To see the other types of publications on this topic, follow the link: Class-D audio amplifier.

Journal articles on the topic 'Class-D audio amplifier'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Class-D audio amplifier.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kharis, Muhamad, Dhidik Prastiyanto, and Suryono Suryono. "Perbandingan Efisiensi Daya Penguat Audio Kelas AB dengan Penguat Audio Kelas D untuk Keperluan Sound System Lapangan." Jurnal Teknik Elektro 10, no. 2 (December 19, 2018): 54–58. http://dx.doi.org/10.15294/jte.v10i2.11183.

Full text
Abstract:
Class AB audio amplifiers are commonly used but the efficiency is 50%. While the efficiency of class D audio amplifiers is 90% but are rarely used. The purpose of this research is to know how much the power efficiency of field sound system between 1000 watts class AB amplifier and 900 watts class D amplifier. This study is a comparative study that compares different variables with the same sample. The results of power efficiency are obtained from the percentage comparison between the output power and the input power of each audio amplifier. The power efficiency of class D audio amplifiers with IRS D900 type larger than class AB audio amplifiers with Apex B500 type. The efficiency value of class D audio amplifiers at the highest output power reaches 87% while class AB audio amplifiers are only 73%.
APA, Harvard, Vancouver, ISO, and other styles
2

Teplechuk, Mykhaylo A., Anthony Gribben, and Christophe Amadi. "True Filterless Class-D Audio Amplifier." IEEE Journal of Solid-State Circuits 46, no. 12 (December 2011): 2784–93. http://dx.doi.org/10.1109/jssc.2011.2162913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cox, Stephen M., Meng Tong Tan, and Jun Yu. "A Second-Order Class-D Audio Amplifier." SIAM Journal on Applied Mathematics 71, no. 1 (January 2011): 270–87. http://dx.doi.org/10.1137/100788367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Murtianta, Budihardja. "PENGUAT KELAS D DENGAN METODE SUMMING INTEGRATOR." Elektrika 11, no. 2 (October 8, 2019): 12. http://dx.doi.org/10.26623/elektrika.v11i2.1693.

Full text
Abstract:
A class D amplifier is one in which the output transistors are operated as switches. When a transistor is off, the current through it is zero and when it is on, the voltage across it is small, ideally zero. Thus the power dissipation is very low, so it requires a smaller heat sink for the amplifier. Class D amplifier operation is based on analog principles and there is no digital encoding of the signal. Before the emergence of class D amplifiers, the standard classes were class A, class AB, class B, and class C. The classic method for generating signals driving a transistor MOSFET is to use a comparator. One input is driven by an incoming audio signal, and the other by a triangle wave or a sawtooth wave at the required switching frequency. The frequency of a triangular or sawtooth wave must be higher than the audio input. MOSFET transistors work in a complementary manner that operates as a switch. Triangle waves are usually generated by square waves fed to the integrator circuit. So the main part of processing audio signals into PWM (Pulse Width Modulation) is the integrator and comparator. In this paper, we will discuss the work of a class D amplifier system using the summing integrator method as its main part.
APA, Harvard, Vancouver, ISO, and other styles
5

Hanzlik, Tomasz. "Class D audio amplifier and method for compensation of power supply voltage influence on output audio signal in class D audio amplifier." Journal of the Acoustical Society of America 120, no. 5 (2006): 2400. http://dx.doi.org/10.1121/1.2395103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Yan Lei, Gao Feng Zhu, and Tie Bin Wu. "Control Techniques of Class D Audio Power Amplifier." Applied Mechanics and Materials 631-632 (September 2014): 422–26. http://dx.doi.org/10.4028/www.scientific.net/amm.631-632.422.

Full text
Abstract:
Although class D amplifier has the merits of high efficiency, a little heat and small Bulk, its distortion is larger than linear counterparts due to switching behaviour of power transistors. Its principle and several new pivotal control technologies were presented in this paper. In this way, efficiency of 90% can be achieved and the degree of the distortion can be less than 0.4%.
APA, Harvard, Vancouver, ISO, and other styles
7

Berkhout, M. "An integrated 200-w class-d audio amplifier." IEEE Journal of Solid-State Circuits 38, no. 7 (July 2003): 1198–206. http://dx.doi.org/10.1109/jssc.2003.813238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Si Min. "IC Design of the Band-Gap Reference and the Triangular Waveform Generator of Class D Audio Amplifier." Applied Mechanics and Materials 511-512 (February 2014): 757–63. http://dx.doi.org/10.4028/www.scientific.net/amm.511-512.757.

Full text
Abstract:
Class D audio amplifier can extend battery life for its small cubage and high efficiency. In connection with the advantages of Class D audio amplifier, a class D audio amplifier with high efficiency and low distortion is designed in this paper. A negative feedback is established to improve the linearity of the amplifier and power supply ripple rejection ratio. Minimizing the distortion of the system requires high-speed sampling. High-speed comparator is designed to meet this requirement. Moreover, the work requires that the chip has a band-gap reference with low temperature coefficient and high power supply rejection ratio.
APA, Harvard, Vancouver, ISO, and other styles
9

LIN, CHUN-WEI, and BING-SHIUN HSIEH. "THE MULTILEVEL TECHNIQUE FOR IMPROVING FILTERLESS CLASS-D AUDIO AMPLIFIERS." Journal of Circuits, Systems and Computers 23, no. 04 (April 2014): 1450047. http://dx.doi.org/10.1142/s0218126614500479.

Full text
Abstract:
Class-D amplifier features very high efficiency on power delivery because its switching operation consumes tiny static power on very low on-resistance. In this work, a multilevel technique is presented to improve total-harmonic-distortion (THD) and signal-to-noise-ratio (SNR) of pulse-width-modulation (PWM) filterless class-D amplifiers. The proposed method consists of a multilevel converter and a time division adder (TDA) followed by PWM modulator. The PWM-modulated signal is arranged into several time divisions and then integrated and encoded to a set of parallel control signals for multilevel converter. Instead of the two-level PWM signal, the output signal of a multilevel converter is as stairway with less transient variation. The performance of THD and SNR are therefore improved because the instantaneous variation of signal is greatly reduced. To demonstrate the proposed method, a filterless audio amplifier was implemented by TSMC 5 V–0.35 μm CMOS technology. With 8 Ω speaker and 550 mW maximum power, experiment results show that the THD, SNR and power efficiency can be achieved over 0.02%, 85 dB and 85%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Pillonnet, Gael, Remy Cellier, Angelo Nagari, Philippe Lombard, and Nacer Abouchi. "Sliding mode audio class-D amplifier for portable devices." Analog Integrated Circuits and Signal Processing 74, no. 2 (December 7, 2012): 439–51. http://dx.doi.org/10.1007/s10470-012-9989-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jung, Sang-Hwa, Nam-In Kim, and Gyu-Hyeong Cho. "Class D audio power amplifier with fine hysteresis control." Electronics Letters 38, no. 22 (2002): 1302. http://dx.doi.org/10.1049/el:20020936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhangming, Zhu, Liu Lianxi, Yang Yintang, and Lei Han. "A high efficiency PWM CMOS class-D audio power amplifier." Journal of Semiconductors 30, no. 2 (February 2009): 025001. http://dx.doi.org/10.1088/1674-4926/30/2/025001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Zi Yi, Xing Xing Jing, and Wen Xi. "Design of a Sawtooth Generator Applied for Class-D Audio Power Amplifier." Applied Mechanics and Materials 241-244 (December 2012): 693–97. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.693.

Full text
Abstract:
A systematic introduction to principles and advantages of the class-D audio amplifier based on pulse width modulation (PWM) are presented in this paper. The traditional sawtooth generator needs voltage-regulator tube to server as a core component. Against to such a disadvantage a simple way based on the charging and discharging capacitance is proposed to achieve sawtooth generator. The circuit design is based on SIMC 0.18um process. Spectre simulation results show that the sawtooth generator's performance is good. And it suits for the design of class-D audio power amplifier chip.
APA, Harvard, Vancouver, ISO, and other styles
14

El khadiri, Karim, and Hassan Qjidaa. "Design of a Class-D Audio Amplifier With Analog Volume Control for Mobile Applications." International Journal of Electronics and Telecommunications 62, no. 2 (June 1, 2016): 187–96. http://dx.doi.org/10.1515/eletel-2016-0026.

Full text
Abstract:
Abstract A class-D audio amplifier with analog volume control (AVC) for portable applications is proposed in this paper. The proposed class-D consist of two sections. First section is an analog volume control which consists of an integrator, an analog MUX and a programmable gain amplifier (PGA). The AVC is implemented with three analog inputs (Audio, Voice, FM). Second section is a driver which consists of a ramp generator, a comparator, a level shifter and a gate driver. The driver is designed to obtain a low distortion and a high efficiency. Designed with 0.18 um 1P6M CMOS technology, the class-D audio amplifier with AVC achieves a total root-mean-square (RMS) output power of 0.5W, a total harmonic distortion plus noise (THD+N) at the 8-Ω load less than 0.06% and a power efficiency of 90% with a total area of 1.74 mm2.
APA, Harvard, Vancouver, ISO, and other styles
15

Guo, Yu, and Wei Li. "Study of Harmonic Suppression Method Based on the Class D Amplifier." Applied Mechanics and Materials 273 (January 2013): 384–88. http://dx.doi.org/10.4028/www.scientific.net/amm.273.384.

Full text
Abstract:
Class D power amplifier has the advantages of simple structure, small volume, high efficiency, large output power, and small distortion, therefore is applied widely in the audio power amplifier integrated circuit. But because of existing higher harmonic components, the total harmonic distortion (THD) is high. In this paper, for the characteristics of class D amplifier, a feed-forward control circuit is added to the amplifier output terminal, and a composite filter is used to inhibit output harmonics further. The simulation results show that, the method can reduce the system THD effectively and improve the performance of the amplifier.
APA, Harvard, Vancouver, ISO, and other styles
16

Wei, Cong, Jianhan Wu, Rongshan Wei, and Minghua He. "High-Fidelity and High-Efficiency Digital Class-D Audio Power Amplifier." Journal of Electrical and Computer Engineering 2021 (April 13, 2021): 1–10. http://dx.doi.org/10.1155/2021/5533745.

Full text
Abstract:
This study presents a high-fidelity and high-efficiency digital class-D audio power amplifier (CDA), which consists of digital and analog modules. To realize a compatible digital input, a fully digital audio digital-to-analog converter (DAC) is implemented on MATLAB and Xilinx System Generator, which consists of a 16x interpolation filter, a fourth-order four-bit quantized delta-sigma (ΔΣ) modulator, and a uniform-sampling pulse width modulator. The CDA utilizes the closed-loop negative feedback and loop-filtering technologies to minimize distortion. The audio DAC, which is based on a field-programmable gate array, consumes 0.128 W and uses 7100 LUTs, which achieves 11.2% of the resource utilization rate. The analog module is fabricated in a 0.18 µm BCD technology. The postlayout simulation results show that the CDA delivers an output power of 1 W with 93.3% efficiency to a 4 Ω speaker and achieves 0.0138% of the total harmonic distortion (THD) with a transient noise for a 1 kHz input sinusoidal test tone and 3.6 V supply. The output power reaches up to 2.73 W for 1% THD (with transient noise). The proposed amplifier occupies an active area of 1 mm2.
APA, Harvard, Vancouver, ISO, and other styles
17

Wagner, Randall M., and Yogi L. Mistry. "Class ‘D’ audio speaker amplifier circuit with state variable feedback control." Journal of the Acoustical Society of America 98, no. 6 (December 1995): 3024. http://dx.doi.org/10.1121/1.413883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cox, S. M., C. K. Lam, and M. T. Tan. "A second-order PWM-in/PWM-out class-D audio amplifier." IMA Journal of Applied Mathematics 78, no. 2 (July 27, 2011): 159–80. http://dx.doi.org/10.1093/imamat/hxr042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Luo, Shumeng, and Dongmei Li. "A digital input class-D audio amplifier with sixth-order PWM." Journal of Semiconductors 34, no. 11 (November 2013): 115001. http://dx.doi.org/10.1088/1674-4926/34/11/115001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hajhashemkhani, Mohammad Mahdi, and Abdalhossein Rezai. "High-efficiency Class-D Audio Amplifier using Second Order Delta Sigma Modulation." Asia-Pacific Journal of Advanced Research in Music, Arts, Culture and Literature 1, no. 1 (November 30, 2016): 35–42. http://dx.doi.org/10.21742/ajmacl.2016.1.1.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Lianxi, Shijie Deng, Yue Niu, Zhangming Zhu, and Yintang Yang. "A novel 3D filter-less class-D audio amplifier with stereo enhancement." IETE Journal of Research 59, no. 5 (2013): 515. http://dx.doi.org/10.4103/0377-2063.123757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kyoungsik Kang, Jeongjin Roh, Youngkil Choi, Hyungdong Roh, Hyunsuk Nam, and Songjun Lee. "Class-D Audio Amplifier Using 1-Bit Fourth-Order Delta-Sigma Modulation." IEEE Transactions on Circuits and Systems II: Express Briefs 55, no. 8 (August 2008): 728–32. http://dx.doi.org/10.1109/tcsii.2008.922457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hajhashemkhani, Mohammad Mahdi, Abdalhossein Rezai, and Ahmad Karimi. "Design of Novel Low-Power and High-Efficiency Class-d Audio Amplifier." International Journal of Control and Automation 10, no. 3 (March 31, 2017): 53–64. http://dx.doi.org/10.14257/ijca.2017.10.3.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hajhashemkhani, Mohammad Mahdi, Ahmad Karimi, and Abdalhossein Rezai. "Design of Novel Low-power and High-efficiency Class-D Audio Amplifier." International Journal of Control and Automation 10, no. 4 (April 30, 2017): 259–70. http://dx.doi.org/10.14257/ijca.2017.10.4.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Huffenus, A., and G. Pillonnet. "Digitally Assisted Analog: An Anti-Clipping Function for Class-D Audio Amplifier." Journal of Low Power Electronics 11, no. 1 (March 1, 2015): 74–83. http://dx.doi.org/10.1166/jolpe.2015.1360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jiang, Xicheng, Jungwoo Song, Darwin Cheung, Minsheng Wang, and Sasi Kumar Arunachalam. "Integrated Class-D Audio Amplifier With 95% Efficiency and 105 dB SNR." IEEE Journal of Solid-State Circuits 49, no. 11 (November 2014): 2387–96. http://dx.doi.org/10.1109/jssc.2014.2335713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Noh, Jinho, Jisoo Lee, and Changsik Yoo. "An analog sigma-delta modulator with shared operational amplifier for low-power class-D audio amplifier." IEICE Electronics Express 12, no. 17 (2015): 20150562. http://dx.doi.org/10.1587/elex.12.20150562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Li, Li, Hong-jie Li, and Yan-jing Sun. "Improved Error Correction Methods for Filterless Digital Class D Audio Power Amplifier Based on FCLNF." Mathematical Problems in Engineering 2020 (August 12, 2020): 1–9. http://dx.doi.org/10.1155/2020/5914062.

Full text
Abstract:
Aiming at correcting the error caused by the nonlinear and power supply noise of the bridge-tied-load (BTL) power stage of the filterless digital class D power amplifier, an error correction method was proposed based on feedforward power supply noise suppression (FFPSNS) and first-order closed loop negative feedback (FCLNF) techniques. This method constructed the first-order LCLNF loop for the power stage and further reduced the impact of the power supply noise on the power amplifier output by using FFPSNS technology to introduce the power supply noise into the feedback loop at the same time. The 0.35 μm CMOS process is used for analysis and comparison in Cadence. Cadence simulation results indicate that PSRR at the power supply noise frequency of 200 Hz is improved with 36.02 dB. The power supply induced intermodulation distortion (PS-IMD) components are decreased by approximately 15.57 dB and the signal-to-noise ratio (SNR) of the power amplifier is increased by 17 dB. The total harmonic distortion + noise (THD + N) of the power amplifier is reduced to 0.02% by FCLNF + FFPSNS.
APA, Harvard, Vancouver, ISO, and other styles
29

Lee, Hyungjin, Hyunsun Mo, Wanil Lee, Mingi Jeong, Jaehoon Jeong, and Daejeong Kim. "Phase-shift self-oscillating class-D audio amplifier with multiple-pole feedback filter." IEICE Electronics Express 8, no. 16 (2011): 1354–60. http://dx.doi.org/10.1587/elex.8.1354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, Xicheng. "Fundamentals of Audio Class D Amplifier Design: A Review of Schemes and Architectures." IEEE Solid-State Circuits Magazine 9, no. 3 (2017): 14–25. http://dx.doi.org/10.1109/mssc.2017.2712368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Hyoung-sik, Sung-wook Jung, Hwan-mok Jung, Jang-kyoo Shin, and Pyung Choi. "Low cost implementation of filterless class D audio amplifier with constant switching frequency." IEEE Transactions on Consumer Electronics 52, no. 4 (November 2006): 1442–46. http://dx.doi.org/10.1109/tce.2006.273168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Torres, Joselyn, Adrian Colli-Menchi, Miguel Angel Rojas-Gonzalez, and Edgar Sanchez-Sinencio. "A Low-Power High-PSRR Clock-Free Current-Controlled Class-D Audio Amplifier." IEEE Journal of Solid-State Circuits 46, no. 7 (July 2011): 1553–61. http://dx.doi.org/10.1109/jssc.2011.2143750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schnick, O., and W. Mathis. "Realisierung eines verzerrungsarmen Open-Loop Klasse-D Audio-Verstärkers mit SB-ZePoC." Advances in Radio Science 5 (June 13, 2007): 225–30. http://dx.doi.org/10.5194/ars-5-225-2007.

Full text
Abstract:
Abstract. In den letzten Jahren hat die Entwicklung von Klasse-D Verstärkern für Audio-Anwendungen ein vermehrtes Interesse auf sich gezogen. Eine Motivation hierfür liegt in der mit dieser Technik extrem hohen erzielbaren Effizienz von über 90%. Die Signale, die Klasse-D Verstärker steuern, sind binär. Immer mehr Audio-Signale werden entweder digital gespeichert (CD, DVD, MP3) oder digital übermittelt (Internet, DRM, DAB, DVB-T, DVB-S, GMS, UMTS), weshalb eine direkte Umsetzung dieser Daten in ein binäres Steuersignal ohne vorherige konventionelle D/A-Wandlung erstrebenswert erscheint. Die klassischen Pulsweitenmodulationsverfahren führen zu Aliasing-Komponenten im Audio-Basisband. Diese Verzerrungen können nur durch eine sehr hohe Schaltfrequenz auf ein akzeptables Maß reduziert werden. Durch das von der Forschungsgruppe um Prof. Mathis vorgestellte SB-ZePoC Verfahren (Zero Position Coding with Separated Baseband) wird diese Art der Signalverzerrung durch Generierung eines separierten Basisbands verhindert. Deshalb können auch niedrige Schaltfrequenzen gewählt werden. Dadurch werden nicht nur die Schaltverluste, sondern auch Timing-Verzerrungen verringert, die durch die nichtideale Schaltendstufe verursacht werden. Diese tragen einen großen Anteil zu den gesamten Verzerrungen eines Klasse-D Verstärkers bei. Mit dem SB-ZePoC Verfahren lassen sich verzerrungsarme Open-Loop Klasse-D Audio-Verstärker realisieren, die ohne aufwändige Gegenkopplungsschleifen auskommen. Class-D amplifiers are suiteble for amplification of audio signals. One argument is their high efficiency of 90% and more. Today most of the audio signals are stored or transmitted in digital form. A digitally controlled Class-D amplifier can be directly driven with coded (modulated) data. No separate D/A conversion is needed. Classical modulation schemes like Pulse-Width-Modulation (PWM) cause aliasing. So a very high switching rate is required to minimize the aliasing component within the signal band. This paper shows a first implementation of the new SB-ZePoC modulation scheme (Zero Position Coding with Separated Baseband), which allows the generation of a binary signal with separated baseband. Therefore Class-D amplifiers using SB-ZePoC can be run with very low switching rates. Some benefits and problems in the design process because of low switching rates will be discussed. Measurements of a realtime implementation will be presented.
APA, Harvard, Vancouver, ISO, and other styles
34

Weber, M., T. Vennemann, and W. Mathis. "Increasing the time resolution of a pulse width modulator in a class D power amplifier by using delay lines." Advances in Radio Science 12 (November 10, 2014): 91–94. http://dx.doi.org/10.5194/ars-12-91-2014.

Full text
Abstract:
Abstract. In this paper, we present a method to increase the time resolution of a pulse width modulator by using delay lines. The modulator is part of an open loop class D power amplifier, which uses the ZePoC algorithm to code the audio signal which is amplified in the class D power stage. If the time resolution of the pulse width modulator is high enough, ZePoC could also be used to build an high accuracy AC power standard, because of its open loop property. With the presented method the time resolution theoretically could be increased by a factor of 16, which means here the time resolution will be enhanced from 5 ns to 312.5 ps.
APA, Harvard, Vancouver, ISO, and other styles
35

Ming, Xin, Xiao-min Zhang, Zhuo Wang, and Bo Zhang. "A 2.65 W high-fidelity filterless class D audio amplifier using multiple loop filters." Analog Integrated Circuits and Signal Processing 74, no. 2 (December 1, 2012): 417–23. http://dx.doi.org/10.1007/s10470-012-9985-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hussein, Ahmed I., Ahmed Nader Mohieldin, Faisal Hussien, and Ahmed Eladawy. "A Low-Distortion High-Efficiency Class-D Audio Amplifier Based on Sliding Mode Control." IEEE Transactions on Circuits and Systems II: Express Briefs 63, no. 8 (August 2016): 713–17. http://dx.doi.org/10.1109/tcsii.2016.2531126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Jia-Ming, Shih-Hsiung Chien, and Tai-Haur Kuo. "A 100 W 5.1-Channel Digital Class-D Audio Amplifier With Single-Chip Design." IEEE Journal of Solid-State Circuits 47, no. 6 (June 2012): 1344–54. http://dx.doi.org/10.1109/jssc.2012.2188465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dooper, Lûtsen, and Marco Berkhout. "A 3.4 W Digital-In Class-D Audio Amplifier in 0.14 $\mu $m CMOS." IEEE Journal of Solid-State Circuits 47, no. 7 (July 2012): 1524–34. http://dx.doi.org/10.1109/jssc.2012.2191683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Balmelli, Pio, John M. Khoury, Eduardo Viegas, Paulo Santos, Vitor Pereira, Jeffrey Alderson, and Richard Beale. "A Low-EMI 3-W Audio Class-D Amplifier Compatible With AM/FM Radio." IEEE Journal of Solid-State Circuits 48, no. 8 (August 2013): 1771–82. http://dx.doi.org/10.1109/jssc.2013.2259011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yu, Shiang-Hwua, and Ming-Hung Tseng. "Optimal Control of a Nine-Level Class-D Audio Amplifier Using Sliding-Mode Quantization." IEEE Transactions on Industrial Electronics 58, no. 7 (July 2011): 3069–76. http://dx.doi.org/10.1109/tie.2010.2077611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lee, Junghan, Tino Copani, Terry Mayhugh, Bhaskar Aravind, Sayfe Kiaei, and Bertan Bakkaloglu. "A 280 mW, 0.07% THD+N class-D audio amplifier using a frequency-domain quantizer." Analog Integrated Circuits and Signal Processing 72, no. 1 (December 14, 2011): 173–86. http://dx.doi.org/10.1007/s10470-011-9813-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Shang-Hsien, Yuan-Han Yang, Ke-Horng Chen, Ying-Hsi Lin, Tsung-Yen Tsai, Shian-Ru Lin, and Chao-Cheng Lee. "A Low-THD Class-D Audio Amplifier With Dual-Level Dual-Phase Carrier Pulsewidth Modulation." IEEE Transactions on Industrial Electronics 62, no. 11 (November 2015): 7181–90. http://dx.doi.org/10.1109/tie.2015.2448518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rojas-Gonz�lez, Miguel, and Edgar S�nchez-Sinencio. "Design of a Class D Audio Amplifier IC Using Sliding Mode Control and Negative Feedback." IEEE Transactions on Consumer Electronics 53, no. 2 (2007): 609–17. http://dx.doi.org/10.1109/tce.2007.381736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lu, Jingxue, and Ranjit Gharpurey. "Design and Analysis of a Self-Oscillating Class D Audio Amplifier Employing a Hysteretic Comparator." IEEE Journal of Solid-State Circuits 46, no. 10 (October 2011): 2336–49. http://dx.doi.org/10.1109/jssc.2011.2161415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bakker, Robert, and Maeve Duffy. "Gapped and Un-gapped Filter Inductor Designs for a 500 WRMS Class-D Audio Amplifier." Journal of the Audio Engineering Society 68, no. 12 (January 14, 2021): 926–37. http://dx.doi.org/10.17743/jaes.2020.0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kang, Minchul, Hyungchul Kim, Jehyeon Gu, Wonseob Lim, Junghyun Ham, Hearyun Jung, and Youngoo Yang. "Low-Power and High-Efficiency Class-D Audio Amplifier Using Composite Interpolation Filter for Digital Modulators." JSTS:Journal of Semiconductor Technology and Science 14, no. 1 (February 28, 2014): 109–16. http://dx.doi.org/10.5573/jsts.2014.14.1.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, S. C., V. C. C. Lin, K. Nandhasri, and J. Ngarmnil. "New high-efficiency 2.5 V/0.45 W RWDM class-D audio amplifier for portable consumer electronics." IEEE Transactions on Circuits and Systems I: Regular Papers 52, no. 9 (September 2005): 1767–74. http://dx.doi.org/10.1109/tcsi.2005.852500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chang, Chih-Min, and Jieh-Tsorng Wu. "A 95-dBA DR Digital Audio Class-D Amplifier Using a Calibrated Digital-to-Pulse Converter." IEEE Transactions on Circuits and Systems I: Regular Papers 64, no. 5 (May 2017): 1106–17. http://dx.doi.org/10.1109/tcsi.2016.2634016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sobaszek, Miroslaw. "Self-Tuned Class-D Audio Amplifier With Post-Filter Digital Feedback Implemented on Digital Signal Controller." IEEE Transactions on Circuits and Systems I: Regular Papers 67, no. 3 (March 2020): 797–805. http://dx.doi.org/10.1109/tcsi.2019.2955064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhou, Zekun, Yue Shi, Xin Ming, Bo Zhang, Zhaoji Li, and Zao Chen. "Modelling and analysis of a high-performance Class D audio amplifier using unipolar pulse-width-modulation." International Journal of Electronics 99, no. 2 (February 2012): 163–77. http://dx.doi.org/10.1080/00207217.2011.623270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography