Academic literature on the topic 'Claims reserving'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Claims reserving.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Claims reserving"
Hesselager, Ole. "A Markov Model for Loss Reserving." ASTIN Bulletin 24, no. 2 (November 1994): 183–93. http://dx.doi.org/10.2143/ast.24.2.2005064.
Full textJessen, Anders Hedegaard, and Niels Rietdorf. "Diagonal effects in claims reserving." Scandinavian Actuarial Journal 2011, no. 1 (March 2011): 21–37. http://dx.doi.org/10.1080/03461230903301876.
Full textRenshaw, A. "Claims reserving by joint modelling." Insurance: Mathematics and Economics 17, no. 3 (April 1996): 239–40. http://dx.doi.org/10.1016/0167-6687(96)82389-4.
Full textDupin, Gilles, Emmanuel Koenig, Pierre Le Moine, Alain Monfort, and Eric Ratiarison. "COHERENT INCURRED PAID (CIP) MODELS FOR CLAIMS RESERVING." ASTIN Bulletin 48, no. 02 (December 18, 2017): 749–77. http://dx.doi.org/10.1017/asb.2017.36.
Full textGabrielli, Andrea, and Mario V. Wüthrich. "Back-testing the chain-ladder method." Annals of Actuarial Science 13, no. 2 (November 13, 2018): 334–59. http://dx.doi.org/10.1017/s1748499518000325.
Full textMack, Thomas. "A Simple Parametric Model for Rating Automobile Insurance or Estimating IBNR Claims Reserves." ASTIN Bulletin 21, no. 1 (April 1991): 93–109. http://dx.doi.org/10.2143/ast.21.1.2005403.
Full textLemaire, Jean, and G. C. Taylor. "Claims Reserving in Non-Life Insurance." Journal of Risk and Insurance 55, no. 2 (June 1988): 396. http://dx.doi.org/10.2307/253338.
Full textWüthrich, Mario V. "Machine learning in individual claims reserving." Scandinavian Actuarial Journal 2018, no. 6 (January 24, 2018): 465–80. http://dx.doi.org/10.1080/03461238.2018.1428681.
Full textEngland, P. D., and R. J. Verrall. "Stochastic Claims Reserving in General Insurance." British Actuarial Journal 8, no. 3 (August 1, 2002): 443–518. http://dx.doi.org/10.1017/s1357321700003809.
Full textVerrall, Richard. "Claims reserving and generalised additive models." Insurance: Mathematics and Economics 19, no. 1 (December 1996): 31–43. http://dx.doi.org/10.1016/s0167-6687(96)00000-5.
Full textDissertations / Theses on the topic "Claims reserving"
Johansson, Annelie. "Claims Reserving on Macro- and Micro-Level." Thesis, KTH, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173113.
Full textTre reservsättningsmetoder jämförs på två dataset. De första två metoderna är den välkända chain ladder-metoden som använder sig av aggregerade utbetalningar samt den relativt nya metoden double chain ladder som förutom utbetalningarna använder sig av antalet anmälda skador. Den tredje metoden baseras på mikro-nivå och kräver information om varje enskild skada, såsom anmälningstid och antalet utbetalningsperioder. De två dataseten som används är ett som innehåller skador med typiskt kortare avvecklingstider och ett som innehåller skador med typiskt längre avvecklingstider. Frågorna som behandlas är om man vinner något på att använda en mer avancerad metod än chain ladder och om det skiljer sig åt mellan dataseten. Metoderna jämförs genom simulering av reserven, men också genom att jämföra punktskattningar med den verkliga reserven. Resultaten visar att man I detta fall inte vinner något på att använda mikro-metoden. Double chain ladder å andra sidan presterar bättre än chain ladder. Skillnaden mellan de två dataseten är att det är svårare att estimera reserven när avvecklingstiden är längre, men ingen skillnad ses när det gäller val av metod
Ahlgren, Marcus. "Claims Reserving using Gradient Boosting and Generalized Linear Models." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229406.
Full textEn av de centrala verksamheterna ett försäkringsbolag arbetar med handlar om att uppskatta skadekostnader för att kunna ersätta försäkringstagarna. Denna procedur kallas reservsättning och utförs av aktuarier med hjälp av statistiska metoder. Under de senaste årtiondena har statistiska inlärningsmetoder blivit mer och mer populära tack vare deras förmåga att hitta komplexa mönster i alla typer av data. Dock har intresset för dessa varit relativt lågt inom försäkringsbranschen till förmån för mer traditionella försäkringsmatematiska metoder. I den här masteruppsatsen undersöker vi förmågan att reservsätta med metoden \textit{gradient boosting}, en icke-parametrisk statistisk inlärningsmetod som har visat sig fungera mycket väl inom en rad andra områden vilket har gjort metoden mycket populär. Vi jämför denna metod med generaliserade linjära modeller(GLM) som är en av de vanliga metoderna vid reservsättning. Vi jämför modellerna med hjälp av ett dataset tillhandahålls av Länsförsäkringar AB. Modellerna implementerades med R. 80\% av detta dataset används för att träna modellerna och resterande 20\% används för att evaluera modellernas prediktionsförmåga på okänd data. Resultaten visar att GLM har ett lägre prediktionsfel. Gradient boosting kräver att ett antal hyperparametrar justeras manuellt för att få en välfungerande modell medan GLM inte kräver lika mycket korrigeringar varför den är mer praktiskt lämpad. Fördelen med att kunna modellerna komplexa förhållanden i data utnyttjas inte till fullo i denna uppsats då vi endast arbetar med sex prediktionsvariabler. Det är sannolikt att gradient boosting skulle ge bättre resultat med mer komplicerade datastrukturer.
Mann, Eric M. "A comparison of stochastic claim reserving methods." Kansas State University, 2011. http://hdl.handle.net/2097/13125.
Full textDepartment of Statistics
Haiyan Wang
Estimating unpaid liabilities for insurance companies is an extremely important aspect of insurance operations. Consistent underestimation can result in companies requiring more reserves which can lead to lower profits, downgraded credit ratings, and in the worst case scenarios, insurance company insolvency. Consistent overestimation can lead to inefficient capital allocation and a higher overall cost of capital. Due to the importance of these estimates and the variability of these unpaid liabilities, a multitude of methods have been developed to estimate these amounts. This paper compares several actuarial and statistical methods to determine which are relatively better at producing accurate estimates of unpaid liabilities. To begin, the Chain Ladder Method is introduced for those unfamiliar with it. Then a presentation of several Generalized Linear Model (GLM) methods, various Generalized Additive Model (GAM) methods, the Bornhuetter-Ferguson Method, and a Bayesian method that link the Chain Ladder and Bornhuetter-Ferguson methods together are introduced, with all of these methods being in some way connected to the Chain Ladder Method. Historical data from multiple lines of business compiled by the National Association of Insurance Commissioners is used to compare the methods across different loss functions to gain insight as to which methods produce estimates with the minimum loss and to gain a better understanding of the relative strengths and weaknesses of the methods. Key
Björkwall, Susanna. "Stochastic claims reserving in non-life insurance : Bootstrap and smoothing models." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-55347.
Full textLiu, Huijuan. "Stochastic claims reserving for methods which combine information from multiple data sets." Thesis, City University London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492349.
Full textVerrall, Richard John. "Stochastic models for triangular tables with applications to cohort data and claims reserving." Thesis, City University London, 1989. http://openaccess.city.ac.uk/7407/.
Full textBarnouski, Jebidiah Lee. "Using one-year claim development to chose a large claim reserving technique." Master's thesis, Instituto Superior de Economia e Gestão, 2016. http://hdl.handle.net/10400.5/11589.
Full textNeste relatório será também explicado ao seu leitor o que é que está na base da separação dos sinistros graves dos restantes, bem como dos métodos frequentemente utilizados para o cálculo de reservas para sinistros com danos corporais. Será também exposto o processo de gestão de sinistros graves actualmente utilizado em Portugal e nas restantes sucursais da Liberty. Para chegar à conclusão de qual o melhor método a sugerir serão primeiramente completados os triângulos tanto de pagamentos ocorridos como de frequências esperadas. As reservas agregadas serão depois obtidas utilizando três métodos diferentes, Chain Ladder, Cape Cod e Benktander. Por forma a estimar o desvio padrão associado a cada método utilizado serão simulados diferentes cenários e calculada a diferença entre as reservas agregadas obtidas para 2014 e 2015 (exceptuando o período de 2015 correspondente ao qual em 2014 não foi possível recolher valores de reservas). A esta técnica é dado o nome de OCD, isto é, The One-Year Claim Development. De entre os três métodos utilizados será eleito aquele cuja medida de sensibilidade para um ano (média dos desvios padrão obtidos) for menor, e consequentemente considerar-se-á esse o melhor método para tratar sinistros graves em Portugal. Devo ainda referir que a leitura e compreensão deste relatório pressupõe o conhecimento prévio das bases da actividade seguradora no ramo automóvel, bem como do processo de cálculo de reservas matemáticas.
This report will arrive at a conclusion by explaining to the reader the basic reasoning behind splitting large claims as well as the most common methods for BI reserving. It is assumed that the reader has fundamental understanding of the insurance industry, motor insurance and BI, and the reserving process. It is necessary to explain the practices used by Portugal and other Liberty International countries to form an opinion of those practices by applying them to Portugal's claim information. Furthermore, the question of whether to split large claims or not will be thoroughly evaluated. Finally, there will be an aggregate suggestion as to the best splitting practice and reserving methodology specific for Liberty Seguros Portugal. To do this, several shocked scenarios will be simulated. Additional large claims will be introduced to the total incurred claims triangle and large claim count triangles. The one-year claim development (OCD) will then be compared using different reserving methodologies, the Chain Ladder Method, Cape Cod Method, and Benktander Method. The one-year claim development is measured by the change in the aggregate reserve ultimate between 2014 and 2015 (excluding the 2015 cohort for which no aggregate reserve ultimate was available in 2014). The standard deviation of each method's one-year uncertainty will be calculated by computing the OCD of each method under the three shocked scenarios. The technique that yields the lowest average of standard deviations, called the one-year sensitivity measure by the author, will be selected as the best approach for handling large claims.
Happ, Sebastian Verfasser], and Michael [Akademischer Betreuer] [Merz. "Stochastic Claims Reserving under Consideration of Various Different Sources of Information / Sebastian Happ. Betreuer: Michael Merz." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1053811489/34.
Full textSloma, Przemyslaw. "Contribution to the weak convergence of empirical copula process : contribution to the stochastic claims reserving in general insurance." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066563/document.
Full textThe aim of this thesis is twofold. First, we concentrate on the study of weak convergence of weighted empirical copula processes. We provide sufficient conditions for this convergence to hold to a limiting Gaussian process. Our results are obtained in the framework of convergence in the Banach space $L^{p}$ ($1\leq p <\infty $). Statistical applications to goodness of fit (GOF) tests for copulas are given to illustrate these results. We pay special attention to GOF tests based on Cramér-von Mises type statistics. Second, we discuss the problem of stochastic claims reserving in general non-life insurance. Stochastic models are needed in order to assess the variability of the claims reserve. The starting point of this thesis is an observed inconsistency between the approaches used in practice and that suggested in the literature. To fill this gap, we present a general tool for measuring the uncertainty of reserves in the framework of ultimate (Chapter 3) and one-year time horizon (Chapter 4), based on the Chain-Ladder method
Moerup, Casper Jacob. "Prediction of claim cost in general insurance." Master's thesis, Instituto Superior de Economia e Gestão, 2019. http://hdl.handle.net/10400.5/18176.
Full textO trabalho seguinte foi realizado durante uma colocação de estágio na If Industrial P & C Insurance, em Estocolmo, na Suécia. Este relatório destaca e discute algumas das diferenças entre o seguro industrial e privado e percorre o processo de “Análise do Ano Normal”. A análise avalia os dados das reivindicações com o objetivo de projetar as perdas em um ano no futuro. A Teoria do Risco Colectivo e a Estimação da Máxima Verossimilhança são utilizadas para obter uma estimativa da gravidade das reivindicações. Além disso, as reservas são estimadas usando o método Chain-ladder. A seção final do relatório descreve uma análise de sensibilidade de um modelo para as reservas de ajuste de sinistros. Esta análise mostra o impacto da introdução de dois novos parâmetros, o que explica a parte já desenvolvida das reivindicações abertas.
The following work was carried out during an internship placement at If Industrial P&C Insurance in Stockholm, Sweden. This report highlights and discusses some of the differences between Industrial and Private insurance and walks through the “Normal Year Analysis”-procedure. The analysis assesses the claims data with the goal of projecting the losses one year into the future. Collective Risk Theory and Maximum Likelihood Estimation is used to obtain an estimate of the severity of the claims. In addition, the reserves are estimated, using the Chain-ladder method. The final section of the report describes a sensitivity analysis of a model for the Claims Adjustment Reserves. This analysis shows the impact of introducing two new parameters, which accounts for the already developed part of the open claims.
info:eu-repo/semantics/publishedVersion
Books on the topic "Claims reserving"
Wüthrich, Mario V., and Michael Merz, eds. Stochastic Claims Reserving Methods in Insurance. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781119206262.
Full textMichael, Merz, ed. Stochastic claims reserving methods in insurance. Chichester: John Wiley & Sons, 2008.
Find full textHesselager, Ole. On models and methods in claims reserving. Copenhagen: University of Copenhagen, 1988.
Find full textGao, Guangyuan. Bayesian Claims Reserving Methods in Non-life Insurance with Stan. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6.
Full textHindley, David. Claims Reserving in General Insurance. Cambridge University Press, 2017.
Find full textStochastic Claims Reserving Methods in Insurance. Wiley & Sons, Incorporated, John, 2008.
Find full textMerz, Michael, and Mario V. Wüthrich. Stochastic Claims Reserving Methods in Insurance. Wiley & Sons, Limited, John, 2015.
Find full textThrich, Mario V., and Michael Merz. Stochastic Claims Reserving Methods in Insurance. Wiley & Sons, Incorporated, John, 2008.
Find full textBook chapters on the topic "Claims reserving"
Schmidli, Hanspeter. "Claims Reserving." In Risk Theory, 71–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72005-0_4.
Full textCastellani, Gilberto, Massimo De Felice, and Franco Moriconi. "Claims Reserving in Non-life Insurance: A Fully Bayesian Model." In Communications in Computer and Information Science, 134–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31724-8_15.
Full textForte, Salvatore, Matteo Ialenti, and Marco Pirra. "Claims reserving uncertainty in the development of internal risk models." In Mathematical and Statistical Methods for Actuarial Sciences and Finance, 203–10. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2342-0_24.
Full textGao, Guangyuan. "Introduction." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 1–8. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_1.
Full textGao, Guangyuan. "Bayesian Fundamentals." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 9–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_2.
Full textGao, Guangyuan. "Advanced Bayesian Computation." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 35–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_3.
Full textGao, Guangyuan. "Bayesian Chain Ladder Models." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 73–115. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_4.
Full textGao, Guangyuan. "Bayesian Basis Expansion Models." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 117–52. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_5.
Full textGao, Guangyuan. "Multivariate Modelling Using Copulas." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 153–83. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_6.
Full textGao, Guangyuan. "Epilogue." In Bayesian Claims Reserving Methods in Non-life Insurance with Stan, 185–90. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3609-6_7.
Full textConference papers on the topic "Claims reserving"
Heberle, Jochen, and Anne Thomas. "Combining chain-ladder claims reserving with fuzzy numbers." In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). IEEE, 2013. http://dx.doi.org/10.1109/ifsa-nafips.2013.6608383.
Full textFaluközy, Tamás, Ildikó Ibolya Vitéz, and Miklós Arató. "Stochastic models for claims reserving in insurance business." In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0013.
Full textKartikasari, Mujiati Dwi, Adhitya Ronnie Effendie, and Yuciana Wilandari. "Reserving by detailed conditioning on individual claim." In STATISTICS AND ITS APPLICATIONS: Proceedings of the 2nd International Conference on Applied Statistics (ICAS II), 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4979428.
Full textRaeva, Elitsa, Velizar Pavlov, and Simona Georgieva. "Claim reserving estimation by using the chain ladder method." In SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040192.
Full textDE ANDRES-SÁNCHEZ, JORGE. "CLAIM RESERVING WITH FUZZY REGRESSION AND THE TWO WAYS OF ANOVA." In Proceedings of the MS'10 International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814324441_0017.
Full textMa, LiHua. "The Potential of Remaining Oil and Exploration Methods of the Second Class Reservior." In 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/msmee-17.2017.10.
Full textChen, Jiao, Yuan Li, Jianfeng Yu, and Wenbin Tang. "Profile Tolerances Modeling: A Unified Framework for Representing Geometric Variations for Line Profiles." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51154.
Full text