itself. During the demolition process, waste is segregated, and most often concrete and brick rubble is recycled. In addition, wooden and wood-based elements, metal and glass are most often recycled. However, there is still a large amount of mixed waste, which often contains hazardous waste. It is necessary to store them safely. Another problem is waste generated during construction. The largest percentage of their mass is packaging. In construction practice, they are most often transported to companies that deal with their segregation and partial processing as mixed waste. However, in the idea of a closed-loop economy, in addition to waste processing, it is about reducing the negative impact on the environment associated with, among others, the transport of this waste. The article proposes the possibility of using some packaging waste directly on the construction site. A scheme of processes allowing waste processing on the construction site and using them to produce elements used on site is presented. This approach allows for the implementation of the Green Building philosophy in a more comprehensive form.
APA, Harvard, Vancouver, ISO, and other styles
7

Mahadeva, Rajesh, and Malik Mansoor Ali Khalfan. "Promoting The Systematic Adoption of Circular Economy Principles in The Construction Sector: A Bibliometric Analysis of Sustainable Built Environment Practices." In Creative Construction Conference 2024. Budapest University of Technology and Economics, 2024. http://dx.doi.org/10.3311/ccc2024-144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luczkowski, Marcin, Hanne Seeberg, Anders Rønnquist, Rakel Gundersen, and Sofie Dahl-Nielsen. "Application of Reclaimed Elements in Structural Engineering Towards Circular Economy." In IABSE Symposium, Tokyo 2025: Environmentally Friendly Technologies and Structures: Focusing on Sustainable Approaches. International Association for Bridge and Structural Engineering (IABSE), 2025. https://doi.org/10.2749/tokyo.2025.0189.

Full text
Abstract:
&lt;p&gt;The reuse of reclaimed materials in structural engineering holds significant potential for fostering sustainability and reducing construction waste. This paper explores a focused framework that emphasizes two critical processes: visual scanning of materials and algorithmic matching. The proposed approach demonstrates how advanced technologies like 3D scanning and generative design software can streamline workflows for integrating reclaimed elements into modern architectural designs.&lt;/p&gt;
APA, Harvard, Vancouver, ISO, and other styles
9

Senaratne, Sepani, Iresha Gamage, Shashini Jayakodi, and Srinath Perera. "Taxonomy of circular economy terminologies." In World Construction Symposium - 2024. Department of Building Economics, 2024. http://dx.doi.org/10.31705/wcs.2024.79.

Full text
Abstract:
The construction sector predominantly follows a linear economic model, which necessitates a shift towards embracing the Circular Economy (CE) principles. Even though several CE approaches have been introduced for the construction context, numerous barriers have hindered their implementation. Confusion of CE terminologies with a lack of awareness is identified as one of the main barriers to the successful implementation of CE in the construction industry. Hence, this research focuses on differentiating the CE terminologies based on their academic definitions to establish a consolidated and comprehensive understanding and thereby, aims to develop a taxonomy for CE terminologies for the construction industry. This research adopted qualitative comparative literature analysis research methodology and selected individualising comparison as a suitable comparison method. To carry out the comparison, the academic definitions from Oxford and Cambridge dictionaries were compared with the definitions from CE-related construction articles. Subsequently, the consolidated definitions were established for selected terminologies by differentiating their ideas. Consequently, the hierarchy of the terminologies was identified to develop a CE taxonomy. This research provides significant guidance for CE researchers for appropriate CE terminology usage in their research, while industry practitioners can gain a wider understanding of CE for its successful implementation in the industry.
APA, Harvard, Vancouver, ISO, and other styles
10

Incorvaja, Dan, Yasin Celik, Ioan Petri, and Omer Rana. "Circular Economy and Construction Supply Chains." In 2022 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT). IEEE, 2022. http://dx.doi.org/10.1109/bdcat56447.2022.00019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Circular Economy in Construction"

1

EFFC/DFI Sustainability Guides Task Group. EFFC/DFI Circular Economy Guides. European Federation of Foundation Contractors and Deep Foundations Institute, 2024. https://doi.org/10.37308/effc-dfi-sgtg-circ-e2-2023.

Full text
Abstract:
There are 17 Sustainable Development Goals (SDGs), which every UN country has signed up to achieve by 2030. This means the Goals are global and holistic, covering all areas of sustainability. They are also used by a number of geotechnical and other construction companies to report on sustainability. DFI’s Sustainability Committee will be working with EFFC’s Sustainability Working Group to develop guides that are intended to support geotechnical companies, with practical suggestions for how they can play their part in enabling the SDGs. They are not minimum requirements or sector standards, but rather practical support guides, sharing good practice. This is the second guide in the sustainability guides series. The guide focuses on the circular economy, related to SDG 12: Responsible Consumption and Production.
APA, Harvard, Vancouver, ISO, and other styles
2

Haider, Syed Hussain, and Filippo Giustozzi. Recycled Plastic Waste in Papua New Guinea’s Road Infrastructure. Asian Development Bank, 2025. https://doi.org/10.22617/wps250189-2.

Full text
Abstract:
The use of recycled plastic waste in road construction encourages environmentally friendly infrastructure and promotes a circular economy by converting plastic waste into low-cost construction materials. Utilizing recycled plastics can enhance the performance and durability of roads, especially in hot climates, addressing climate adaptation and mitigation needs. This publication focuses on Port Moresby, Papua New Guinea, to foster a cultural shift toward reusing and recycling rather than relying on landfills, a critical issue in Pacific island countries.
APA, Harvard, Vancouver, ISO, and other styles
3

Kaufmann, Joachim, Peter Kaufmann, Karin Petzlberger, and Harald Wieser. Lightweight construction in Austria. Status quo, trends, and policy options for the Austrian and European light-weight community, with a focus on mobility. BMK - Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie, 2022. http://dx.doi.org/10.22163/fteval.2022.639.

Full text
Abstract:
Lightweight construction, as a set of cross-sectional technologies, has the potential to contribute to several challenges, which are prevalent now and in the near future. Starting from the mobility sector, which has traditionally been a key driver for innovation for lightweighting, it has the potential to contribute to resource and energy efficiency in a broad set of sectors and locations as long as it does not contradict, i.e., complies with the principles of a circular economy. This study investigates lightweight construction in Austria. For that purpose, we identify relevant actors in Austria, show the economic significance of the lightweight construction sector, and present the development of applied research projects in different lightweight relevant technology fields supported by the Austrian R&amp;D agency FFG. Subsequently, we present the research and development potentials for Austrian companies as well as the strengths, weaknesses, opportunities and risks of lightweight construction in Austria. We finally set the Austrian lightweight construction ‘sector’ in an international context, based on Horizon research funding data, a comprehensive overview of lightweight topics at international congresses, and an investigation of the importance of lightweight construction at the strategic level in selected countries.
APA, Harvard, Vancouver, ISO, and other styles
4

Enberg, Cecilia, Anders Ahlbäck, and Edvin Nordell. Green recovery packages: a boost for environmental and climate work in the Swedish construction and building industry? Linköping University Electronic Press, 2021. http://dx.doi.org/10.3384/9789179291327.

Full text
Abstract:
The objective of this study is to explore whether the green recovery packages issued by the Swedish government are aligned with the work of the construction and building industry to become climate-neutral by 2045. We have interviewed heads of sustainability of some of the largest companies in the industry and surveyed companies that have signed the Roadmap for a fossil-free construction and building industry1. Our results show that market-related challenges constitute the most important challenges to the environmental and climate work of the companies in our study. To better respond to these challenges, they require policies that reward frontrunners, primarily green public procurement, and tougher standards and norms. They also requested investments and policies that support the transition to a circular economy. We conclude that while green public procurement is not among the policies and investments included in the recovery packages, other parts are well aligned with the challenges encountered, requested investments and policies, and on-going work. This is particularly true for the above-mentioned investments related to the transition to a circular economy. Further, the study enables us to conclude that it is important to consider the long-term effects of green recovery packages and their potential for return-on-investment in terms of reductions in greenhouse gas (GHG) emissions per SEK. Such packages will also have a better effect if they support on-going environmental and climate work, initiate new actions, and are designed with a systems perspective that facilitates joint action between different companies along the entire supply chain.
APA, Harvard, Vancouver, ISO, and other styles
5

Ottosen, Lisbeth M., Ernst Jan de Place Hansen, and Carsten Rode. Service life for construction materials and products in a circular economy – a review: Faktorer som påvirker den faktiske levetid – State-of-the-art Appendiks 3: Cirkularitet. Aalborg University, 2025. https://doi.org/10.54337/010420255.

Full text
Abstract:
Der er ikke fundet videnskabelig litteratur, som systematisk forholder sig til levetidsbegrebet i en cirkulær økonomi. Det er egentlig overraskende, idet levetid er helt centralt da cirkulære principper inkluderer levetidsforlængelse, genbrug (som forudsætter en restlevetid) og design af bygninger til lang levetid. I de identificerede videnskabelige artikler, er begrebet levetid anvendt i forskellige sammenhænge relateret til den cirkulære økonomi, og de diskuteres i dette manuskript.
APA, Harvard, Vancouver, ISO, and other styles
6

Fullerton, Don. The Circular Economy. National Bureau of Economic Research, 2024. http://dx.doi.org/10.3386/w32419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vincenti, Nazarena, Luca Campadello, S. Pezzoli, et al. CIRCULAR HOUSING – Circular economy in the Real Estate Field. University of Limerick, 2021. http://dx.doi.org/10.31880/10344/10173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thoden van Velzen, Ulphard, Lisanne de Weert, and Karin Molenveld. Flexible laminates within the circular economy. Wageningen Food & Biobased Research, 2020. http://dx.doi.org/10.18174/519019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Armstrong, Kristina, Greg Avery, Arpit Bhatt, et al. Sustainable Manufacturing and the Circular Economy. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/1963668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sharma, Shivangi. The circular economy and sustainable manufacturing. Parliamentary Office of Science and Technology, 2025. https://doi.org/10.58248/hs128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography