Journal articles on the topic 'Class imbalance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Class imbalance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hosen, Md Saikat, and Sai Srujan Gutlapalli. "A Study of Innovative Class Imbalance Dataset Software Defect Prediction Methods." Asian Journal of Applied Science and Engineering 10, no. 1 (December 10, 2021): 52–55. http://dx.doi.org/10.18034/ajase.v10i1.52.
Full textDube, Lindani, and Tanja Verster. "Enhancing classification performance in imbalanced datasets: A comparative analysis of machine learning models." Data Science in Finance and Economics 3, no. 4 (2023): 354–79. http://dx.doi.org/10.3934/dsfe.2023021.
Full textZhang, Linbin, Caiguang Zhang, Sinong Quan, Huaxin Xiao, Gangyao Kuang, and Li Liu. "A Class Imbalance Loss for Imbalanced Object Recognition." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13 (2020): 2778–92. http://dx.doi.org/10.1109/jstars.2020.2995703.
Full textXue, Jie, and Jinwei Ma. "Extreme Sample Imbalance Classification Model Based on Sample Skewness Self-Adaptation." Symmetry 15, no. 5 (May 14, 2023): 1082. http://dx.doi.org/10.3390/sym15051082.
Full textMunguía Mondragón, Julio Cesar, Eréndira Rendón Lara, Roberto Alejo Eleuterio, Everardo Efrén Granda Gutirrez, and Federico Del Razo López. "Density-Based Clustering to Deal with Highly Imbalanced Data in Multi-Class Problems." Mathematics 11, no. 18 (September 21, 2023): 4008. http://dx.doi.org/10.3390/math11184008.
Full textLango, Mateusz. "Tackling the Problem of Class Imbalance in Multi-class Sentiment Classification: An Experimental Study." Foundations of Computing and Decision Sciences 44, no. 2 (June 1, 2019): 151–78. http://dx.doi.org/10.2478/fcds-2019-0009.
Full textJuba, Brendan, and Hai S. Le. "Precision-Recall versus Accuracy and the Role of Large Data Sets." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4039–48. http://dx.doi.org/10.1609/aaai.v33i01.33014039.
Full textHartono, Hartono, Erianto Ongko, and Yeni Risyani. "Combining feature selection and hybrid approach redefinition in handling class imbalance and overlapping for multi-class imbalanced." Indonesian Journal of Electrical Engineering and Computer Science 21, no. 3 (March 10, 2021): 1513. http://dx.doi.org/10.11591/ijeecs.v21.i3.pp1513-1522.
Full textDube, Lindani, and Tanja Verster. "Interpretability of the random forest model under class imbalance." Data Science in Finance and Economics 4, no. 3 (2024): 446–68. http://dx.doi.org/10.3934/dsfe.2024019.
Full textLin, Hsien-I., and Mihn Cong Nguyen. "Boosting Minority Class Prediction on Imbalanced Point Cloud Data." Applied Sciences 10, no. 3 (February 2, 2020): 973. http://dx.doi.org/10.3390/app10030973.
Full textNajeeb, Miftah Asharaf, and Alhaam Alariyibi. "Imbalanced Dataset Effect on CNN-Based Classifier Performance for Face Recognition." International Journal of Artificial Intelligence & Applications 15, no. 1 (January 29, 2024): 25–41. http://dx.doi.org/10.5121/ijaia.2024.15102.
Full textSowah, Robert A., Moses A. Agebure, Godfrey A. Mills, Koudjo M. Koumadi, and Seth Y. Fiawoo. "New Cluster Undersampling Technique for Class Imbalance Learning." International Journal of Machine Learning and Computing 6, no. 3 (June 2016): 205–14. http://dx.doi.org/10.18178/ijmlc.2016.6.3.599.
Full textPatel, Harshita, Dharmendra Singh Rajput, G. Thippa Reddy, Celestine Iwendi, Ali Kashif Bashir, and Ohyun Jo. "A review on classification of imbalanced data for wireless sensor networks." International Journal of Distributed Sensor Networks 16, no. 4 (April 2020): 155014772091640. http://dx.doi.org/10.1177/1550147720916404.
Full textGautam, Subrat, and Ratul Dey. "METHODS FOR CLASSIFICATION OF IMBALANCED DATA: A REVIEW." International Research Journal of Computer Science 9, no. 4 (April 30, 2022): 89–95. http://dx.doi.org/10.26562/irjcs.2021.v0904.004.
Full textMegahed, Fadel M., Ying-Ju Chen, Aly Megahed, Yuya Ong, Naomi Altman, and Martin Krzywinski. "The class imbalance problem." Nature Methods 18, no. 11 (October 15, 2021): 1270–72. http://dx.doi.org/10.1038/s41592-021-01302-4.
Full textNarwane, Swati V., and Sudhir D. Sawarkar. "Effects of Class Imbalance Using Machine Learning Algorithms." International Journal of Applied Evolutionary Computation 12, no. 1 (January 2021): 1–17. http://dx.doi.org/10.4018/ijaec.2021010101.
Full textBrzezinski, Dariusz, Leandro L. Minku, Tomasz Pewinski, Jerzy Stefanowski, and Artur Szumaczuk. "The impact of data difficulty factors on classification of imbalanced and concept drifting data streams." Knowledge and Information Systems 63, no. 6 (April 1, 2021): 1429–69. http://dx.doi.org/10.1007/s10115-021-01560-w.
Full textSun, Jie, Xin Liu, Wenguo Ai, and Qianyuan Tian. "Dynamic financial distress prediction based on class-imbalanced data batches." International Journal of Financial Engineering 08, no. 03 (May 14, 2021): 2150026. http://dx.doi.org/10.1142/s2424786321500262.
Full textLee, Heewon, and Sangtae Ahn. "Improving the Performance of Object Detection by Preserving Balanced Class Distribution." Mathematics 11, no. 21 (October 27, 2023): 4460. http://dx.doi.org/10.3390/math11214460.
Full textHakim, Arif Rahman, Kalamullah Ramli, Muhammad Salman, and Esti Rahmawati Agustina. "Improving Model Performance for Predicting Exfiltration Attacks Through Resampling Strategies." IIUM Engineering Journal 26, no. 1 (January 10, 2025): 420–36. https://doi.org/10.31436/iiumej.v26i1.3547.
Full textThamrin, Sri Astuti, Dian Sidik, Hedi Kuswanto, Armin Lawi, and Ansariadi Ansariadi. "Exploration of Obesity Status of Indonesia Basic Health Research 2013 With Synthetic Minority Over-Sampling Techniques." Indonesian Journal of Statistics and Its Applications 5, no. 1 (March 31, 2021): 75–91. http://dx.doi.org/10.29244/ijsa.v5i1p75-91.
Full textPalli, Abdul Sattar, Jafreezal Jaafar, Abdul Rehman Gilal, Aeshah Alsughayyir, Heitor Murilo Gomes, Abdullah Alshanqiti, and Mazni Omar. "Online Machine Learning from Non-stationary Data Streams in the Presence of Concept Drift and Class Imbalance: A Systematic Review." Journal of Information and Communication Technology 23, no. 1 (January 30, 2024): 105–39. http://dx.doi.org/10.32890/jict2024.23.1.5.
Full textDr. P, Ratna Babu, and Lokaiah P. "An effective noise reduction technique for class imbalance classification." International Journal of Psychosocial Rehabilitation 24, no. 04 (February 28, 2020): 985–90. http://dx.doi.org/10.37200/ijpr/v24i4/pr201070.
Full textFu, Cui, Shuisheng Zhou, Dan Zhang, and Li Chen. "Relative Density-Based Intuitionistic Fuzzy SVM for Class Imbalance Learning." Entropy 25, no. 1 (December 24, 2022): 34. http://dx.doi.org/10.3390/e25010034.
Full textMalhotra, Ruchika, and Kusum Lata. "Using Ensembles for Class-Imbalance Problem to Predict Maintainability of Open Source Software." International Journal of Reliability, Quality and Safety Engineering 27, no. 05 (March 6, 2020): 2040011. http://dx.doi.org/10.1142/s0218539320400112.
Full textHan, Meng, Chunpeng Li, Fanxing Meng, Feifei He, and Ruihua Zhang. "An Adaptive Active Learning Method for Multiclass Imbalanced Data Streams with Concept Drift." Applied Sciences 14, no. 16 (August 15, 2024): 7176. http://dx.doi.org/10.3390/app14167176.
Full textWANG, SHUO, LEANDRO L. MINKU, and XIN YAO. "ONLINE CLASS IMBALANCE LEARNING AND ITS APPLICATIONS IN FAULT DETECTION." International Journal of Computational Intelligence and Applications 12, no. 04 (December 2013): 1340001. http://dx.doi.org/10.1142/s1469026813400014.
Full textBATUWITA, RUKSHAN, and VASILE PALADE. "ADJUSTED GEOMETRIC-MEAN: A NOVEL PERFORMANCE MEASURE FOR IMBALANCED BIOINFORMATICS DATASETS LEARNING." Journal of Bioinformatics and Computational Biology 10, no. 04 (July 23, 2012): 1250003. http://dx.doi.org/10.1142/s0219720012500035.
Full textLaw, Theng-Jia, Choo-Yee Ting, Hu Ng, Hui-Ngo Goh, and Albert Quek. "Ensemble-SMOTE: Mitigating Class Imbalance in Graduate on Time Detection." Journal of Informatics and Web Engineering 3, no. 2 (June 13, 2024): 229–50. http://dx.doi.org/10.33093/jiwe.2024.3.2.17.
Full textCruz, Rafael M. O., Mariana A. Souza, Robert Sabourin, and George D. C. Cavalcanti. "Dynamic Ensemble Selection and Data Preprocessing for Multi-Class Imbalance Learning." International Journal of Pattern Recognition and Artificial Intelligence 33, no. 11 (October 2019): 1940009. http://dx.doi.org/10.1142/s0218001419400093.
Full textCleofas Sánchez, Laura, Magali Guzmán Escobedo, Rosa María Valdovinos Rosas, Cornelio Yáñez Márquez, and Oscar Camacho Nieto. "Using hybrid associative classifier with translation (HACT) for studying imbalanced data sets." Ingeniería e Investigación 32, no. 1 (January 1, 2012): 53–57. http://dx.doi.org/10.15446/ing.investig.v32n1.28522.
Full text., Hartono, Opim Salim Sitompul, Erna Budhiarti Nababan, Tulus ., Dahlan Abdullah, and Ansari Saleh Ahmar. "A New Diversity Technique for Imbalance Learning Ensembles." International Journal of Engineering & Technology 7, no. 2.14 (April 8, 2018): 478. http://dx.doi.org/10.14419/ijet.v7i2.11251.
Full textAlfhaid, Mashaal A., and Manal Abdullah. "Classification of Imbalanced Data Stream: Techniques and Challenges." Transactions on Machine Learning and Artificial Intelligence 9, no. 2 (April 23, 2021): 36–52. http://dx.doi.org/10.14738/tmlai.92.9964.
Full textLiu, Zhenyan, Yifei Zeng, Pengfei Zhang, Jingfeng Xue, Ji Zhang, and Jiangtao Liu. "An Imbalanced Malicious Domains Detection Method Based on Passive DNS Traffic Analysis." Security and Communication Networks 2018 (June 20, 2018): 1–7. http://dx.doi.org/10.1155/2018/6510381.
Full textCheng, Ruihan, Longfei Zhang, Shiqi Wu, Sen Xu, Shang Gao, and Hualong Yu. "Probability Density Machine: A New Solution of Class Imbalance Learning." Scientific Programming 2021 (September 9, 2021): 1–14. http://dx.doi.org/10.1155/2021/7555587.
Full textChen, Jiqiang, Jie Wan, and Litao Ma. "Regularized Discrete Optimal Transport for Class-Imbalanced Classifications." Mathematics 12, no. 4 (February 7, 2024): 524. http://dx.doi.org/10.3390/math12040524.
Full textFu, Guang-Hui, Jia-Bao Wang, Min-Jie Zong, and Lun-Zhao Yi. "Feature Ranking and Screening for Class-Imbalanced Metabolomics Data Based on Rank Aggregation Coupled with Re-Balance." Metabolites 11, no. 6 (June 14, 2021): 389. http://dx.doi.org/10.3390/metabo11060389.
Full textKaope, Cherfly, and Yoga Pristyanto. "The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance." MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 22, no. 2 (March 1, 2023): 227–38. http://dx.doi.org/10.30812/matrik.v22i2.2515.
Full textChoudhary, Roshani, and Sanyam Shukla. "Reduced-Kernel Weighted Extreme Learning Machine Using Universum Data in Feature Space (RKWELM-UFS) to Handle Binary Class Imbalanced Dataset Classification." Symmetry 14, no. 2 (February 14, 2022): 379. http://dx.doi.org/10.3390/sym14020379.
Full textAli, Baraa Saeed, Nabil Sarhan, and Mohammed Alawad. "On the Robustness of Compressed Models with Class Imbalance." Computers 13, no. 11 (November 16, 2024): 297. http://dx.doi.org/10.3390/computers13110297.
Full textLi, Zhuang, Jingyan Qin, Xiaotong Zhang, and Yadong Wan. "Addressing Class Overlap under Imbalanced Distribution: An Improved Method and Two Metrics." Symmetry 13, no. 9 (September 7, 2021): 1649. http://dx.doi.org/10.3390/sym13091649.
Full textNadeem, Khurram, and Mehdi-Abderrahman Jabri. "Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data." PLOS ONE 18, no. 1 (January 17, 2023): e0280258. http://dx.doi.org/10.1371/journal.pone.0280258.
Full textTiwari, Himani. "Improvising Balancing Methods for Classifying Imbalanced Data." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1535–43. http://dx.doi.org/10.22214/ijraset.2021.38225.
Full textEmamipour, Sajad, Rasoul Sali, and Zahra Yousefi. "A Multi-Objective Ensemble Method for Class Imbalance Learning." International Journal of Big Data and Analytics in Healthcare 2, no. 1 (January 2017): 16–34. http://dx.doi.org/10.4018/ijbdah.2017010102.
Full textLin, Ismael, Octavio Loyola-González, Raúl Monroy, and Miguel Angel Medina-Pérez. "A Review of Fuzzy and Pattern-Based Approaches for Class Imbalance Problems." Applied Sciences 11, no. 14 (July 8, 2021): 6310. http://dx.doi.org/10.3390/app11146310.
Full textRifqi Fitriadi and Deni Mahdiana. "SYSTEMATIC LITERATURE REVIEW OF THE CLASS IMBALANCE CHALLENGES IN MACHINE LEARNING." Jurnal Teknik Informatika (Jutif) 4, no. 5 (October 5, 2023): 1099–107. http://dx.doi.org/10.52436/1.jutif.2023.4.5.970.
Full textWongvorachan, Tarid, Surina He, and Okan Bulut. "A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining." Information 14, no. 1 (January 16, 2023): 54. http://dx.doi.org/10.3390/info14010054.
Full textLiu, Xu Ying. "An Empirical Study of Boosting Methods on Severely Imbalanced Data." Applied Mechanics and Materials 513-517 (February 2014): 2510–13. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.2510.
Full textPes, Barbara. "Learning from High-Dimensional and Class-Imbalanced Datasets Using Random Forests." Information 12, no. 8 (July 21, 2021): 286. http://dx.doi.org/10.3390/info12080286.
Full textZhao, Zixue, Tianxiang Cui, Shusheng Ding, Jiawei Li, and Anthony Graham Bellotti. "Resampling Techniques Study on Class Imbalance Problem in Credit Risk Prediction." Mathematics 12, no. 5 (February 28, 2024): 701. http://dx.doi.org/10.3390/math12050701.
Full text