Academic literature on the topic 'Circulation switching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circulation switching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Circulation switching"
Uhlíř, V., M. Urbánek, L. Hladík, J. Spousta, M.-Y. Im, P. Fischer, N. Eibagi, J. J. Kan, E. E. Fullerton, and T. Šikola. "Dynamic switching of the spin circulation in tapered magnetic nanodisks." Nature Nanotechnology 8, no. 5 (April 21, 2013): 341–46. http://dx.doi.org/10.1038/nnano.2013.66.
Full textWen, Y., Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, et al. "Fast and controllable switching the circulation and polarity of magnetic vortices." Journal of Magnetism and Magnetic Materials 370 (December 2014): 68–75. http://dx.doi.org/10.1016/j.jmmm.2014.06.049.
Full textGrady, William R., Mark D. Hayward, John O. G. Billy, and Francesca A. Florey. "Contraceptive switching among currently married women in the United States." Journal of Biosocial Science 21, S11 (1989): 117–32. http://dx.doi.org/10.1017/s002193200002544x.
Full textAdeeb, Nimer, Christopher S. Ogilvy, Christoph J. Griessenauer, and Ajith J. Thomas. "Expanding the Indications for Flow Diversion: Treatment of Posterior Circulation Aneurysms." Neurosurgery 86, Supplement_1 (December 16, 2019): S76—S84. http://dx.doi.org/10.1093/neuros/nyz344.
Full textLoginov, V. S., and V. G. Milyutin. "TEMPERATURE FIELDS IN THE WELL AT THE SWITCHED-OFF CIRCULATION OF DRILLING FLUID." Oil and Gas Studies, no. 5 (November 1, 2017): 75–80. http://dx.doi.org/10.31660/0445-0108-2017-5-75-80.
Full textWang, Yonggang, Tianyou Chai, Jun Fu, Jing Sun, and Hong Wang. "Adaptive Decoupling Switching Control of the Forced-Circulation Evaporation System Using Neural Networks." IEEE Transactions on Control Systems Technology 21, no. 3 (May 2013): 964–74. http://dx.doi.org/10.1109/tcst.2012.2193883.
Full textHossain, M. S., R. Islam, and K. A. Khan. "DC Conduction and Switching Mechanisms in Electroformed Al/ZnTe:V/Cu Devices at Atmospheric Pressure." ISRN Materials Science 2011 (July 7, 2011): 1–6. http://dx.doi.org/10.5402/2011/823237.
Full textKim, Jun-Mo, Jeong Lee, Kyung Ryu, and Chung-Yuen Won. "Power Device Temperature-Balancing Control Method for a Phase-Shift Full-Bridge Converter." Energies 13, no. 7 (April 2, 2020): 1623. http://dx.doi.org/10.3390/en13071623.
Full textYoung, Sally. "The Decline of Traditional News and Current Affairs Audiences in Australia." Media International Australia 131, no. 1 (May 2009): 147–59. http://dx.doi.org/10.1177/1329878x0913100116.
Full textMasada, Kenta, Kazuo Shimamura, Toru Kuratani, and Yoshiki Sawa. "Management of foetal circulation by switching to pulsatile perfusion during cardiovascular surgery in pregnancy." European Journal of Cardio-Thoracic Surgery 53, no. 3 (September 2, 2017): 680–81. http://dx.doi.org/10.1093/ejcts/ezx319.
Full textDissertations / Theses on the topic "Circulation switching"
Balajka, Jan. "Přepínání chirality vortexů v magnetostaticky svázaných permalloyových nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230609.
Full textVaňatka, Marek. "Studium vortexových stavů v magnetostaticky svázaných magnetických nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231770.
Full textDhankhar, Meena. "Paměťová buňka založená na magnetických vortexech." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2021. http://www.nusl.cz/ntk/nusl-442336.
Full textPolášek, Petr. "Podpůrné měniče v elektrické trakci." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217887.
Full textRohner, Steffen. "Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69311.
Full textThis thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary. For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs. One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model. The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models. The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points
Tsou, Tsung-Chen, and 鄒宗辰. "Study of Switching Strategy on Reduction of Circulating Current in Parallel Full-Bridge Converters." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/03317012392232531457.
Full text國立交通大學
電控工程研究所
102
In this study, the droop method is used to share the current for parallel bidirectional full-bridge converters. Each converter is operating independently without connections between modules and without modification of the control structure. In the parallel converters, the effect of switching strategy on the reduction of circulating current is studied. The simulation and experimental waveforms are also provided to demonstrate the results.
Van, der Merwe Jacobus Stefanus. "The design of an electro-optic control interface for photonic packet switching applications with contention resolution capabilities." Diss., 2007. http://hdl.handle.net/2263/29241.
Full text- Fixed length packets arriving synchronously at one input of the OXS. Some packets are destined for output 1, some are destined for output 2 and some are destined for output 3, therefore realizing a 1-to-3 optical switch.
- Eight variable length packets arriving synchronously at the OXS at one input, all of them destined for one output. The electro-optic control should open the switch cell for the correct amount of time.
- Three variable length packets arriving synchronously and asynchronously at one input of the OXS. Some packets are destined for output 1 while other packets are destined for output 2. The electro-optic control should open the correct switch cell for the correct amount of time.
- Two fixed length packets arriving at the OXS synchronously on different input ports at the same time, both destined for the same output port. The electro-optic control should detect the contention and switch the packets in such a way as to resolve the contention. The electro-optic control and OXS managed to switch all these types of data traffic (scenarios) successfully and resolve the contention with an optical delay buffer. The success of the results was measured in two ways. Firstly it was deemed successful if the expected output sequence was measured at the corresponding output ports. Secondly it was successful if the degradation in quality of the packet was not drastic, meaning the output packets should have an BER (Bit Error Rate) of less than 10-9. The quality of the packets was measured in the form of eye diagrams before and after the switching and then compared. The research resulted in the design and implementation of a flexible electro-optic control for the OXS. The problem of contention was resolved for fixed length synchronous packets and a proposal is discussed to store packets for variable lengths of time by using the OXS. This electro-optic control has the potential to control the OXS for traffic with higher complexities and make the OXS compatible with future developments.
Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2008.
Electrical, Electronic and Computer Engineering
MEng
unrestricted
Rohner, Steffen. "Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen." Doctoral thesis, 2010. https://tud.qucosa.de/id/qucosa%3A25588.
Full textThis thesis deals with the Modular Multilevel Converter M2C, an emerging and highly attractive multilevel converter topology for medium and high voltage applications. One of the most significant benefits of the M2C is its modular structure - the converter is composed of six converter arms, where each arm consists of a series connection of identical submodules (cells) and an inductor. Thus, the number of distinct voltage levels available for the line-to-line voltages is proportional to the number of submodules, which is in principle arbitrary. For the investigation of this complex converter topology, two simulation models - a continuous model and a discrete model - are derived. For this purpose, the electrical circuit is described by a system of ordinary differential equations where the switching states of the power semiconductors are represented by the so-called switching functions. The continuous model results from the analytical solution of the differential equations with a continuous interpretation of the switching functions. In contrast, the discrete model uses discrete switching functions and is computed using numeric integration methods with MATLAB/Plecs. One aspect of particular significance with the M2C is the topic of inner currents: the so-called circulating currents. In this thesis, these current components are defined mathematically in the time domain for the first time and the harmonics of the circulating currents for symmetrical operation of the converter are derived. For the discrete model, closed-loop control of the arm currents is implemented. Initial values for the inductors and capacitors are derived using the analytical equations of the continuous model. The M2C has several distributed energy storage elements: the submodule capacitors. The stored energy must be distributed evenly amongst these capacitors. To achieve this, three methods of energy distribution are presented. Another focus of this investigation is the current sharing between the upper and lower power semiconductor within the submodules. For different load phase angles and circulating currents, the current distribution is depicted. The influence of the floating capacitor voltages on the line-to-line voltages as well as the of number of discrete voltage levels in the line-to-line voltages are investigated with the discrete model. The accuracy of the simulation models is verified by experimentation with a prototype of the M2C from the company Siemens. The experimental results are compared with simulation results from the two simulation models. The dimensioning of the power components of the elecrical circuit is divided into two parts: the first for the submodule capacitors and the second for the power semiconductors. Initially, the capacitance of the submodule capacitors are minimized by an iterative algorithm on the basis of three different capacitor specifications. This computation is done using the continuous converter model for converter operation neglecting circulating currents and with optimized circulating currents. In the next step, the power semiconductors are dimensioned using the discrete model and assuming a defined current factor, which describes the ideal parallel connection of several semiconductors. The losses, the loss distribution, and the junction temperatures in the power semiconductors for different load phase angles describe the behavior of the converter for different operating points.:Kurzbeschreibung i Abstract iii Danksagung v Abbildungsverzeichnis xi Tabellenverzeichnis xvii Abkürzungsverzeichnis xix 0 Einleitung 1 1 Stand der Technik bei Mittelspannungsstromrichtern 3 1.1 Neutral-Point-Clamped Voltage Source Converter . . . . . . . . . . . . . . 5 1.2 Cascaded H-Bridge Voltage Source Converter . . . . . . . . . . . . . . . . 8 1.3 Flying Capacitor Voltage Source Converter . . . . . . . . . . . . . . . . . 10 2 Modularer Mehrpunktstromrichter 13 2.1 Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Prinzipielle Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Spannungserzeugung durch die Submodule . . . . . . . . . . . . . 15 2.2.2 Symmetrierung der Kondensatorspannungen . . . . . . . . . . . . 16 2.2.3 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Strukturelle Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Vorteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Nachteile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Motivation der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Modellierung des Modularen Mehrpunktstromrichters 25 3.1 Verlust- und Sperrschichttemperaturberechnung von IGBT-Modulen . . . . 25 3.1.1 Stromfaktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 Verlustberechnung . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2.1 Durchlassverluste . . . . . . . . . . . . . . . . . . . . . 27 3.1.2.2 Schaltverluste . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Thermisches Ersatzschaltbild . . . . . . . . . . . . . . . . . . . . . 30 3.2 Modellierung eines Antriebs mit Modularem Mehrpunktstromrichter . . . . 31 3.2.1 Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . 31 3.2.2 Differenzialgleichungssystem für das Schaltungsmodell mit einem Submodul pro Zweig . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Das diskrete Modell . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Das kontinuierliche Modell . . . . . . . . . . . . . . . . . . . . . . 37 4 Analyse und Simulation des Modularen Mehrpunktstromrichters 43 4.1 Kreisströme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Definition der Kreisströme . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Harmonische der Kreisströme für den symmetrischen Betrieb . . . 45 4.2 Verfahren zur Erzeugung der Schaltsignale des diskreten Modells . . . . . . 49 4.3 Annahmen für die Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1 Daten des exemplarischen Simulationsmodells . . . . . . . . . . . 54 4.3.2 Anfangswertbestimmung . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2.1 Spulenströme . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2.2 Kondensatorspannungen . . . . . . . . . . . . . . . . . . 58 4.4 Analyse der Simulationsergebnisse . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Verläufe charakteristischer Stromrichtergrößen . . . . . . . . . . . 61 4.4.2 Vergleich des kontinuierlichen und des diskreten Modells . . . . . . 69 4.4.3 Möglichkeiten der Verschiebung der gespeicherten Energie der Submodulkondensatoren . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.3.1 Änderung der gespeicherten Energie einer Stromrichterphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.3.2 Verschiebung der gespeicherten Energie innerhalb einer Stromrichterphase . . . . . . . . . . . . . . . . . . . . . 86 4.4.3.3 Änderung der gespeicherten Energien unter Verwendung der Sternpunktspannung . . . . . . . . . . . . . . . . . . 94 4.4.4 Stromaufteilung innerhalb der Submodule . . . . . . . . . . . . . . 95 4.4.5 Einfluss der schwankenden Kondensatorspannungen auf die Leiter- Leiter-Spannungen . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5 Messtechnische Überprüfung der Simulationsmodelle 109 5.1 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Messergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.1 Modularer Mehrpunktstromrichter mit dreiphasiger induktiver Last 112 5.2.2 Modularer Mehrpunktstromrichter mit Maschinenlast . . . . . . . . 123 6 Auslegung des Leistungsteils 133 6.1 Kondensatorspezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Iterativer Algorithmus zur Bestimmung der minimalen Submodulkapazität . 135 6.3 Kreisstromfreier Betrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 136 6.3.1.1 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 143 6.3.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 143 6.3.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 145 6.4 Betrieb mit optimierten Kreisströmen . . . . . . . . . . . . . . . . . . . . 148 6.4.1 Auslegung der Submodulkondensatoren . . . . . . . . . . . . . . . 148 6.4.1.1 Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . 148 6.4.1.2 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.4.2 Auslegung der Leistungshalbleiter . . . . . . . . . . . . . . . . . . 157 6.4.2.1 Leistungshalbleiteraufwand . . . . . . . . . . . . . . . . 157 6.4.2.2 Verlustverteilung . . . . . . . . . . . . . . . . . . . . . . 159 7 Zusammenfassung der Dissertation 163 Literaturverzeichnis 169
Books on the topic "Circulation switching"
Barsoum, Rashad S. Schistosomiasis. Edited by Neil Sheerin. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0181_update_001.
Full textBook chapters on the topic "Circulation switching"
Guo, Zhiqiang, and Deshang Sha. "Improved ZVS Three-Level DC–DC Converter with Reduced Circulating Loss." In New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters, 71–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9934-4_4.
Full textGuo, Zhiqiang, and Deshang Sha. "Hybrid Three-Level and Half-Bridge DC–DC Converter with Reduced Circulating Loss and Output Filter Inductance." In New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters, 47–70. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9934-4_3.
Full textGuo, Zhiqiang, and Deshang Sha. "Analysis and Evaluation of Dual Half-Bridge Cascaded Three-Level DC–DC Converter for Reducing Circulating Current Loss." In New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters, 91–113. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9934-4_5.
Full textConference papers on the topic "Circulation switching"
Lin Xin, Wang Fei-ming, and Xu Jian-yuan. "Grounding system circulation calculation of ultra-high voltage switching substation." In 2011 1st International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE, 2011. http://dx.doi.org/10.1109/icepe-st.2011.6122928.
Full textPetrie, Scott William, and Rick Doll. "Benefits of Using Continuous Circulation Systems in ERD Wells to Manage ECD, Bottom Hole Pressure and Hole Cleaning." In SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/202140-ms.
Full textSiecker, J., K. Kusakana, and B. P. Numbi. "Economic analysis of photovoltaic/thermal systems with forced circulation under optimal switching control." In 2018 International Conference on the Domestic Use of Energy (DUE). IEEE, 2018. http://dx.doi.org/10.23919/due.2018.8384384.
Full textNikonov, S., K. Velkov, and A. Pautz. "ATHLET/BIPR-VVER Results of the OECD/NEA Benchmark for Coupled Codes on Kalinin-3 NPP Measured Data." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29452.
Full textMatsunaga, Yasushi, Noriko Morioka, Seiei Masuda, and Masahiro Kurosaki. "Development of Double Gear Fuel Pump for Heat Managment Improvement." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90235.
Full textDaidzic, Nihad E. "Shear Driven Micro-Fluidic Pump for Cardiovascular Applications." In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3429.
Full textGeorgieva, Emiliya, Yavor Dinkov, Kostadin Ivanov, and Robert Stieglitz. "Benchmarking the NEM Real-Time Core Model for VVER-1000 Simulator Application: Asymmetric Core." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60135.
Full textHsu, Yung, Jing-Heng Chen, Kun-Huang Chen, Chien-Hung Yeh, and Jiun-You Lin. "Four-port Optical Circulator with a Narrow Waist of Faraday Rotator Window." In OptoElectronics and Communications Conference and Photonics in Switching. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/oecc_ps.2013.thl1_6.
Full textLin, Bor-Ren, Hui-Ru Chen, and Yu-Bin Nian. "Soft switching hybrid converter with low circulating current." In 2015 IEEE 11th International Conference on Power Electronics and Drive Systems. IEEE, 2015. http://dx.doi.org/10.1109/peds.2015.7203402.
Full textLIÑÁN Ruiz, Roberto José, Fernando J. Berenguer Sempere, José Antonio Vera López, Ana Belén Pabón Dueñas, and Salvador Merino Córdoba. "Methodological application of Location of service Public Bike. Service MUyBICI of Murcia." In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.4090.
Full text