Academic literature on the topic 'Circular Restricted Three Body Problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circular Restricted Three Body Problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Circular Restricted Three Body Problem"
Dionysiou, D. D., and D. A. Vaiopoulos. "On the restricted circular three-charged-body problem." Astrophysics and Space Science 135, no. 2 (1987): 253–60. http://dx.doi.org/10.1007/bf00641560.
Full textVrbik, Jan. "Chaos in Planar, Circular, Restricted Three-Body Problem." Applied Mathematics 04, no. 01 (2013): 40–45. http://dx.doi.org/10.4236/am.2013.41008.
Full textMinglibayev, M. Zh, and T. M. Zhumabek. "ON THE RESTRICTED THREE-BODY PROBLEM." PHYSICO-MATHEMATICAL SERIES 2, no. 336 (April 15, 2021): 138–44. http://dx.doi.org/10.32014/2021.2518-1726.33.
Full textCampagnola, Stefano, Paul Skerritt, and Ryan P. Russell. "Flybys in the planar, circular, restricted, three-body problem." Celestial Mechanics and Dynamical Astronomy 113, no. 3 (June 22, 2012): 343–68. http://dx.doi.org/10.1007/s10569-012-9427-x.
Full textRodica, Roman, and Mioc Vasile. "Libration Points in Schwarzschild's Circular Restricted Three-Body Problem." Astrophysics and Space Science 304, no. 1-4 (July 19, 2006): 101–3. http://dx.doi.org/10.1007/s10509-006-9083-2.
Full textGuzzetti, Davide, and Kathleen Connor Howell. "Attitude dynamics in the circular restricted three-body problem." Astrodynamics 2, no. 2 (May 15, 2018): 87–119. http://dx.doi.org/10.1007/s42064-017-0012-7.
Full textPalacián, J. F., C. Vidal, J. Vidarte, and P. Yanguas. "Dynamics in the Charged Restricted Circular Three-Body Problem." Journal of Dynamics and Differential Equations 30, no. 4 (November 20, 2017): 1757–74. http://dx.doi.org/10.1007/s10884-017-9627-x.
Full textSingh, Jagadish, and Achonu Joseph Omale. "Robe’s circular restricted three-body problem with zonal harmonics." Astrophysics and Space Science 353, no. 1 (June 12, 2014): 89–96. http://dx.doi.org/10.1007/s10509-014-1995-7.
Full textBardin, B. S., and A. N. Avdyushkin. "On Stability of the Collinear Libration Point $L_{1}$ in the Planar Restricted Circular Photogravitational Three-Body Problem." Nelineinaya Dinamika 18, no. 4 (2022): 0. http://dx.doi.org/10.20537/nd221202.
Full textKholshevnikov, Konstantin V., and Vladimir B. Titov. "Minimal velocity surface in the restricted circular Three-Body-Problem." Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 65, no. 4 (2020): 734–42. http://dx.doi.org/10.21638/spbu01.2020.413.
Full textDissertations / Theses on the topic "Circular Restricted Three Body Problem"
Tan, Minghu. "Low energy capture of near-Earth asteroids in the circular restricted three-body problem." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30779/.
Full textChupin, Maxime. "Interplanetary transfers with low consumption using the properties of the restricted three body problem." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066307/document.
Full textThe first objective of this work is to understand the dynamical properties of the circular restricted three body problem in order to use them to design low consumption missions for spacecrafts with a low thrust engine. A fundamental property is the existence of invariant manifolds associated with periodic orbits around Lagrange points. Following the Interplanetary Transport Network concept, invariant manifolds are very useful to design spacecraft missions because they are gravitational currents. A large part of this work is devoted to designing a numerical method that performs an optimal transfer between invariant manifolds. The cost we want to minimize is the $L^{1}$-norm of the control which is equivalent to minimizing the consumption of the engines. We also consider the $L^{2}$-norm of the control which is easier to minimize numerically. The numerical methods are indirect ones coupled with different continuations on the thrust, on the cost, and on the final state, to provide robustness. These methods are based on the application of the Pontryagin Maximum Principal. The algorithms developed in this work allow for the design of real life missions such as missions between the realms of libration points. The basic idea is to initialize a multiple shooting method with an admissible trajectory that contains controlled parts (local transfers) and uncontrolled parts following the natural dynamics (invariant manifolds). The methods developed here are efficient and fast (less than a few minutes to obtain the whole optimal trajectory). Finally, we develop a hybrid method, with both direct and indirect methods, to adjust the position of the matching points on the invariant manifolds for missions with large energy gaps. The gradient of the value function is given by the values of the costates at the matching points and does not require any additional computation. Hence, the implementation of the gradient descent is easy
Nicholls, Robert [Verfasser], and Urs [Akademischer Betreuer] Frauenfelder. "Second species orbits of negative action and contact forms in the circular restricted three-body problem / Robert Nicholls ; Betreuer: Urs Frauenfelder." Augsburg : Universität Augsburg, 2021. http://d-nb.info/1241474354/34.
Full textRosa, Ibarra Abraham de la. "Global instability in the elliptic restricted three body problem." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277577.
Full textEl objetivo de esta tesis es mostrar inestabilidad global o difusión de Arnold en el problema restringido de tres cuerpos elíptico (PTCRE) mostrando la existencia de pseudo-trayectorias difusivas en el espacio fase para ciertos rangos de la excentricidad (e), el momento angular del cometa (G) y el parámetro de masa (µ). Mas precisamente, los resultados presentados, son válidos para G suficientemente grande, eG acotado y µ suficientemente pequeño. La tesis está dividida en dos capítulos y dos apéndices. El capítulo 1, contiene todos los resultados principales. Después de introducir el PTCRE, usamos coordenadas de McGehee para definir la variedad de infinito, que será de dimensión tres en el espacio fase extendido y que topológicamente se comporta como una variedad invariante normalmente hiperbólica (NHIM), aunque es de tipo parabólico. Esto significa que la tasa de acercamiento y alejamiento de ella a lo largo de sus variedades invariantes es polinomial, en lugar de exponencial como sucede en una NHIM estándar. Por otra parte, la dinámica interior es trivial ya que está formada por una familia de orbitas con 2 parámetros y de período 2p en el espacio extendido 5D que corresponden a soluciones constantes en el espacio reducido 4D. Como consecuencia, las variedades estables e inestables de la variedad de infinito son la unión de las variedades estables e inestables de sus orbitas periódicas y siempre que estas variedades se intersequen sobre orbitas heteroclínicas transversales, el scattering map puede ser definido como hicieron De la Llave, Seara y Delshams . Desafortunadamente, ya que la dinámica interior de la variedad de infinito es muy simple, el mecanismo de difusión clásico, que consiste en combinar la dinámica interior con la exterior, no funciona aquí. En su lugar, como una novedad, seremos capaces de encontrar dos scattering maps diferentes que serán combinados de manera adecuada para producir orbitas cuyo momento angular crezca. La fórmula asintótica del scattering map recae enteramente en el cálculo del llamado potencial de Melnikov, como es definido en los trabajos de Delshams, Gutiérrez y Seara. La primer derivada del potencial de Melnikov da la aproximación a primer orden de la distancia entre las variedades estable e inestable de la variedad de infinito cuando el parámetro de masa es exponencialmente pequeño. Con este planteamiento, una serie de lemas y proposiciones conducirán a la fórmula de los términos dominantes del potencial de Melnikov. La idea clave es calcular sus coeficientes de Fourier, que serán exponencialmente pequeños cuando el momento angular es grande y una fórmula explícita no será posible, así que un cálculo efectivo será necesario. Para hacerlo, el producto eG jugará un papel clave que conducirá a los teoremas 1.5 y 1.6, el primero da una fórmula asintótica del potencial de Melnikov cuando eG es pequeño y el segundo cuando eG es finito. Ambos requieren que µ sea exponencialmente pequeño con respecto a G, y G suficientemente grande. Estos teoremas naturalmente producirán las fórmulas asintóticas de los scattering maps para ambos casos y son la base de los teoremas 1.15 y 1.16, que formulan la existencia de pseudo-trayectorias en el PTCRE. En el capítulo 2, damos los detalles y las pruebas de los resultados concernientes a las formulas asintóticas, dadas en el capítulo 1, para el potencial de Melnikov y los scattering maps, incluyendo las cotas efectivas de cada error involucrado. Los apéndices tienen los resultados mas técnicos que son necesarios para completar de forma rigurosa cada prueba, pero que por su naturaleza, pueden ser relegados al final para hacer seguir las pruebas con mas facilidad.
Rodríguez, del Río Óscar. "Ejection-collision orbits in the restricted three-body problem." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672338.
Full textL'objectiu principal d'aquesta dissertació és l'estudi de les òrbites d'ejecció-col·lisió (EC) al problema restringit de tres cossos circular i pla (RTBP a partir d'ara). En particular, ens centrarem en l'estudi analític i numèric d'unes òrbites d'EC molt particulars, a les quals hem anomenat òrbites de n-EC. Aquestes òrbites de n-EC, són òrbites tal que la partícula ejecta d'un primari, assoleix n màxims en la distància respecte al primari del qual han ejectat per a continuació tornar a col·lisionar amb ell. D'aquesta forma numèricament estudiarem en profunditat aquest tipus d'òrbites i analíticament demostrarem que per un valor prou gran de la constant de Jacobi (per la qual donarem una expressió en termes del paràmetre de masses i el valor de n) existeixen exactament quatre òrbites de n-EC amb unes característiques ben determinades. Aquests resultats generalitzen i milloren els resultats previs pel cas particular de n=1, i veurem que es poden extrapolar fàcilment al problema de Hill. A més, numèricament veurem que l'evolució d'aquestes quatre famílies d'òrbites de n-EC originals presenta una dinàmica molt rica.És ben sabut, que el sistema que defineix el moviment de la partícula no està ben definit als punts on es troben situats els primaris. Per aquest motiu hem utilitzat dues tècniques de regularització de la col·lisió, la regularització de McGehee i la regularització de Levi-Civita. D'aquesta forma, en aquesta memòria hem analitzat els avantatges i els inconvenients de cada regularització, i els diferents mètodes que es poden utilitzar per detectar col·lisions. Com que gran part d'aquesta memòria es focalitzarà en valors de la constant de Jacobi més grans que l'associat al punt d'equilibri L1 aquestes dues regularitzacions de caràcter local seran suficients. Per valors menys restrictius de la constant de Jacobi veurem que existeixen altres regularitzacions de caràcter global o que simplement podem treballar amb regularitzacions locals a l'entorn de cada primari.Per altra banda, numèricament hem analitzat el comportament global de les òrbites d'ejecció al RTBP. Hem estudiat la relació entre la família de les òrbites periòdiques de Lyapunov al voltant del punt d'equilibri lineal L1 i les òrbites d'ejecció que es duu a terme al rang de valors de la constant de Jacobi tals que les regions de Hill associades només permeten un moviment fitat per a aquestes òrbites. En particular, hem vist que s'obté una infinitat caòtica de connexions heteroclíniques entre un primari i l'òrbita periòdica de Lyapunov al voltant del punt d'equilibri lineal L1. Com a conseqüència, també es deriva una infinitat caòtica d'òrbites d'ejecció-col·lisió. A més, veurem que podem construir uns diagrames de color que ens permeten descriure la dinàmica global de les òrbites d'ejecció donat un interval de temps. Aquests diagrames proporcionen una comprensió molt precisa de la dinàmica d'aquestes òrbites.Finalment, hem fet una primera exploració del cas espacial del problema restringit de tres cossos circular (RTBP 3D). En aquesta primera aproximació no hem utilitzat la clàssica regularització de Kustaanheimo-Stiefel i hem decidit utilitzar una versió 3D de la regularització de McGehee. Això presenta alguns problemes, que hem analitzat i abordat, però aquesta aproximació és suficient per obtenir un primer resultat numèric sobre òrbites de 1-EC i per il·lustrar la complexitat del cas 3D.
Matemàtica aplicada
Iuliano, Jay R. "A Solution to the Circular Restricted N Body Problem in Planetary Systems." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1612.
Full textJedrey, Richard M. "Development of a Discretized Model for the Restricted Three-Body Problem." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306856595.
Full textRoss, Shane David Marsden Jerrold E. "Cylindrical manifolds and tube dynamics in the restricted three-body problem /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-05182004-154045.
Full textSoldini, Stefania. "Design and control of solar radiation pressure assisted missions in the sun-earth restricted three-body problem." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401834/.
Full textKim, Seongchan [Verfasser], and Urs [Akademischer Betreuer] Frauenfelder. "J+-like invariants and families of periodic orbits in the restricted three-body problem / Seongchan Kim ; Betreuer: Urs Frauenfelder." Augsburg : Universität Augsburg, 2018. http://d-nb.info/1171705409/34.
Full textBooks on the topic "Circular Restricted Three Body Problem"
Generating families in the restricted three-body problem. Berlin: Springer-Verlag, 1997.
Find full textFrauenfelder, Urs, and Otto van Koert. The Restricted Three-Body Problem and Holomorphic Curves. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72278-8.
Full textBryuno, Aleksandr D. The restricted 3-body problem: Plane periodic orbits. New York: W.de Gruyter, 1994.
Find full textThe restricted 3-body problem: Plane periodic orbits. New York: W. de Gruyter, 1994.
Find full textHenon, Michel. Generating Families in the Restricted Three-Body Problem. Springer, 2013.
Find full textFrauenfelder, Urs, and Otto van Koert. The Restricted Three-Body Problem and Holomorphic Curves. Birkhäuser, 2018.
Find full textGenerating Families in the Restricted Three-Body Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44712-1.
Full textGenerating Families in the Restricted Three-Body Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-69650-4.
Full textHenon, Michel. Generating Families in the Restricted Three-Body Problem. Springer London, Limited, 2003.
Find full textFrauenfelder, Urs, and Otto van Koert. The Restricted Three-Body Problem and Holomorphic Curves. Birkhäuser, 2019.
Find full textBook chapters on the topic "Circular Restricted Three Body Problem"
Shymanchuk, Dzmitry, Alexander Shmyrov, and Vasily Shmyrov. "Construction of Connecting Trajectories in the Circular Restricted Three-Body Problem." In Lecture Notes in Control and Information Sciences - Proceedings, 501–6. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87966-2_55.
Full textKhan, Ayub, and Mohammad Shahzad. "Chaos Synchronization in a Circular Restricted Three Body Problem Under the Effect of Radiation." In Chaos and Complex Systems, 59–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33914-1_8.
Full textGuardia, Marcel, Pau Martín, and Tere M. Seara. "Homoclinic Solutions to Infinity and Oscillatory Motions in the Restricted Planar Circular Three Body Problem." In Progress and Challenges in Dynamical Systems, 265–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38830-9_16.
Full textCastelli, Roberto. "On the Relation Between the Bicircular Model and the Coupled Circular Restricted Three-Body Problem Approximation." In Nonlinear and Complex Dynamics, 53–68. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0231-2_4.
Full textDellnitz, Michael, Kathrin Padberg, Robert Preis, and Bianca Thiere. "Continuous and Discrete Concepts for Detecting Transport Barriers in the Planar Circular Restricted Three Body Problem." In Nonlinear Science and Complexity, 99–105. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9884-9_12.
Full textBorunov, V. P., Yu A. Ryabov, and O. V. Surkov. "Application of Computer Algebra for Construction of Quasi-periodic Solutions for Restricted Circular Planar Three Body Problem." In Computer Algebra in Scientific Computing, 77–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11870814_6.
Full textValsecchi, G. B., E. Perozzi, A. E. Roy, and B. A. Steves. "Hunting for Periodic Orbits Close to that of the Moon in the Restricted Circular Three-Body Problem." In From Newton to Chaos, 231–34. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1085-1_21.
Full textCelletti, Alessandra, Andrea Chessa, John Hadjidemetriou, and Giovanni Battista Valsecchi. "A Systematic Study of the Stability of Symmetric Periodic Orbits in the Planar, Circular, Restricted Three-Body Problem." In Modern Celestial Mechanics: From Theory to Applications, 239–55. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2304-6_15.
Full textGurfil, Pini, and P. Kenneth Seidelmann. "The Restricted Three-Body Problem." In Celestial Mechanics and Astrodynamics: Theory and Practice, 163–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50370-6_8.
Full textBertotti, Bruno, and Paolo Farinella. "The Restricted Three-Body Problem." In Physics of the Earth and the Solar System, 242–55. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1916-7_12.
Full textConference papers on the topic "Circular Restricted Three Body Problem"
Roman, Rodica, Tiberiu Oproiu, Vasile Mioc, Cristiana Dumitrache, and Nedelia A. Popescu. "The dumb-bell’s restricted, photogravitational, circular three-body problem." In EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993644.
Full textOshima, Kenta, and Tomohiro Yanao. "Families of Unstable Quasi-Satellite Orbits in the Spatial Circular Restricted Three-Body Problem." In 2018 Space Flight Mechanics Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2224.
Full textPanteleeva, Ya I. "LIDOV—KOZAI EFFECT AND CONFIGURATION STABILITY OF ALMOST CIRCULAR MOTION IN RESTRICTED THREE BODY PROBLEM." In 48-th International student's conferences "Physics of Space". Ural University Press, 2020. http://dx.doi.org/10.15826/b978-5-7996-2935-9.19.
Full textScott, Christopher, and David Spencer. "Stability Mapping of Distant Retrograde Orbits and Transports in the Circular Restricted Three-Body Problem." In AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6431.
Full textYao Yu, Jia Jie, and Ma Kemao. "Chaining simple periodic orbits design based on invariant manifolds in the Circular Restricted Three-Body Problem." In 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA 2010). IEEE, 2010. http://dx.doi.org/10.1109/isscaa.2010.5632330.
Full textWu, Xiaojie, Yi Qi, Shijie Xu, Yu Wang, and Sihang Zhang. "Study of the Stability of Quasi-Satellite Orbits around Phobos in Planar Circular Restricted Three-Body Problem." In 2018 Space Flight Mechanics Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0717.
Full textMcCann, Brennan S., Matthew M. Wittal, and Morad Nazari. "Relative Spacecraft Position and Attitude in the Circular Restricted Three-Body Problem: TSE(3) vs. Dual Quaternions." In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-0698.
Full textWu, Xiaojie, Yi Qi, Shijie Xu, Yu Wang, and Sihang Zhang. "Withdrawal: Study of the Stability of Quasi-Satellite Orbits around Phobos in Planar Circular Restricted Three-Body Problem." In 2018 Space Flight Mechanics Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0717.c1.
Full textAbdulmyanov, T., M. Sokolova, and V. Usanin. "On the possibility of expanding the Tisserand constant for Jupiter-family comets in a binomial series." In ASTRONOMY AT THE EPOCH OF MULTIMESSENGER STUDIES. Proceedings of the VAK-2021 conference, Aug 23–28, 2021. Crossref, 2022. http://dx.doi.org/10.51194/vak2021.2022.1.1.019.
Full textSzenkovits, Ferenc, Vasile Mioc, Cristiana Dumitrache, and Nedelia A. Popescu. "On the Elliptic Restricted Three-Body Problem." In EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993640.
Full textReports on the topic "Circular Restricted Three Body Problem"
Gordon, Steven C. Some Results of Adding Solar Radiation Pressure Force to the Restricted Three-Body Problem. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada241397.
Full textNiebler, Rebecca. Abfallwirtschaftliche Geschäftsmodelle für Textilien in der Circular Economy. Sonderforschungsgruppe Institutionenanalyse, September 2020. http://dx.doi.org/10.46850/sofia.9783941627833.
Full text