Dissertations / Theses on the topic 'Circular Restricted Three Body Problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Circular Restricted Three Body Problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tan, Minghu. "Low energy capture of near-Earth asteroids in the circular restricted three-body problem." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30779/.
Full textChupin, Maxime. "Interplanetary transfers with low consumption using the properties of the restricted three body problem." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066307/document.
Full textThe first objective of this work is to understand the dynamical properties of the circular restricted three body problem in order to use them to design low consumption missions for spacecrafts with a low thrust engine. A fundamental property is the existence of invariant manifolds associated with periodic orbits around Lagrange points. Following the Interplanetary Transport Network concept, invariant manifolds are very useful to design spacecraft missions because they are gravitational currents. A large part of this work is devoted to designing a numerical method that performs an optimal transfer between invariant manifolds. The cost we want to minimize is the $L^{1}$-norm of the control which is equivalent to minimizing the consumption of the engines. We also consider the $L^{2}$-norm of the control which is easier to minimize numerically. The numerical methods are indirect ones coupled with different continuations on the thrust, on the cost, and on the final state, to provide robustness. These methods are based on the application of the Pontryagin Maximum Principal. The algorithms developed in this work allow for the design of real life missions such as missions between the realms of libration points. The basic idea is to initialize a multiple shooting method with an admissible trajectory that contains controlled parts (local transfers) and uncontrolled parts following the natural dynamics (invariant manifolds). The methods developed here are efficient and fast (less than a few minutes to obtain the whole optimal trajectory). Finally, we develop a hybrid method, with both direct and indirect methods, to adjust the position of the matching points on the invariant manifolds for missions with large energy gaps. The gradient of the value function is given by the values of the costates at the matching points and does not require any additional computation. Hence, the implementation of the gradient descent is easy
Nicholls, Robert [Verfasser], and Urs [Akademischer Betreuer] Frauenfelder. "Second species orbits of negative action and contact forms in the circular restricted three-body problem / Robert Nicholls ; Betreuer: Urs Frauenfelder." Augsburg : Universität Augsburg, 2021. http://d-nb.info/1241474354/34.
Full textRosa, Ibarra Abraham de la. "Global instability in the elliptic restricted three body problem." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277577.
Full textEl objetivo de esta tesis es mostrar inestabilidad global o difusión de Arnold en el problema restringido de tres cuerpos elíptico (PTCRE) mostrando la existencia de pseudo-trayectorias difusivas en el espacio fase para ciertos rangos de la excentricidad (e), el momento angular del cometa (G) y el parámetro de masa (µ). Mas precisamente, los resultados presentados, son válidos para G suficientemente grande, eG acotado y µ suficientemente pequeño. La tesis está dividida en dos capítulos y dos apéndices. El capítulo 1, contiene todos los resultados principales. Después de introducir el PTCRE, usamos coordenadas de McGehee para definir la variedad de infinito, que será de dimensión tres en el espacio fase extendido y que topológicamente se comporta como una variedad invariante normalmente hiperbólica (NHIM), aunque es de tipo parabólico. Esto significa que la tasa de acercamiento y alejamiento de ella a lo largo de sus variedades invariantes es polinomial, en lugar de exponencial como sucede en una NHIM estándar. Por otra parte, la dinámica interior es trivial ya que está formada por una familia de orbitas con 2 parámetros y de período 2p en el espacio extendido 5D que corresponden a soluciones constantes en el espacio reducido 4D. Como consecuencia, las variedades estables e inestables de la variedad de infinito son la unión de las variedades estables e inestables de sus orbitas periódicas y siempre que estas variedades se intersequen sobre orbitas heteroclínicas transversales, el scattering map puede ser definido como hicieron De la Llave, Seara y Delshams . Desafortunadamente, ya que la dinámica interior de la variedad de infinito es muy simple, el mecanismo de difusión clásico, que consiste en combinar la dinámica interior con la exterior, no funciona aquí. En su lugar, como una novedad, seremos capaces de encontrar dos scattering maps diferentes que serán combinados de manera adecuada para producir orbitas cuyo momento angular crezca. La fórmula asintótica del scattering map recae enteramente en el cálculo del llamado potencial de Melnikov, como es definido en los trabajos de Delshams, Gutiérrez y Seara. La primer derivada del potencial de Melnikov da la aproximación a primer orden de la distancia entre las variedades estable e inestable de la variedad de infinito cuando el parámetro de masa es exponencialmente pequeño. Con este planteamiento, una serie de lemas y proposiciones conducirán a la fórmula de los términos dominantes del potencial de Melnikov. La idea clave es calcular sus coeficientes de Fourier, que serán exponencialmente pequeños cuando el momento angular es grande y una fórmula explícita no será posible, así que un cálculo efectivo será necesario. Para hacerlo, el producto eG jugará un papel clave que conducirá a los teoremas 1.5 y 1.6, el primero da una fórmula asintótica del potencial de Melnikov cuando eG es pequeño y el segundo cuando eG es finito. Ambos requieren que µ sea exponencialmente pequeño con respecto a G, y G suficientemente grande. Estos teoremas naturalmente producirán las fórmulas asintóticas de los scattering maps para ambos casos y son la base de los teoremas 1.15 y 1.16, que formulan la existencia de pseudo-trayectorias en el PTCRE. En el capítulo 2, damos los detalles y las pruebas de los resultados concernientes a las formulas asintóticas, dadas en el capítulo 1, para el potencial de Melnikov y los scattering maps, incluyendo las cotas efectivas de cada error involucrado. Los apéndices tienen los resultados mas técnicos que son necesarios para completar de forma rigurosa cada prueba, pero que por su naturaleza, pueden ser relegados al final para hacer seguir las pruebas con mas facilidad.
Rodríguez, del Río Óscar. "Ejection-collision orbits in the restricted three-body problem." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672338.
Full textL'objectiu principal d'aquesta dissertació és l'estudi de les òrbites d'ejecció-col·lisió (EC) al problema restringit de tres cossos circular i pla (RTBP a partir d'ara). En particular, ens centrarem en l'estudi analític i numèric d'unes òrbites d'EC molt particulars, a les quals hem anomenat òrbites de n-EC. Aquestes òrbites de n-EC, són òrbites tal que la partícula ejecta d'un primari, assoleix n màxims en la distància respecte al primari del qual han ejectat per a continuació tornar a col·lisionar amb ell. D'aquesta forma numèricament estudiarem en profunditat aquest tipus d'òrbites i analíticament demostrarem que per un valor prou gran de la constant de Jacobi (per la qual donarem una expressió en termes del paràmetre de masses i el valor de n) existeixen exactament quatre òrbites de n-EC amb unes característiques ben determinades. Aquests resultats generalitzen i milloren els resultats previs pel cas particular de n=1, i veurem que es poden extrapolar fàcilment al problema de Hill. A més, numèricament veurem que l'evolució d'aquestes quatre famílies d'òrbites de n-EC originals presenta una dinàmica molt rica.És ben sabut, que el sistema que defineix el moviment de la partícula no està ben definit als punts on es troben situats els primaris. Per aquest motiu hem utilitzat dues tècniques de regularització de la col·lisió, la regularització de McGehee i la regularització de Levi-Civita. D'aquesta forma, en aquesta memòria hem analitzat els avantatges i els inconvenients de cada regularització, i els diferents mètodes que es poden utilitzar per detectar col·lisions. Com que gran part d'aquesta memòria es focalitzarà en valors de la constant de Jacobi més grans que l'associat al punt d'equilibri L1 aquestes dues regularitzacions de caràcter local seran suficients. Per valors menys restrictius de la constant de Jacobi veurem que existeixen altres regularitzacions de caràcter global o que simplement podem treballar amb regularitzacions locals a l'entorn de cada primari.Per altra banda, numèricament hem analitzat el comportament global de les òrbites d'ejecció al RTBP. Hem estudiat la relació entre la família de les òrbites periòdiques de Lyapunov al voltant del punt d'equilibri lineal L1 i les òrbites d'ejecció que es duu a terme al rang de valors de la constant de Jacobi tals que les regions de Hill associades només permeten un moviment fitat per a aquestes òrbites. En particular, hem vist que s'obté una infinitat caòtica de connexions heteroclíniques entre un primari i l'òrbita periòdica de Lyapunov al voltant del punt d'equilibri lineal L1. Com a conseqüència, també es deriva una infinitat caòtica d'òrbites d'ejecció-col·lisió. A més, veurem que podem construir uns diagrames de color que ens permeten descriure la dinàmica global de les òrbites d'ejecció donat un interval de temps. Aquests diagrames proporcionen una comprensió molt precisa de la dinàmica d'aquestes òrbites.Finalment, hem fet una primera exploració del cas espacial del problema restringit de tres cossos circular (RTBP 3D). En aquesta primera aproximació no hem utilitzat la clàssica regularització de Kustaanheimo-Stiefel i hem decidit utilitzar una versió 3D de la regularització de McGehee. Això presenta alguns problemes, que hem analitzat i abordat, però aquesta aproximació és suficient per obtenir un primer resultat numèric sobre òrbites de 1-EC i per il·lustrar la complexitat del cas 3D.
Matemàtica aplicada
Iuliano, Jay R. "A Solution to the Circular Restricted N Body Problem in Planetary Systems." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1612.
Full textJedrey, Richard M. "Development of a Discretized Model for the Restricted Three-Body Problem." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306856595.
Full textRoss, Shane David Marsden Jerrold E. "Cylindrical manifolds and tube dynamics in the restricted three-body problem /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-05182004-154045.
Full textSoldini, Stefania. "Design and control of solar radiation pressure assisted missions in the sun-earth restricted three-body problem." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401834/.
Full textKim, Seongchan [Verfasser], and Urs [Akademischer Betreuer] Frauenfelder. "J+-like invariants and families of periodic orbits in the restricted three-body problem / Seongchan Kim ; Betreuer: Urs Frauenfelder." Augsburg : Universität Augsburg, 2018. http://d-nb.info/1171705409/34.
Full textCanalias, Vila Elisabet. "Contributions to Libration Orbit Mission Design using Hyperbolic Invariant Manifolds." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5927.
Full textEl problema restringit de tres cossos és un model per estudiar el moviment d'un cos de massa infinitessimal sota l'atracció gravitatòria de dos cossos molt massius. Els cinc punts d'equilibri d'aquest model, en especial L1 i L2, han estat motiu de nombrosos estudis per aplicacions pràctiques en les últimes dècades (SOHO, Genesis...).
Genèricament, qualsevol missió en òrbita al voltant del punt L2 del sistema Terra-Sol es veu afectat per ocultacions degudes a l'ombra de la Terra. Si l'òrbita és al voltant de L1, els eclipsis són deguts a la forta influència electromagnètica del Sol. D'entre els diferents tipus d'òrbites de libració, les òrbites de Lissajous resulten de la combinació de dues oscil.lacions perpendiculars. El seu principal avantatge és que les amplituds de les oscil.lacions poden ser escollides independentment i això les fa adapatables als requeriments de cada missió. La necessitat d'estratègies per evitar eclipsis en òrbites de Lissajous entorn dels punts L1 i L2 motivaren la primera part de la tesi. En aquesta part es presenta una eina per la planificació de maniobres en òrbites de Lissajous que no només serveix per solucionar el problema d'evitar els eclipsis, sinó també per trobar trajectòries de transferència entre òrbites d'amplituds diferents i planificar rendez-vous.
Per altra banda, existeixen canals de baix cost que uneixen els punts L1 i L2 d'un sistema donat i representen una manera natural de transferir d'una regió de libració a l'altra. Gràcies al seu caràcter hiperbòlic, una òrbita de libració té uns objectes invariants associats: les varietats estable i inestable. Si tenim present que la varietat estable està formada per trajectòries que tendeixen cap a l'òrbita a la qual estan associades quan el temps avança, i que la varietat inestable fa el mateix però enrera en el temps, una intersecció entre una varietat estable i una d'inestable proporciona un camí asimptòtic entre les òrbites corresponents. Un mètode per trobar connexions d'aquest tipus entre òrbites planes entorn de L1 i L2 es presenta a la segona part de la tesi, i s'hi inclouen els resultats d'aplicar aquest mètode als casos dels problemes restringits Sol Terra i Terra-Lluna.
La idea d'intersecar varietats hiperbòliques es pot aplicar també en la cerca de camins de baix cost entre les regions de libració del sistema Sol-Terra i Terra-Lluna. Si existissin camins naturals de les òrbites de libració solars cap a les lunars, s'obtindria una manera barata d'anar a la Lluna fent servir varietats invariants, cosa que no es pot fer de manera directa. I a l'inversa, un camí de les regions de libració lunars cap a les solars permetria, per exemple, que una estació fos col.locada en òrbita entorn del punt L2 lunar i servís com a base per donar servei a les missions que operen en òrbites de libració del sistema Sol-Terra. A la tercera part de la tesi es presenten mètodes per trobar trajectòries de baix cost que uneixen la regió L2 del sistema Terra-Lluna amb la regió L2 del sistema Sol-Terra, primer per òrbites planes i més endavant per òrbites de Lissajous, fent servir dos problemes de tres cossos acoblats. Un cop trobades les trajectòries en aquest model simplificat, convé refinar-les per fer-les més realistes. Una metodologia per obtenir trajectòries en efemèrides reals JPL a partir de les trobades entre òrbites de Lissajous en el model acoblat es presenta a la part final de la tesi. Aquestes trajectòries necessiten una maniobra en el punt d'acoblament, que és reduïda en el procés de refinat, arribant a obtenir trajectòries de cost zero quan això és possible.
This PhD. thesis lies within the field of astrodynamics. It provides solutions to problems which have been identified in mission design near libration points, by using dynamical systems theory.
The restricted three body problem is a well known model to study the motion of an infinitesimal mass under the gravitational attraction of two massive bodies. Its five equilibrium points, specially L1 and L2, have been the object of several studies aimed at practical applications in the last decades (SOHO, Genesis...).
In general, any mission in orbit around L2 of the Sun-Earth system is affected by occultations due to the shadow of the Earth. When the orbit is around L1, the eclipses are caused by the strong electromagnetic influence of the Sun. Among all different types of libration orbits, Lissajous type ones are the combination of two perpendicular oscillations. Its main advantage is that the amplitudes of the oscillations can be chosen independently and this fact makes Lissajous orbits more adaptable to the requirements of each particular mission than other kinds of libration motions. The need for eclipse avoidance strategies in Lissajous orbits around L1 and L2 motivated the first part of the thesis. It is in this part where a tool for planning maneuvers in Lissajous orbits is presented, which not only solves the eclipse avoidance problem, but can also be used for transferring between orbits having different amplitudes and for planning rendez-vous strategies.
On the other hand, there exist low cost channels joining the L1 and L2 points of a given sistem, which represent a natural way of transferring from one libration region to the other one. Furthermore, there exist hyperbolic invariant objects, called stable and unstable manifolds, which are associated with libration orbits due to their hyperbolic character. If we bear in mind that the stable manifold of a libration orbit consists of trajectories which tend to the orbit as time goes by, and that the unstable manifold does so but backwards in time, any intersection between a stable and an unstable manifold will provide an asymptotic path between the corresponding libration orbits. A methodology for finding such asymptotic connecting paths between planar orbits around L1 and L2 is presented in the second part of the dissertation, including results for the particular cases of the Sun-Earth and Earth-Moon problems.
Moreover, the idea of intersecting hyperbolic manifolds can be applied in the search for low cost paths joining the libration regions of different problems, such as the Sun-Earth and the Earth-Moon ones. If natural paths from the solar libration regions to the lunar ones was found, it would provide a cheap way of transferring to the Moon from the vicinity of the Earth, which is not possible in a direct way using invariant manifolds. And the other way round, paths from the lunar libration regions to the solar ones would allow for the placement of a station in orbit around the lunar L2, providing services to solar libration missions, for instance. In the third part of the thesis, a methodology for finding low cost trajectories joining the lunar L2 region and the solar L2 region is presented. This methodology was developed in a first step for planar orbits and in a further step for Lissajous type orbits, using in both cases two coupled restricted three body problems to model the Sun-Earth-Moon spacecraft four body problem. Once trajectories have been found in this simplified model, it is convenient to refine them to more realistic models. A methodology for obtaining JPL real ephemeris trajectories from the initial ones found in the coupled models is presented in the last part of the dissertation. These trajectories need a maneuver at the coupling point, which can be reduced in the refinement process until low cost connecting trajectories in real ephemeris are obtained (even zero cost, when possible).
Trim, Nkosi Nathan. "Visualizing solutions of the circular restricted three-body problem." 2009. http://hdl.rutgers.edu/1782.2/rucore10005600001.ETD.000051338.
Full textZhang, Chenghai. "Computation and visualization of periodic orbits in the circular restricted three-body problem." Thesis, 2004. http://spectrum.library.concordia.ca/8136/1/MQ94757.pdf.
Full text(8081426), Rolfe J. Power IV. "Characterization of Lunar Access Relative to Cislunar Orbits." Thesis, 2019.
Find full text(10676634), Stephen Scheuerle Jr. "Construction of Ballistic Lunar Transfers in the Earth-Moon-Sun System." Thesis, 2021.
Find full textAn increasing interest in lunar exploration calls for low-cost techniques of reaching the Moon. Ballistic lunar transfers are long duration trajectories that leverage solar perturbations to reduce the multi-body energy of a spacecraft upon arrival into cislunar space. An investigation is conducted to explore methods of constructing ballistic lunar transfers. The techniques employ dynamical systems theory to leverage the underlying dynamical flow of the multi-body regime. Ballistic lunar transfers are governed by the gravitational influence of the Earth-Moon-Sun system; thus, multi-body gravity models are employed, i.e., the circular restricted three-body problem (CR3BP) and the bicircular restricted four-body problem (BCR4BP). The Sun-Earth CR3BP provides insight into the Sun’s effect on transfers near the Earth. The BCR4BP offers a coherent model for constructing end-to-end ballistic lunar transfers. Multiple techniques are employed to uncover ballistic transfers to conic and multi-body orbits in cislunar space. Initial conditions to deliver the spacecraft into various orbits emerge from Periapse Poincaré maps. From a chosen geometry, families of transfers from the Earth to conic orbits about the Moon are developed. Instantaneous equilibrium solutions in the BCR4BP provide an approximate for the theoretical minimum lunar orbit insertion costs, and are leveraged to create low-cost solutions. Trajectories to the L2 2:1 synodic resonant Lyapunov orbit, L2 2:1 synodic resonant Halo orbit, and the 3:1 synodic resonant Distant Retrograde Orbit (DRO) are investigated.
Herbort, Eric. "Trade Study of Decomissioning Strategies for the International Space Station." Thesis, 2012. http://hdl.handle.net/1911/64707.
Full text(9746054), Andrew Blaine Molnar. "Hybrid Station-Keeping Controller Design Leveraging Floquet Mode and Reinforcement Learning Approaches." Thesis, 2020.
Find full text(10665798), Emily MZ Spreen. "Trajectory Design and Targeting For Applications to the Exploration Program in Cislunar Space." Thesis, 2021.
Find full textA dynamical understanding of orbits in the Earth-Moon neighborhood that can sustain long-term activities and trajectories that link locations of interest forms a critical foundation for the creation of infrastructure to support a lasting presence in this region of space. In response, this investigation aims to identify and exploit fundamental dynamical motion in the vicinity of a candidate ‘hub’ orbit, the L2 southern 9:2 lunar synodic resonant near rectilinear halo orbit (NRHO), while incorporating realistic mission constraints. The strategies developed in this investigation are, however, not restricted to this particular orbit but are, in fact, applicable to a wide variety of stable and nearly-stable cislunar orbits. Since stable and nearly-stable orbits that may lack useful manifold structures are of interest for long-term activities in cislunar space due to low orbit maintenance costs, strategies to alternatively initiate transfer design into and out of these orbits are necessary. Additionally, it is crucial to understand the complex behaviors in the neighborhood of any candidate hub orbit. In this investigation, a bifurcation analysis is used to identify periodic orbit families in close proximity to the hub orbit that may possess members with favorable stability properties, i.e., unstable orbits. Stability properties are quantified using a metric defined as the stability index. Broucke stability diagrams, a tool in which the eigenvalues of the monodromy matrix are recast into two simple parameters, are used to identify bifurcations along orbit families. Continuation algorithms, in combination with a differential corrections scheme, are used to compute new families of periodic orbits originating at bifurcations. These families possess unstable members with associated invariant manifolds that are indeed useful for trajectory design. Members of the families nearby the L2 NRHOs are demonstrated to persist in a higher-fidelity ephemeris model.
Transfers based on the identified nearby dynamical structures and their associated manifolds are designed. To formulate initial guesses for transfer trajectories, a Poincaré mapping technique is used. Various sample trajectory designs are produced in this investigation to demonstrate the wide applicability of the design methodology. Initially, designs are based in the circular restricted three-body problem, however, geometries are demonstrated to persist in a higher-fidelity ephemeris model, as well. A strategy to avoid Earth and Moon eclipse conditions along many-revolution quasi-periodic ephemeris orbits and transfer trajectories is proposed in response to upcoming mission needs. Lunar synodic resonance, in combination with careful epoch selection, produces a simple eclipse-avoidance technique. Additionally, an integral-type eclipse avoidance path constraint is derived and incorporated into a differential corrections scheme as well. Finally, transfer trajectories in the circular restricted three-body problem and higher-fidelity ephemeris model are optimized and the geometry is shown to persist.
(8770355), Maaninee Gupta. "Finding Order in Chaos: Resonant Orbits and Poincaré Sections." Thesis, 2020.
Find full textResonant orbits in a multi-body environment have been investigated in the past to aid the understanding of perceived chaotic behavior in the solar system. The invariant manifolds associated with resonant orbits have also been recently incorporated into the design of trajectories requiring reduced maneuver costs. Poincaré sections are now also extensively utilized in the search for novel, maneuver-free trajectories in various systems. This investigation employs dynamical systems techniques in the computation and characterization of resonant orbits in the higher-fidelity Circular Restricted Three-Body model. Differential corrections and numerical methods are widely leveraged in this analysis in the determination of orbits corresponding to different resonance ratios. The versatility of resonant orbits in the design of low cost trajectories to support exploration for several planet-moon systems is demonstrated. The efficacy of the resonant orbits is illustrated via transfer trajectory design in the Earth-Moon, Saturn-Titan, and the Mars-Deimos systems. Lastly, Poincaré sections associated with different resonance ratios are incorporated into the search for natural, maneuver-free trajectories in the Saturn-Titan system. To that end, homoclinic and heteroclinic trajectories are constructed. Additionally, chains of periodic orbits that mimic the geometries for two different resonant ratios are examined, i.e., periodic orbits that cycle between different resonances are determined. The tools and techniques demonstrated in this investigation are useful for the design of trajectories in several different systems within the CR3BP.
Walawska, Irmina. "Algorytmy ścisłego całkowania równań wariacyjnych i ich zastosowania do badania bifurkacji rozwiązań okresowych w Kołowym Ograniczonym Problemie Trzech Ciał." Praca doktorska, 2019. https://ruj.uj.edu.pl/xmlui/handle/item/77178.
Full text(7165625), Matthew John Bolliger. "Cislunar Mission Design: Transfers Linking Near Rectilinear Halo Orbits and the Butterfly Family." Thesis, 2019.
Find full textRomanov, Volodymyr. "Elemental periodic solutions of the circular restricted 3-body problem." Thesis, 2005. http://spectrum.library.concordia.ca/8682/1/MR10295.pdf.
Full textMurison, Marc Allen. "Satellite capture and the restricted three-body problem." 1988. http://catalog.hathitrust.org/api/volumes/oclc/19415034.html.
Full textTypescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 161-185).
(11014071), Vivek Muralidharan. "Stretching Directions in Cislunar Space: Stationkeeping and an application to Transfer Trajectory Design." Thesis, 2021.
Find full textMorcos, Fady Michel. "Design and optimization of body-to-body impulsive trajectories in restricted four-body models." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-12-2370.
Full texttext
Chand, Suditi. "MASCOT Follow-on Mission Concept Study with Enhanced GNC and Propulsion Capability of the Nano-lander for Small Solar System Bodies (SSSB) Missions." Thesis, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-78599.
Full textThis thesis is submitted as per the requirements for the Spacemaster (Round 13) dual master's degree under the Erasmus Mundus Joint Master's Degree Programme.
MASCOT team, DLR
Ross, Shane David. "Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem." Thesis, 2004. https://thesis.library.caltech.edu/1854/1/rossthesis_5_11.pdf.
Full textWithin the phase space of the planar circular restricted three-body problem, stable and unstable manifolds of periodic orbits with a S x R (cylindrical) geometry are shown to exist. The periodic orbits considered reside in bottleneck regions of the energy manifold, separating large zones associated with motion about one mass, the other mass, or both masses.
The cylinders have the physical property that all motion through the bottleneck in which the periodic orbit resides must occur through the interior of these surfaces. The cylinders thus mediate the global transport of test particles between large zones of the energy surface which are separated by the bottlenecks.
By elucidating the structuring role of the cylinders, we provide a new language for discussing some important problems in celestial mechanics. Furthermore, we propose that these cylindrical structures are the natural objects of study for the design of space mission trajectories which take advantage of three-body effects.
(5930747), Brian P. McCarthy. "Characterization of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon Systems." Thesis, 2019.
Find full text