Dissertations / Theses on the topic 'Cisaillement du front de flamme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Cisaillement du front de flamme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Letty, Camille. "Etude d'une flamme en V diphasique : Approches expérimentale et numérique." Rouen, 2008. http://www.theses.fr/2008ROUES036.
Full textThis work deals with V-shaped two-phase flames stabilised in a pseudo-laminar or moderated turbulent flow. Some gaseous fuel is also injected to help turbulent flames stabilisation. An experimental approach and a numerical approach (Direct Numerical Simulation) are conducted simultaneously. The same tools are used for post-processing of experimental and numerical data. The flow is experimentally charaterised in term of droplet size distribution (Malvern), turbulent properties (PIV), qualitative fuel repartition (PLIF on acetone) and droplet temperature distribution (rainbow refractometry). The gaseous flow is numerically defined by Navier-Stokes equations in an eulerian framework. Two-way coupling is use to determine interaction of gaseous and liquid phases. A lagrangian solver is used for the dispersed phase. Chemical kinetics is derived from complex chemistry results computed with Chemkin (San Diego mechanism for n-heptane with acetone oxydation reactions). Flame front is artificially thickened (Flame thickness factor and efficiency function). This enables reduction of the mesh size which is time saving. Mean geometrical and local properties of the flame front are determined: morphology, flame angle, progress variable, flame brush evolution, curvature and strain rate. The mean flame angle is used to ajust DNS parameters. The evolution of the droplets mean temperature is presented for different turbulent conditions and from experimental and numerical approaches. DNS fields are used to develop a calculation method of strain rate from experimental data following tensorial method
Denet, Bruno. "Simulations numériques d'instabilités de front de flamme." Aix-Marseille 1, 1988. http://www.theses.fr/1988AIX11155.
Full textEdarh-Bossou, Toyo Koffi. "Etude de la propagation d'un front de flamme dans un milieu strié." Lyon 1, 1993. http://www.theses.fr/1993LYO10195.
Full textSuys, Olivier. "Étude de la propagation d'un front de flamme dans un milieu solide hétérogène." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10518.
Full textNoh, Dong-Soon. "Contribution à l'étude expérimentale d'une flamme turbulente de prémélange hydrogène-air : caractéristique des champs de vitesse et de la structure spatiale du front." Rouen, 1991. http://www.theses.fr/1991ROUES014.
Full textPavé, David. "Contribution à l'étude de la structure des flammes turbulentes de prémélanges pauvres de méthane-air." Phd thesis, Université d'Orléans, 2002. http://tel.archives-ouvertes.fr/tel-00010987.
Full textNous décrivons macroscopiquement la flamme par imagerie Mie avec les iso-c, l'épaisseur turbulente, l'échelle de plissements et la densité de surface de flamme. Nous étudions la structure du front de flamme instantané, la statistique de la courbure du front, l'épaisseur du front de flamme par imagerie Rayleigh. Nous caractérisons les épaisseurs thermiques (zone de réaction et de préchauffage) et déterminons la corrélation entre l'épaisseur et la courbure du front de flamme.
Nous confrontons nos données aux modèles de combustion turbulente de prémélange (BML et ceux basés sur la dissipation scalaire). Nous étudions les distributions des longueurs d'entrecroisement, et le taux de combustion. Nous comparons nos résultats à ceux obtenus dans la littérature par d'autres techniques de mesure.
Bariki, Chaimae. "Interaction entre une flamme de prémélange et une structure tourbillonnaire." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2067.
Full textUnderstanding and predicting the different mechanisms at play in turbulent premixed flames is a tremendously difficult issue for sizing or optimizing many combustion systems. Turbulent reactive flows are characterized by a complex interaction between the fluid motion, the inherent heat generated by the flame and turbulence. This challenge being extremely difficult to meet, the study of the interactions between a flat flame and a toroidal vortex provide an ideal canonical framework to better understand the physical mechanisms at play. In this perspective, experimental studies were carried out using a stagnation burner fed by a premixed fuel and air (methane/air,propane/air, hydrogen/air). A panel of experimental techniques as well as numerical tools have been used to characterize thoroughly the flame/vortex interactions. By modifying the equivalence ratio, the mixture composition and the vortex intensity, the temporal evolution of the interaction enable the extraction of the flame surface, the flame front stretch and curvature as well as the displacement/consumption speeds. In addition, the internal flame structure is deeply investigated by decomposing the flame front into a preheat zone and a reaction zone
Megninta, Abdramane. "Approche expérimentale de la dynamique d'un front de flamme oblique modulé par une allée de Von Karman." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376161249.
Full textMegninta, Abdramane. "Approche expérimentale de la dynamique d'un front de flamme oblique modulé par une allée de Von Karman." Aix-Marseille 1, 1988. http://www.theses.fr/1988AIX11147.
Full textChanut, Clément. "Etude expérimentale de la propagation du front de flamme et de la vitesse de combustion d'une explosion de poussières d'aluminium." Thesis, IMT Mines Alès, 2018. http://www.theses.fr/2018EMAL0008/document.
Full textExplosions are one of the most feared events in the industry. Risk of explosions with combustible dusts can occur in a large variety of industry of different fields, because of the large amount of combustible dusts: organic dusts (flour, carbon, sugar…) but also metallic dusts (aluminum, magnesium…). All of these combustible dusts, if they are fine enough, and if they are dispersed in the air, can cause explosions. Companies have to quantify this risk present in their plant. Concerning gas explosions, the current state of knowledge allows an understanding and a precise modelling of the phenomenon. However, the state of knowledge about dust explosions is more limited, especially because of the difficulty to study the explosions experimentally. Some models, based on gas explosions, exist for the case of dust explosion. These models seem coherent in the case of organic dust explosions but less adapted for metallic dust.This PhD work focus on the experimental study of flame propagation during an aluminum dust explosion. To model an eventual propagation of the flame during the explosion, an experimental approach is required. For this experimental study, specific prototypes have been elaborated, and then improved, during the different tests. This work is mainly separated in two parts.In a first part the dispersion of the dust is studied. Indeed, to study the explosion phenomenon, a system has been elaborated to disperse the dust. A first part of study allows checking that the dispersion is well homogeneous in terms of concentration. Then, the turbulence level inside the prototype after the end of the dispersion is studied. Indeed, this parameters influence a lot the flame propagation, increasing the consequences of the explosion.Then, the flame propagation is studied. The dust dispersion, previously studied, is ignited by an electric spark. The phenomenon is studied thanks to visualization of the flame propagation and by the evolution of the pressure inside the prototype. Two main optical techniques, one based on the light emitted by the flame, the other one linked to refractive index variations (due to temperature variations) are used. Thanks to these methods, the propagation velocity in the laboratory referential is studied. However, this velocity depends mainly on the prototype used for his determination. A method is used to determine the burning velocity (consumption rate of the reactants by the flame front). Some potential limits of this method are then exposed, and a new method of determination of this burning velocity is proposed
Kaprielian, Leslie. "Modélisation 0D pour la combustion dans les moteurs à allumage commandé : développements en proche paroi et dans le front de flamme." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0012/document.
Full textRecently, the interest for zero-dimensional models has increased. Indeed, these models provide easily the engines thermodynamic behavior and can be coupled with control tools. However, their accuracy must be improved to meet the current technological challenges. In the spark ignition engines, the premixed turbulent flame is modeled as a set of coherent flamelets. This approach requires special treatment near the walls, motivated by the modifications of the flame structure due to boundary layers. The present work proposes 0D modeling of combustion near the walls and in the reaction zone of the flame. To combustion model near the walls, the flame is divided into a free propagation contribution, and an interacting contribution with the walls. Each contribution is divided into a convective zone, wherein the entrainment of fresh gas is described, and a reaction zone, wherein the combustion reaction is modeled. Adding a reaction zone near the walls allows modeling a thermal gradient and a slower combustion reaction near the walls. To model the reaction zone, a flame discretization is made into several reaction zones. An engine operating range is simulated with our models, for quantifying the calibration parameters variability. To do this, models are calibrated on each operating point, by a method of minimization of the quadratic error on the heat released rate. Linear correlations can be found, depending on engines parameters. A good agreement between experimental data and simulation results is obtained with these parameters correlations
Pajot, Olivier. "Etude expérimentale de l'influence de l'aérodynamique sur le comportement et la structure du front de flamme dans les conditions d'un moteur à allumage commandé." Orléans, 2000. http://www.theses.fr/2000ORLE2018.
Full textBoukhalfa, Abdelkrim. "Combustion a l'etude de la structure scalaire dans les flammes turbulentes premelangees du type bunsen." Orléans, 1988. http://www.theses.fr/1988ORLE2043.
Full textFragner, Romain. "Caractérisation expérimentale des plissements à petite échelle dans une flamme turbulente prémélangée : effets de la pression." Thesis, Orléans, 2014. http://www.theses.fr/2014ORLE2072/document.
Full textThe present work is an experimental study on the interactions between flame and turbulence. The pressure effect on the flame front wrinkling is characterised using laser diagnostics and hot wire anemometry. To begin with, the turbulence generated by a multi-grid system is characterised. It is shown that the present system produces a higher turbulence rate by 40% than for an equivalent mesh single-grid system. Moreover, the small turbulence scales sizes are experimentally found smaller with the multi-grid system. From those results, the interactions between premixed flames and turbulence were studied. By using the laser tomography diagnostic, the flame front of several gases premixes was observed. By changing the mixing conditions, the effect of parameters such as the Lewis number, the turbulence conditions and the small scale was observed. The low impact of the thermodiffusives instabilities in our conditions was demonstrated. However, the important effect of the turbulence conditions on the flame front characteristics was observed. Moreover, the present results showed the major impact of the Taylor micro scale on the flame front wrinkling for these study experimental conditions
Ghilani, Mustapha. "Simulation numérique de flammes planes stationnaires avec chimie complexe." Paris 11, 1987. http://www.theses.fr/1987PA112325.
Full textBalusamy, Saravanan. "Etude expérimentale de la propagation de flammes dans un mélange stratifié." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557915.
Full textLhuillier-Marchand, Alexis. "Propagation des feux de végétation : expérimentations à l’échelle du laboratoire et validation d’un propagateur." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0131/document.
Full textThis work is devoted to the experimental and numerical study of wildland fire spread at laboratory scale. A tracking fire front method using visible cameras was used in order to follow the fire front positions during the propagation and to evaluate some fire front properties. The data include the Rate Of Spread (ROS), the fire front width, the length of fire, the profile of flames and the Heat Release Rate. An experimental campaign of 105 fire spread tests with wood shaving as fuel was conducted on the PROMETHEI plateform (Plateforme de Recherche Opérationnelle en Métrologie Thermique dédiée aux Essais Incendies) of the laboratory LEMTA. This campaign was essentially focused on the effect of the fuel bed width and the fuel loading on the fire dynamics (particularly on the ROS and fire width). An open-source data base provides the positions of the front and backing fire as a function of time. A fire spread model based on the small world concept with a hexagonal cell network was developed. Two approaches were studied: the first one is based on a radiative transfer model for the definition of the cell states and the other one is based on an estimated distribution function. A particle swarm optimization (PSO) algorithm was used for the identification of the different parameters of the model using the experimental results. Then, the model was compared to other experiments included fuel breaks or narrowing/widening of the fuel bed width
Marfaing, Olivier. "Contributions à la modélisation fine de la réaction sodium-eau." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066343.
Full textThe fine-scale modeling of sodium-water reaction is motivated by its applications to sodium-cooled fast nuclear reactors and experimental irradiation reactors. As shown by several experiments from the literature, the contact between liquid sodium and water gives rise to a gaseous film where the reaction takes place in the form of a gaseous diffusion flame. In this manuscript, we have chosen to focus on the combustion of a liquid sodium drop immersed in an infinite volume of water. Several simplifying assumptions are introduced : in particular, we limit ourselves to the one-dimensional problem.Assuming the gaseous film has constant density, an analytical study shows that the physical state of sodium hydroxide has a strong influence on the behavior of the system : if soda is entirely vaporized, the flame gets choked, while, on the opposite, if it is entirely condensed, a self-similar solution can be exhibited and the combustion is sustained. A numerical algorithm is developed.Then, the previous model is improved by taking into account the gas compressibility. We develop a low Mach number algorithm. The computations show an oscillatory behavior of the one-dimensional film, due to the inertia of water. The calculated reaction rates are found to be in good agreement with Ashworth’s measurements. Initial conditions in the film are unknown : a simplified mechanism of film formation is therefore proposed, and a sensitivity analysis on initial conditions is carried out. The results are seen to be only slightly dependent on the initial state of the system
Sennoune, Mohamed. "Control of the smoldering front temperature in a carbon- and carbonate-containing porous medium in order to limit CO2 emissions." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0107/document.
Full textThis PhD thesis focuses on the control of the smoldering front propagating in a porous medium containing fixed carbon and carbonates (CaCO3). The main objective is to reduce the front temperature, in situ (oil recovery or gas production from oil shale) or in process (combustion of semicoke), in order to limit the medium decarbonation and the resulting CO2 emissions. The reactive porous medium retained to realize the laboratory experiments is a crushed (0.5 to 2 mm) and pre-pyrolyed oil shale, called semicoke. The front propagates in co-current. The first technique experimentally tested is the addition to the semicoke of an inert material (sand) and/or a reactive material (CaCO3) to vary the contents of fixed carbon and of CaCO3, independently. We show that the increase of the CaCO3 content enables to reduce the temperature to 800 °C, but not below; this does not allow to avoid decarbonation. Bringing down the fixed carbon content enables to reduce the front temperature, see even to reach extinction. In the lowest temperatures of propagation, the decarbonation is strongly limited. On the other hand, the front slows down because it does not use all of the fed oxygen. The second original technique consists in adding CO2 (20 mol.%) to the oxidizer air. We show that for a hot front, the decarbonated fraction is reduced from 100% down to 70%, and the CO production at fixed carbon oxidation is increased; this leads to increase the LCV of the produced gas. For a cold front, the decarbonation which was 20%, is totally avoided by adding CO2. Finely, experiments are proposed in the “reaction trailing” combustion mode, little known and implemented. This mode has the major interest to avoid the reactions of “Lower Temperature Oxidation” prejudicial for oil or gas yields in in situ process. Stable and repeatable experiments are realized with different oxygen fractions in feeding gas. The front temperature is directly linked to this parameter; the decarbonation is clearly limited in this mode of propagation. Two types of modeling are proposed. A mass and thermal balance based on simple analytical expressions enables to evaluate the front temperature and velocity. A numerical model developed by IMFT is based on convective/diffusive heat and mass transfer equations coupled with the oxidation reactions (into CO and CO2) and CaCO3 decarbonation is proposed. It describes in a very satisfactory way the experiments in the “reaction leading” mode with variation of the medium composition (first technique)
Yilmaz, Bariş. "Analyse expérimentale et simulation numérique de la combustion de prémélanges turbulents CH4+H2+Air." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2063.
Full textHydrogenated premixed methane/air flames under lean conditions are simulated in this study. The model of the high pressure chamber setup of Orleans - ICARE (France) has been developed. The flame front properties are investigated by two turbulent premixed combustion models, Zimont and Coherent Flame Model (CFM) models. All modeling studies are performed with Fluent software and compared to experiments. The influence of the pressure on the premixed flame front statistics has been examined as well. The simulations show that increasing the equivalence ratio decreases the flame tip height and the flame brush thickness for methane/air flames. In addition, enriching the methane-air mixture with hydrogen modifies the premixed flame front properties. When the volumetric percentage of hydrogen in the mixture is increased, the flame-end position is reduced and flame brush thickness becomes thinner. It is also observed that the premixed flame properties have been modified with operation at higher pressure conditions
LACHAUX, Thierry. "Etude des effets de la haute pression sur la structure et la dynamique des flammes turbulentes de prémélange pauvre de méthane-air." Phd thesis, Université d'Orléans, 2004. http://tel.archives-ouvertes.fr/tel-00010401.
Full textNgouoko, Terence. "Extinction d'une flamme prémélangée par un cisaillement : effets instationnaires." Thèse, 2004. http://hdl.handle.net/1866/17271.
Full text