To see the other types of publications on this topic, follow the link: CL-20.

Journal articles on the topic 'CL-20'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CL-20.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nair, U. R., R. Sivabalan, G. M. Gore, M. Geetha, S. N. Asthana, and H. Singh. "Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)." Combustion, Explosion, and Shock Waves 41, no. 2 (March 2005): 121–32. http://dx.doi.org/10.1007/s10573-005-0014-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Danyang, Lang Chen, Wang Chen, and Junying Wu. "Detonation Reaction Characteristics for CL-20 and CL-20-based Aluminized Mixed Explosives." Central European Journal of Energetic Materials 14, no. 3 (September 11, 2017): 573–88. http://dx.doi.org/10.22211/cejem/75114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kon’kova, Tatiana S., Yury N. Matyushin, Eugeny A. Miroshnichenko, Alexey B. Vorob’ev, Oleg A. Luk’janov, and Gennady A. Smirnov. "THERMOCHEMICAL PROPERTIES OF TRINITROETHYL DERIVATIVES CL-20." Gorenie i vzryv (Moskva) — Combustion and Explosion 11, no. 01 (February 7, 2018): 113–17. http://dx.doi.org/10.30826/ce18110114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pavlov, Julius, Christos Christodoulatos, Mohammed Sidhoum, Steven Nicolich, Wendy Balas, and Agamemnon Koutsospyros. "Hydrolysis of Hexanitrohexaazaisowurtzitane (CL-20)." Journal of Energetic Materials 25, no. 1 (January 16, 2007): 1–18. http://dx.doi.org/10.1080/07370650601107245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sinditskii, Valery P., Anton N. Chernyi, Viacheslav Y. Egorshev, Dmitriy V. Dashko, Tel'man K. Goncharov, and Nikolay I. Shishov. "Combustion of CL-20 cocrystals." Combustion and Flame 207 (September 2019): 51–62. http://dx.doi.org/10.1016/j.combustflame.2019.05.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Xiao-Juan, He-Ming Xiao, Ji-Jun Xiao, Wei Zhu, Hui Huang, and Jin-Shan Li. "Molecular Dynamics Simulations for Pure ε-CL-20 and ε-CL-20-Based PBXs." Journal of Physical Chemistry B 110, no. 14 (April 2006): 7203–7. http://dx.doi.org/10.1021/jp060077v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mao, Xiaoxiang, Yanchun Li, Yifan Li, Longfei Jiang, and Xiaoming Wang. "Thermal properties of decomposition and explosion for CL-20 and CL-20/n-Al." Journal of Energetic Materials 38, no. 1 (September 18, 2019): 98–110. http://dx.doi.org/10.1080/07370652.2019.1668875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goncharov, T. K., Z. G. Aliev, S. M. Aldoshin, D. V. Dashko, A. A. Vasil´eva, N. I. Shishov, and Yu M. Milekhin. "Preparation, structure, and main properties of bimolecular crystals CL-20—DNP and CL-20—DNG." Russian Chemical Bulletin 64, no. 2 (February 2015): 366–74. http://dx.doi.org/10.1007/s11172-015-0870-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herrmannsdörfer, Dirk, Jörg Stierstorfer, and Thomas M. Klapötke. "Solubility behaviour of CL-20 and HMX in organic solvents and solvates of CL-20." Energetic Materials Frontiers 2, no. 1 (March 2021): 51–61. http://dx.doi.org/10.1016/j.enmf.2021.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turcotte, Richard, Marie Vachon, Queenie S. M. Kwok, Ruiping Wang, and David E. G. Jones. "Thermal study of HNIW (CL-20)." Thermochimica Acta 433, no. 1-2 (August 2005): 105–15. http://dx.doi.org/10.1016/j.tca.2005.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mueller, Dietmar. "New Gun Propellant with CL-20." Propellants, Explosives, Pyrotechnics 24, no. 3 (June 1999): 176–81. http://dx.doi.org/10.1002/(sici)1521-4087(199906)24:03<176::aid-prep176>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dorofeeva, Olga V., and Marina A. Suntsova. "Enthalpy of formation of CL-20." Computational and Theoretical Chemistry 1057 (April 2015): 54–59. http://dx.doi.org/10.1016/j.comptc.2015.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bhushan, Bharat, Annamaria Halasz, and Jalal Hawari. "Nitroreductase catalyzed biotransformation of CL-20." Biochemical and Biophysical Research Communications 322, no. 1 (September 2004): 271–76. http://dx.doi.org/10.1016/j.bbrc.2004.07.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Trott, Sandra, Shirley F. Nishino, Jalal Hawari, and Jim C. Spain. "Biodegradation of the Nitramine Explosive CL-20." Applied and Environmental Microbiology 69, no. 3 (March 2003): 1871–74. http://dx.doi.org/10.1128/aem.69.3.1871-1874.2003.

Full text
Abstract:
ABSTRACT The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20.
APA, Harvard, Vancouver, ISO, and other styles
15

Bian, Hongli, Ziqiang Shao, Jianxin Liu, Ken Chen, and Xuan Zhang. "Preparation of Cellulose/CL-20 Composite Energetic Aerogels by Crystal Growth of CL-20 in Cellulose Solution." Crystal Growth & Design 20, no. 10 (September 1, 2020): 6811–19. http://dx.doi.org/10.1021/acs.cgd.0c00909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sun, Shanhu, Haobin Zhang, Yu Liu, Jinjiang Xu, Shiliang Huang, Shumin Wang, and Jie Sun. "Transitions from Separately Crystallized CL-20 and HMX to CL-20/HMX Cocrystal Based on Solvent Media." Crystal Growth & Design 18, no. 1 (December 5, 2017): 77–84. http://dx.doi.org/10.1021/acs.cgd.7b00775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Guangrui, Hongzhen Li, Ruijun Gou, and Chaoyang Zhang. "Packing Structures of CL-20-Based Cocrystals." Crystal Growth & Design 18, no. 11 (October 2, 2018): 7065–78. http://dx.doi.org/10.1021/acs.cgd.8b01228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chung, Kyoo-Hyun, Hee-Sup Kil, In-Young Choi, Chan-Kook Chu, and Ik-Mo Lee. "New precursors for hexanitrohexaazaisowurtzitane (HNIW, CL-20)." Journal of Heterocyclic Chemistry 37, no. 6 (November 2000): 1647–49. http://dx.doi.org/10.1002/jhet.5570370640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Patel, Rajen B., Victor Stepanov, Sean Swaszek, Ashok Surapaneni, and Hongwei Qiu. "Investigation of CL-20 and RDX Nanocomposites." Propellants, Explosives, Pyrotechnics 41, no. 1 (October 8, 2015): 114–19. http://dx.doi.org/10.1002/prep.201500130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Maksimowski, Paweł, and Paweł Tchórznicki. "CL-20 Evaporative Crystallization under Reduced Pressure." Propellants, Explosives, Pyrotechnics 41, no. 2 (November 6, 2015): 351–59. http://dx.doi.org/10.1002/prep.201500201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shi, Wenyan, Hui Cang, Xiuhua Yan, Wei Xu, Rong Shao, Chuan‐Wen Liu, and Cheng‐Lung Chen. "Computational Studies of CL‐20‐based Materials." ChemistrySelect 5, no. 2 (January 16, 2020): 682–88. http://dx.doi.org/10.1002/slct.201904085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mandal, A. K., C. S. Pant, S. M. Kasar, and T. Soman. "Process Optimization for Synthesis of CL-20." Journal of Energetic Materials 27, no. 4 (August 7, 2009): 231–46. http://dx.doi.org/10.1080/07370650902732956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Koutsospyros, A., C. Christodoulatos, N. Panikov, O. Malcheva, P. Karakaya, and S. Nicolich. "Environmental Relevance of CL-20: Preliminary Findings." Water, Air, & Soil Pollution: Focus 4, no. 4/5 (October 2004): 459–70. http://dx.doi.org/10.1023/b:wafo.0000044818.76609.e9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Degtyarenko, N. N., K. P. Katin, and M. M. Maslov. "Simulation of metastable CL-20 cluster structures." Physics of the Solid State 56, no. 7 (July 2014): 1467–71. http://dx.doi.org/10.1134/s1063783414070099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

McBain, Andrew, Vasant Vuppuluri, Ibrahim E. Gunduz, Lori J. Groven, and Steven F. Son. "Laser ignition of CL-20 (hexanitrohexaazaisowurtzitane) cocrystals." Combustion and Flame 188 (February 2018): 104–15. http://dx.doi.org/10.1016/j.combustflame.2017.09.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ordzhonikidze, O., A. Pivkina, Yu Frolov, N. Muravyev, and K. Monogarov. "Comparative study of HMX and CL-20." Journal of Thermal Analysis and Calorimetry 105, no. 2 (May 1, 2011): 529–34. http://dx.doi.org/10.1007/s10973-011-1562-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pang, Wei-qiang, Ke Wang, Wei Zhang, Luigi T. De Luca, Xue-zhong Fan, and Jun-qiang Li. "CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance." Molecules 25, no. 18 (September 20, 2020): 4311. http://dx.doi.org/10.3390/molecules25184311.

Full text
Abstract:
The cocrystallization of high-energy explosives has attracted great interests since it can alleviate to a certain extent the power-safety contradiction. 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), one of the most powerful explosives, has attracted much attention for researchers worldwide. However, the disadvantage of CL-20 has increased sensitivity to mechanical stimuli and cocrystallization of CL-20 with other compounds may provide a way to decrease its sensitivity. The intermolecular interaction of five types of CL-20-based cocrystal (CL-20/TNT, CL-20/HMX, CL-20/FOX-7, CL-20/TKX-50 and CL-20/DNB) by using molecular dynamic simulation was reviewed. The preparation methods and thermal decomposition properties of CL-20-based cocrystal are emphatically analyzed. Special emphasis is focused on the improved mechanical performances of CL-20-based cocrystal, which are compared with those of CL-20. The existing problems and challenges for the future work on CL-20-based cocrystal are discussed.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Shuiping, Aimin Pang, and Gen Tang. "Crystal transition behaviors of CL-20 in polyether solid propellants plasticized by nitrate esters containing both HMX and CL-20." New Journal of Chemistry 41, no. 24 (2017): 15064–71. http://dx.doi.org/10.1039/c7nj03309e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mao, Xiaoxiang, Chenguang Zhu, Yanchun Li, Yifan Li, Longfei Jiang, and Xiaoming Wang. "The Effect of Microsized Aluminum Powder on Thermal Decomposition of HNIW (CL-20)." Advances in Materials Science and Engineering 2019 (April 17, 2019): 1–7. http://dx.doi.org/10.1155/2019/6487060.

Full text
Abstract:
DSC experiments were conducted on the 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-tetracyclo-[5.5.0.05,9.03,11]-dodecane (also known as HNIW or CL-20) and CL-20 containing 10 wt.% microsized aluminum (Al) powders. The kinetic parameters of CL-20 and CL-20/Al were obtained by ASTM685 and Friedman methods, respectively, indicating that Al powder decreases the activation energy of CL-20 slightly and has a catalytic effect on the thermal decomposition of CL-20. By the method of nonlinear multivariate regression, kinetic models of CL-20 and CL-20/Al were derived as fα=1−αn1+kcat⋅α, where the lgkcat of CL-20 and CL-20/Al is 1.97 and 2.12, respectively, showing that the autocatalytic ability of CL-20 had been increased by adding Al powder. From the SEM images of CL-20/Al and the XRD pattern of the decomposition residues of CL-20/Al, it can be inferred that partial combustion of Al particles happened in the microscale view and led to the release of heat.
APA, Harvard, Vancouver, ISO, and other styles
30

Maksimowski, Paweł, and Tomasz Rumianowski. "Properties of the Gamma-Cyclodextrin /CL-20 System." Central European Journal of Energetic Materials 13, no. 1 (2016): 217–29. http://dx.doi.org/10.22211/cejem/64973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhou, Jun-Hong, Min-Bo Chen, Wei-Ming Chen, Liang-Wei Shi, Chao-Yang Zhang, and Hong-Zhen Li. "Virtual screening of cocrystal formers for CL-20." Journal of Molecular Structure 1072 (August 2014): 179–86. http://dx.doi.org/10.1016/j.molstruc.2014.04.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sinditskii, V. P., N. V. Yudin, S. I. Fedorchenko, V. Yu Egorshev, N. A. Kostin, L. V. Gezalyan, and Jiang-Guo Zhang. "Thermal decomposition behavior of CL-20 co-crystals." Thermochimica Acta 691 (September 2020): 178703. http://dx.doi.org/10.1016/j.tca.2020.178703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

von Holtz, Erica, Donald Ornellas, M. Frances Foltz, and Jack E. Clarkson. "The Solubility of ?-CL-20 in Selected Materials." Propellants, Explosives, Pyrotechnics 19, no. 4 (August 1994): 206–12. http://dx.doi.org/10.1002/prep.19940190410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Anderson, Stephen R., Pascal Dubé, Mariusz Krawiec, Jerry S. Salan, David J. am Ende, and Philip Samuels. "Promising CL-20-Based Energetic Material by Cocrystallization." Propellants, Explosives, Pyrotechnics 41, no. 5 (August 23, 2016): 783–88. http://dx.doi.org/10.1002/prep.201600065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Campbell, J. A., J. E. Szecsody, B. J. Devary, and B. R. Valenzuela. "Electrospray Ionization Mass Spectrometry of Hexanitrohexaazaisowurtzitane (CL‐20)." Analytical Letters 40, no. 10 (August 2007): 1972–78. http://dx.doi.org/10.1080/00032710701484459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bayat, Yadollah, and Vida Zeynali. "Preparation and Characterization of Nano-CL-20 Explosive." Journal of Energetic Materials 29, no. 4 (October 2011): 281–91. http://dx.doi.org/10.1080/07370652.2010.527897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fournier, Diane, Fanny Monteil-Rivera, Annamaria Halasz, Manish Bhatt, and Jalal Hawari. "Degradation of CL-20 by white-rot fungi." Chemosphere 63, no. 1 (March 2006): 175–81. http://dx.doi.org/10.1016/j.chemosphere.2005.06.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chauhan, B. S., A. Thakur, P. K. Soni, and M. Kumar. "Recrystallization of CL-20 to ε-polymorphic form." IOP Conference Series: Materials Science and Engineering 1033 (January 19, 2021): 012056. http://dx.doi.org/10.1088/1757-899x/1033/1/012056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xing, Jiangtao, Weili Wang, Wenzheng Xu, Tianle Yao, Jun Dong, and Run Miao. "Preparation and Characterization of Spherical Submicron CL-20 by Siphon Spray Refinement." Journal of Nanomaterials 2020 (March 2, 2020): 1–9. http://dx.doi.org/10.1155/2020/2394698.

Full text
Abstract:
In order to improve the safety of hexanitrohexaazaisowurtzitane (CL-20), submicron CL-20 particles were prepared by a siphon ultrasonic-assisted spray refining experimental device. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and the impact sensitivity of the samples was tested. The results show that the particle size of siphon-refined CL-20 is about 800 nm~1 μm, which is more smooth, mellow, and dense than that of CL-20 prepared by a traditional pressure-refined method. The peak diffraction angle of pressure- and siphon-refined CL-20 is basically the same as that of raw CL-20, and their crystal forms are ε type. The peak strength of pressure- and siphon-refined CL-20 decreased obviously. The apparent activation energy of pressure-refined CL-20 and siphon-refined CL-20 is 13.3 kJ/mol and 11.95 kJ/mol higher than that of raw CL-20, respectively. The thermal stability of CL-20 is improved. The activation enthalpy (ΔH#) is significantly higher than that of raw CL-20, and the characteristic drop is 70.4% and 82.7% higher than that of raw CL-20. The impact sensitivity of siphon-refined CL-20 is lower than that of pressure-refined CL-20, so the safety performance of an explosive is improved obviously.
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Xiao-Juan, Wei-Hua Zhu, and He-Ming Xiao. "DFT Studies on the Four Polymorphs of Crystalline CL-20 and the Influences of Hydrostatic Pressure on ε-CL-20 Crystal." Journal of Physical Chemistry B 111, no. 8 (March 2007): 2090–97. http://dx.doi.org/10.1021/jp066833e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Aldoshin, S. M., Z. G. Aliev, T. K. Goncharov, D. V. Korchagin, Yu M. Milekhin, and N. I. Shishov. "New conformer of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). Crystal and molecular structures of the CL-20 solvate with glyceryl triacetate." Russian Chemical Bulletin 60, no. 7 (July 2011): 1394–400. http://dx.doi.org/10.1007/s11172-011-0209-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yeung, Paul K. H., Albert K. H. Kong, P. H. Thomas Tam, Lupin C. C. Lin, C. Y. Hui, Chin-Ping Hu, and K. S. Cheng. "STUDYING THE SGR 1806-20/Cl* 1806-20 REGION USING THEFERMILARGE AREA TELESCOPE." Astrophysical Journal 827, no. 1 (August 5, 2016): 41. http://dx.doi.org/10.3847/0004-637x/827/1/41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cao, Qiang, Ji Jun Xiao, Pei Gao, Shen Shen Li, Feng Zhao, Yan Alexander Wang, and He Ming Xiao. "Molecular dynamics simulations for CL-20/TNT co-crystal based polymer-bonded explosives." Journal of Theoretical and Computational Chemistry 16, no. 08 (December 2017): 1750072. http://dx.doi.org/10.1142/s0219633617500729.

Full text
Abstract:
Molecular dynamics (MD) simulations were carried out to study the polymer-bonded explosives (PBXs) where the explosive base was the well-known high energy co-crystal compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT), and the polymer binders were fluorine rubber (F[Formula: see text], fluorine resin (F[Formula: see text], polyvinyl acetate (PVAc) and polystyrene (PS), respectively. The binding energies, pair correlation functions (PCFs) and mechanical properties of the PBXs were reported. According to our theoretical results of binding energies, the compatibility of the PBXs is predicted to be in the following order: CL-20/TNT/PVAc[Formula: see text] CL-20/TNT/F[Formula: see text] [Formula: see text] CL-20/TNT/PS [Formula: see text] CL-20/TNT/F[Formula: see text]. The binding energies of the PBXs on three crystalline surfaces, (100), (001), (010), of the CL-20/TNT co-crystal were also compared: CL-20/TNT(100)[Formula: see text]CL-20/TNT(001)[Formula: see text]CL-20/TNT(010) for F[Formula: see text], F[Formula: see text], and PS; CL-20/TNT(001)[Formula: see text]CL-20/TNT(100)[Formula: see text]CL-20/TNT(010) for PVAc. The PCF analysis reveals that there exist H-bonds between H and O, F, and N atoms on all three interfaces and among all H-bonds, N H-bond has the fewest number. For the CL-20/TNT co-crystal, the moduli can be reduced by adding a small amount of the polymer binders but the ductility can be prolonged only by F[Formula: see text] and F[Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
44

XU, Wenzheng, Hao LI, Xin LIANG, Jie WANG, Jinyu PENG, and Jingyu WANG. "β-hexanitrohexaazaisowurtzitane Particles Prepared by Spray Drying and its Characterization." Materials Science 27, no. 1 (January 15, 2021): 119–24. http://dx.doi.org/10.5755/j02.ms.22853.

Full text
Abstract:
In this paper, the ultrafine β-hexanitrohexaazaisowurtzitane (β – CL – 20) particles were prepared by spray drying method. The CL – 20 samples were characterized by scanning electron microscope (SEM), particle size analyzer, X-ray diffraction (XRD), and Differential Scanning Calorimeter (DSC). Furthermore, the safety properties of samples under impact and thermal stimulus were tested and analyzed. The results of SEM showed that the average particle size of ultrafine CL – 20 particles with a narrow particle size distribution, were about 320 nm, and the shape was elliptical. The XRD patterns indicated that the polymorphic phase of ultrafine particles was mainly β-type. Compared with that of raw CL – 20, the impact sensitivity of the ultrafine CL – 20 had been decreased significantly, for the drop height (H50) was increased from 13.0 to 33.5 cm. The critical explosion temperature of the ultrafine CL – 20 decreased from 232.16 ℃ to 227.93 ℃, indicating that the thermal stability of the ultrafine CL – 20 is lower than that of raw CL – 20.
APA, Harvard, Vancouver, ISO, and other styles
45

СИНДИЦКИЙ, ВАЛЕРИЙ ПЕТРОВИЧ, АНТОН НИКОЛАЕВИЧ ЧЁРНЫЙ, СЕРАФИМА ЮРЬЕВНА ЮРОВА, ДМИТРИЙ ВЛАДИМИРОВИЧ ДАШКО, ТЕЛЬМАН КОНСТАНТИНОВИЧ ГОНЧАРОВ, АНДРЕЙ АЛЕКСАНДРОВИЧ КОЗЛОВ, and НИКОЛАЙ ИВАНОВИЧ ШИШОВ. "НЕОБЫЧНОЕ ПОВЕДЕНИЕ БИМОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ CL-20 В ТЕПЛОВОЙ ВОЛНЕ." Gorenie i vzryv (Moskva) — Combustion and Explosion 11, no. 3 (August 31, 2018): 110–16. http://dx.doi.org/10.30826/ce18110314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Karakaya, Pelin, Christos Christodoulatos, Agamemnon Koutsospyros, Wendy Balas, Steve Nicolich, and Mohammed Sidhoum. "Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)." International Journal of Environmental Research and Public Health 6, no. 4 (April 9, 2009): 1371–92. http://dx.doi.org/10.3390/ijerph6041371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Chaoyang, Zongwei Yang, Xiaoqing Zhou, Chenghua Zhang, Yu Ma, Jinjiang Xu, Qi Zhang, Fude Nie, and Hongzhen Li. "Evident Hydrogen Bonded Chains Building CL-20-Based Cocrystals." Crystal Growth & Design 14, no. 8 (June 25, 2014): 3923–28. http://dx.doi.org/10.1021/cg500796r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

van der Heijden, Antoine E. D. M., and Richard H. B. Bouma. "Crystallization and Characterization of RDX, HMX, and CL-20." Crystal Growth & Design 4, no. 5 (September 2004): 999–1007. http://dx.doi.org/10.1021/cg049965a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zharkov, Mikhail N., Ilya V. Kuchurov, and Sergei G. Zlotin. "Micronization of CL-20 using supercritical and liquefied gases." CrystEngComm 22, no. 44 (2020): 7549–55. http://dx.doi.org/10.1039/d0ce01167c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chung, Kyoo-Hyun, Hee-Sup Kil, In-young Choi, Chan-Kook Chu, and Ik-Mo Lee. "ChemInform Abstract: New Precursors for Hexanitrohexaazaisowurtzitane (HNIW, CL-20)." ChemInform 32, no. 20 (May 15, 2001): no. http://dx.doi.org/10.1002/chin.200120125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography