Academic literature on the topic 'Citation networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Citation networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Citation networks"
Bu, Yi, Yong Huang, and Wei Lu. "Loops in publication citation networks." Journal of Information Science 46, no. 6 (September 6, 2019): 837–48. http://dx.doi.org/10.1177/0165551519871826.
Full textWen, Fangfang. "Study on the research evolution of Nobel laureates 2018 based on self-citation network." Journal of Documentation 75, no. 6 (September 26, 2019): 1416–31. http://dx.doi.org/10.1108/jd-02-2019-0027.
Full textGoldberg, S. R., H. Anthony, and T. S. Evans. "Modelling citation networks." Scientometrics 105, no. 3 (September 5, 2015): 1577–604. http://dx.doi.org/10.1007/s11192-015-1737-9.
Full textChakraborty, Manajit, Maksym Byshkin, and Fabio Crestani. "Patent citation network analysis: A perspective from descriptive statistics and ERGMs." PLOS ONE 15, no. 12 (December 3, 2020): e0241797. http://dx.doi.org/10.1371/journal.pone.0241797.
Full textDu, San Shan, and Yue Chun Wu. "Research Paper Influence Measurement and Applications: A Machine-Learning-Based Approach." Advanced Materials Research 1049-1050 (October 2014): 2073–78. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.2073.
Full textSouma, Wataru, Irena Vodenska, and Lou Chitkushev. "Classification of Paper Values Based on Citation Rank and PageRank." Journal of Data and Information Science 5, no. 3 (July 28, 2020): 57–70. http://dx.doi.org/10.2478/jdis-2020-0031.
Full textHajra, Kamalika Basu, and Parongama Sen. "Aging in citation networks." Physica A: Statistical Mechanics and its Applications 346, no. 1-2 (February 2005): 44–48. http://dx.doi.org/10.1016/j.physa.2004.08.048.
Full textHenrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. "Building direct citation networks." Scientometrics 115, no. 2 (February 20, 2018): 817–32. http://dx.doi.org/10.1007/s11192-018-2676-z.
Full textHu, Feng, Lin Ma, Xiu-Xiu Zhan, Yinzuo Zhou, Chuang Liu, Haixing Zhao, and Zi-Ke Zhang. "The aging effect in evolving scientific citation networks." Scientometrics 126, no. 5 (March 12, 2021): 4297–309. http://dx.doi.org/10.1007/s11192-021-03929-8.
Full textWANG, MINGYANG, GUANG YU, and DAREN YU. "THE PREFERENTIAL ATTACHMENT MECHANISM BASING ON WEIGHTED PAST CITATIONS." International Journal of Modern Physics B 25, no. 15 (June 20, 2011): 2055–61. http://dx.doi.org/10.1142/s0217979211100424.
Full textDissertations / Theses on the topic "Citation networks"
Leifeld, Philip. "Policy networks a citation analysis of the quantitative literature /." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-26631.
Full textDunaiski, Marcel Paul. "Analysing ranking algorithms and publication trends on scholarly citation networks." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96106.
Full textENGLISH ABSTRACT: Citation analysis is an important tool in the academic community. It can aid universities, funding bodies, and individual researchers to evaluate scientific work and direct resources appropriately. With the rapid growth of the scientific enterprise and the increase of online libraries that include citation analysis tools, the need for a systematic evaluation of these tools becomes more important. The research presented in this study deals with scientific research output, i.e., articles and citations, and how they can be used in bibliometrics to measure academic success. More specifically, this research analyses algorithms that rank academic entities such as articles, authors and journals to address the question of how well these algorithms can identify important and high-impact entities. A consistent mathematical formulation is developed on the basis of a categorisation of bibliometric measures such as the h-index, the Impact Factor for journals, and ranking algorithms based on Google’s PageRank. Furthermore, the theoretical properties of each algorithm are laid out. The ranking algorithms and bibliometric methods are computed on the Microsoft Academic Search citation database which contains 40 million papers and over 260 million citations that span across multiple academic disciplines. We evaluate the ranking algorithms by using a large test data set of papers and authors that won renowned prizes at numerous Computer Science conferences. The results show that using citation counts is, in general, the best ranking metric. However, for certain tasks, such as ranking important papers or identifying high-impact authors, algorithms based on PageRank perform better. As a secondary outcome of this research, publication trends across academic disciplines are analysed to show changes in publication behaviour over time and differences in publication patterns between disciplines.
AFRIKAANSE OPSOMMING: Sitasiesanalise is ’n belangrike instrument in die akademiese omgewing. Dit kan universiteite, befondsingsliggams en individuele navorsers help om wetenskaplike werk te evalueer en hulpbronne toepaslik toe te ken. Met die vinnige groei van wetenskaplike uitsette en die toename in aanlynbiblioteke wat sitasieanalise insluit, word die behoefte aan ’n sistematiese evaluering van hierdie gereedskap al hoe belangriker. Die navorsing in hierdie studie handel oor die uitsette van wetenskaplike navorsing, dit wil sê, artikels en sitasies, en hoe hulle gebruik kan word in bibliometriese studies om akademiese sukses te meet. Om meer spesifiek te wees, hierdie navorsing analiseer algoritmes wat akademiese entiteite soos artikels, outeers en journale gradeer. Dit wys hoe doeltreffend hierdie algoritmes belangrike en hoë-impak entiteite kan identifiseer. ’n Breedvoerige wiskundige formulering word ontwikkel uit ’n versameling van bibliometriese metodes soos byvoorbeeld die h-indeks, die Impak Faktor vir journaale en die rang-algoritmes gebaseer op Google se PageRank. Verder word die teoretiese eienskappe van elke algoritme uitgelê. Die rang-algoritmes en bibliometriese metodes gebruik die sitasiedatabasis van Microsoft Academic Search vir berekeninge. Dit bevat 40 miljoen artikels en meer as 260 miljoen sitasies, wat oor verskeie akademiese dissiplines strek. Ons gebruik ’n groot stel toetsdata van dokumente en outeers wat bekende pryse op talle rekenaarwetenskaplike konferensies gewen het om die rang-algoritmes te evalueer. Die resultate toon dat die gebruik van sitasietellings, in die algemeen, die beste rangmetode is. Vir sekere take, soos die gradeering van belangrike artikels, of die identifisering van hoë-impak outeers, presteer algoritmes wat op PageRank gebaseer is egter beter. ’n Sekondêre resultaat van hierdie navorsing is die ontleding van publikasie tendense in verskeie akademiese dissiplines om sodoende veranderinge in publikasie gedrag oor tyd aan te toon en ook die verskille in publikasie patrone uit verskillende dissiplines uit te wys.
Glötzl, Florentin, and Ernest Aigner. "Orthodox Core-Heterodox Periphery? Contrasting Citation Networks of Economics Departments in Vienna." Taylor & Francis, 2018. http://epub.wu.ac.at/6631/1/09538259.2018.pdf.
Full textMeiklejohn, Luke S. "How to attribute credit if you must." Master's thesis, Faculty of Commerce, 2021. http://hdl.handle.net/11427/33802.
Full textAbuRa'ed, Ahmed Ghassan Tawfiq. "Automatic generation of descriptive related work reports." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/669975.
Full textLa sección de trabajos relacionados de un artículo científico resume e integra información clave de una lista de documentos científicos relacionados con el trabajo que se presenta. Para redactar esta sección del artículo científico el autor debe identificar, condensar/resumir y combinar información relevante de diferentes artículos. Esta tarea es complicada debido al gran volumen disponible de artículos científicos. En este contexto, la generación automática de tales secciones es un problema importante a abordar. La generación automática de secciones de trabajo relacionados puede ser considerada como una instancia del problema de resumen de documentos múltiples donde, dada una lista de documentos científicos, el objetivo es resumir automáticamente esos documentos científicos y generar la sección de trabajos relacionados. Para estudiar este problema, hemos creado un corpus de secciones de trabajos relacionados anotado manualmente y procesado automáticamente. Asimismo, hemos investigado la relación entre las citaciones y el artículo científico que se cita para modelar adecuadamente las relaciones entre documentos y, así, informar nuestro método de resumen automático. Además, hemos investigado la identificación de citaciones implícitas a un artículo científico dado que es una tarea importante en varias actividades de minería de textos científicos. Presentamos métodos extractivos y abstractivos para resumir una lista de artículos científicos utilizando su red de citaciones. El enfoque extractivo sigue tres etapas: cálculo de la relevancia las oraciones de cada artículo en función de la red de citaciones, selección de oraciones de cada artículo científico para integrarlas en el resumen y generación de la sección de trabajos relacionados agrupando las oraciones por tema. Por otro lado, el enfoque abstractivo intenta generar citaciones para incluirlas en un resumen utilizando redes neuronales y recursos que hemos creado específicamente para esta tarea. La tesis también presenta y discute la evaluación automática y manual de los resúmenes generados automáticamente, demostrando la viabilidad de los enfoques propuestos.
Una secció d’antecedents o estat de l’art d’un articulo científic resumeix la informació clau d'una llista de documents científics relacionats amb el treball que es presenta. Per a redactar aquesta secció de l’article científic l’autor ha d’identificar, condensar / resumir i combinar informació rellevant de diferents articles. Aquesta activitat és complicada per causa del gran volum disponible d’articles científics. En aquest context, la generació automàtica d’aquestes seccions és un problema important a abordar. La generació automàtica d’antecedents o d’estat de l’art pot considerar-se com una instància del problema de resum de documents. Per estudiar aquest problema, es va crear un corpus de seccions d’estat de l’art d’articles científics manualment anotat i processat automàticament. Així mateix, es va investigar la relació entre citacions i l’article científic que es cita per modelar adequadament les relacions entre documents i, així, informar el nostre mètode de resum automàtic. A més, es va investigar la identificació de citacions implícites a un article científic que és un problema important en diverses activitats de mineria de textos científics. Presentem mètodes extractius i abstractius per resumir una llista d'articles científics utilitzant el conjunt de citacions de cada article. L’enfoc extractiu segueix tres etapes: càlcul de la rellevància de les oracions de cada article en funció de les seves citacions, selecció d’oracions de cada article científic per a integrar-les en el resum i generació de la secció de treballs relacionats agrupant les oracions per tema. Per un altre costat, l’enfoc abstractiu implementa la generació de citacions per a incloure-les en un resum que utilitza xarxes neuronals i recursos que hem creat específicament per a aquest tasca. La tesi també presenta i discuteix l'avaluació automàtica i el manual dels resums generats automàticament, demostrant la viabilitat dels mètodes proposats.
Alshareef, Abdulrhman M. "Academic Recommendation System Based on the Similarity Learning of the Citation Network Using Citation Impact." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39111.
Full textAlfraidi, Hanadi Humoud A. "Interactive System for Scientific Publication Visualization and Similarity Measurement based on Citation Network." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33135.
Full textMaier, Gunther, Alexander Kaufmann, and Michael Vyborny. "Is regional science a scientific discipline? Answers from a citation based Social Network Analysis." Institut für Regional- und Umweltwirtschaft, WU Vienna University of Economics and Business, 2008. http://epub.wu.ac.at/1226/1/document.pdf.
Full textSeries: SRE - Discussion Papers
Runelöv, Martin. "Finding seminal scientific publications with graph mining." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172382.
Full textI detta examensarbete undersöks det huruvida analys av citeringsgrafer kan användas för att finna betydelsefulla vetenskapliga publikationer. Framför allt studeras ”betweenness”-centralitet, den så kallade ”backbone”-grafen samt ”burstiness” av citeringar. Dessa mått utvärderas med hjälp av precisionsmått med avseende på guldstandarder baserade på ’fellow’-program samt via manuell annotering. Antal citeringar, PageRank, och slumpmässigt urval används som jämförelse. Resultaten visar att ”backbone”-grafen kan bidra till att eventuellt upptäcka betydelsefulla publikationer med ett lågt antal citeringar samt att en kombination av ”betweenness” och ”burstiness” ger resultat i nivå med de man får av att räkna antal citeringar.
Glötzl, Florentin, and Ernest Aigner. "Pluralism in the Market of Science? A citation network analysis of economic research at universities in Vienna." WU Vienna University of Economics and Business, 2015. http://epub.wu.ac.at/4730/1/EcolEcon_WorkingPaper_2015_5.pdf.
Full textSeries: Ecological Economic Papers
Books on the topic "Citation networks"
Golosovsky, Michael. Citation Analysis and Dynamics of Citation Networks. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28169-4.
Full textHarnack, Andrew. Online!: Citation styles. New York, NY: Bedford/St. Martin's, 2000.
Find full textHacker, Diana. Research and documentation online. [New York, NY?]: Bedford/St. Martin's, 1998.
Find full textKyle, Noeline. Citing historical sources: A manual for family historians. St Agnes, SA: Unlock the Past, 2013.
Find full textB, Barnes Susan, and Barr Linda R, eds. Web research: Selecting, evaluating, and citing. Boston: Pearson/Allyn & Bacon, 2006.
Find full textRadford, Marie L. Web research: Selecting, evaluating, and citing. Boston: Allyn and Bacon, 2002.
Find full textGolosovsky, Michael. Citation Analysis and Dynamics of Citation Networks. Springer, 2019.
Find full textTransient hypergraphs for citation networks. Ottawa: National Library of Canada, 1989.
Find full textBook chapters on the topic "Citation networks"
Radicchi, Filippo, Santo Fortunato, and Alessandro Vespignani. "Citation Networks." In Understanding Complex Systems, 233–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23068-4_7.
Full textCsárdi, Gábor. "Dynamics of Citation Networks." In Artificial Neural Networks – ICANN 2006, 698–709. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11840817_73.
Full textPeroni, Silvio, David Shotton, and Fabio Vitali. "Building Citation Networks with SPACIN." In Lecture Notes in Computer Science, 162–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58694-6_23.
Full textRenoust, Benjamin, Vivek Claver, and Jean-François Baffier. "Flows of Knowledge in Citation Networks." In Studies in Computational Intelligence, 159–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50901-3_13.
Full textKralj, Jan, Anita Valmarska, Marko Robnik-Šikonja, and Nada Lavrač. "Mining Text Enriched Heterogeneous Citation Networks." In Advances in Knowledge Discovery and Data Mining, 672–83. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18038-0_52.
Full textMathur, Sandeep, and Loveleen Gaur. "Predictability, Power and Procedures of Citation Analysis." In Lecture Notes in Networks and Systems, 51–59. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9689-6_6.
Full textZhang, Bo, Tiezheng Nie, Derong Shen, Yue Kou, Ge Yu, and Ziwei Zhou. "A Graph Clustering Algorithm for Citation Networks." In Web Technologies and Applications, 414–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45817-5_37.
Full textYin, Jun, and Xiaoming Li. "Personalized Citation Recommendation via Convolutional Neural Networks." In Web and Big Data, 285–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63564-4_23.
Full textWaltman, Ludo, and Erjia Yan. "PageRank-Related Methods for Analyzing Citation Networks." In Measuring Scholarly Impact, 83–100. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10377-8_4.
Full textFushimi, Takayasu, Tetsuji Satoh, and Noriko Kando. "Dynamic Visualization of Citation Networks and Detection of Influential Node Addition." In Complex Networks IX, 291–302. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73198-8_25.
Full textConference papers on the topic "Citation networks"
Ji, Taoran, Zhiqian Chen, Nathan Self, Kaiqun Fu, Chang-Tien Lu, and Naren Ramakrishnan. "Patent Citation Dynamics Modeling via Multi-Attention Recurrent Networks." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/364.
Full text"Citation information." In Networks (DSN). IEEE, 2010. http://dx.doi.org/10.1109/dsn.2010.5544401.
Full text"Citation information." In Networks (DSN). IEEE, 2011. http://dx.doi.org/10.1109/dsn.2011.5958199.
Full text"Citation information." In 2010 International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2010. http://dx.doi.org/10.1109/dsnw.2010.5542632.
Full text"Citation information." In 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN). IEEE, 2008. http://dx.doi.org/10.1109/dsn.2008.4630062.
Full text"Citation information." In 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2011. http://dx.doi.org/10.1109/dsnw.2011.5958789.
Full textLiu, Tianpeng, and Kan Li. "A citation similarity based community detection method in citation networks." In 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2015. http://dx.doi.org/10.1109/iaeac.2015.7428536.
Full textGuo, Zhen, Zhongfei Zhang, Shenghuo Zhu, Yun Chi, and Yihong Gong. "Knowledge Discovery from Citation Networks." In 2009 Ninth IEEE International Conference on Data Mining (ICDM). IEEE, 2009. http://dx.doi.org/10.1109/icdm.2009.137.
Full textValverde, Sergi. "Evolution of patent citation networks." In 2014 Complexity in Engineering (COMPENG). IEEE, 2014. http://dx.doi.org/10.1109/compeng.2014.6994688.
Full textMahdabi, Parvaz, and Fabio Crestani. "Query-Driven Mining of Citation Networks for Patent Citation Retrieval and Recommendation." In CIKM '14: 2014 ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2661829.2661899.
Full textReports on the topic "Citation networks"
McLane, V. Citation guidelines for nuclear data retrieved from databases resident at the Nuclear Data Centers Network. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/380333.
Full textHilbrecht, Margo, David Baxter, Alexander V. Graham, and Maha Sohail. Research Expertise and the Framework of Harms: Social Network Analysis, Phase One. GREO, December 2020. http://dx.doi.org/10.33684/2020.006.
Full text