Academic literature on the topic 'Class skew'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Class skew.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Class skew"
Ma, Yanyuan, and Marc G. Genton. "Flexible Class of Skew-Symmetric Distributions." Scandinavian Journal of Statistics 31, no. 3 (September 2004): 459–68. http://dx.doi.org/10.1111/j.1467-9469.2004.03_007.x.
Full textMa, Jianmin, and Kaishun Wang. "Four-class skew-symmetric association schemes." Journal of Combinatorial Theory, Series A 118, no. 4 (May 2011): 1381–91. http://dx.doi.org/10.1016/j.jcta.2010.12.002.
Full textSidorenko, Vladimir, Wenhui Li, Onur Günlü, and Gerhard Kramer. "Skew Convolutional Codes." Entropy 22, no. 12 (December 2, 2020): 1364. http://dx.doi.org/10.3390/e22121364.
Full textMirzadeh, Saeed, and Anis Iranmanesh. "A new class of skew-logistic distribution." Mathematical Sciences 13, no. 4 (October 5, 2019): 375–85. http://dx.doi.org/10.1007/s40096-019-00306-8.
Full textDinh, Hai Q., Bac T. Nguyen, and Songsak Sriboonchitta. "A Note on Skew Cyclic Codes over a Class of Rings." Algebra Colloquium 27, no. 04 (November 5, 2020): 703–12. http://dx.doi.org/10.1142/s1005386720000589.
Full textLi, Chun Guang, and Ting Ting Zhou. "Skew symmetry of a class of operators." Banach Journal of Mathematical Analysis 8, no. 1 (2014): 279–94. http://dx.doi.org/10.15352/bjma/1381782100.
Full textBehboodian, J., A. Jamalizadeh, and N. Balakrishnan. "A new class of skew-Cauchy distributions." Statistics & Probability Letters 76, no. 14 (August 2006): 1488–93. http://dx.doi.org/10.1016/j.spl.2006.03.008.
Full textArellano-Valle, Reinaldo B., Héctor W. Gómez, and Fernando A. Quintana. "A New Class of Skew-Normal Distributions." Communications in Statistics - Theory and Methods 33, no. 7 (December 31, 2004): 1465–80. http://dx.doi.org/10.1081/sta-120037254.
Full textGupta, Arjun K., and John T. Chen. "A class of multivariate skew-normal models." Annals of the Institute of Statistical Mathematics 56, no. 2 (June 2004): 305–15. http://dx.doi.org/10.1007/bf02530547.
Full textChen, Xuedong, Qianying Zeng, and Qiankun Song. "Likelihood Inference of Nonlinear Models Based on a Class of Flexible Skewed Distributions." Abstract and Applied Analysis 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/542985.
Full textDissertations / Theses on the topic "Class skew"
Akdemir, Deniz. "A Class of Multivariate Skew Distributions: Properties and Inferential Issues." Bowling Green, Ohio : Bowling Green State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=bgsu1237574643.
Full textBasalamah, Doaa. "Statistical Inference for a New Class of Skew t Distribution and Its Related Properties." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1496762068499547.
Full textSmith, Michael Reed. "An Empirical Study of Instance Hardness." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2012.
Full textFrühwirth-Schnatter, Sylvia, and Gertraud Malsiner-Walli. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering." Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/s11634-018-0329-y.
Full textMedina, Garay Aldo William. "Modelos não lineares sob a classe de distribuições misturas da escala skew-normal." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306690.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-16T04:06:26Z (GMT). No. of bitstreams: 1 MedinaGaray_AldoWilliam_M.pdf: 1389516 bytes, checksum: 2763869ea52e11ede3c860714ea0e75e (MD5) Previous issue date: 2010
Resumo: Neste trabalho estudamos alguns aspectos de estimação e diagnóstico de influência global e local de modelos não lineares sob a classe de distribuição misturas da escala skew-normal, baseado na metodologia proposta por Cook (1986) e Poon & Poon (1999). Os modelos não lineares heteroscedásticos também são discutidos. Esta nova classe de modelos constitui uma generalização robusta dos modelos de regressão não linear simétricos, que têm como membros particulares distribuições com caudas pesadas, tais como skew-t, skew-slash, skew-normal contaminada, entre outras. A estimação dos parâmetros será obtida via o algoritmo EM proposto por Dempster et al. (1977). Estudos de testes de hipóteses são considerados utilizando as estatísticas de escore e da razão de verossimilhança, para testar a homogeneidade do parâmetro de escala. Propriedades das estatísticas do teste são investigadas através de simulações de Monte Carlo. Exemplos numéricos considerando dados reais e simulados são apresentados para ilustrar a metodologia desenvolvida
Abstrac: In this work, we studied some aspects of estimation and diagnostics on the global and local influence in nonlinear models under the class of scale mixtures of the skewnormal (SMSN) distribution, based on the methodology proposed by Cook (1986) e Poon & Poon (1999). Heteroscedastic nonlinear models are also discussed. This new class of models are a robust generalization of non-linear regression symmetrical models, which have as members individual distributions with heavy tails, such as skew-t, skew-slash, and skew-contaminated normal, among others. The parameter estimation will be obtained with the EM algorithm proposed by Dempster et al. (1977). Studies testing hypotheses are considered using the score statistics and the likelihood ratio test to test the homogeneity of scale parameter. Properties of test statistics are investigated through Monte Carlo simulations. Numerical examples considering real and simulated data are presented to illustrate the methodology
Mestrado
Métodos Estatísticos
Mestre em Estatística
Massuia, Monique Bettio 1989. "Modelos para dados censurados sob a classe de distribuições misturas de escala skew-normal." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306680.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T19:55:07Z (GMT). No. of bitstreams: 1 Massuia_MoniqueBettio_M.pdf: 2926597 bytes, checksum: 2a1154c0a61b13f369e8390159fc4c3e (MD5) Previous issue date: 2015
Resumo: Este trabalho tem como objetivo principal apresentar os modelos de regressão lineares com respostas censuradas sob a classe de distribuições de mistura de escala skew-normal (SMSN), visando generalizar o clássico modelo Tobit ao oferecer alternativas mais robustas à distribuição Normal. Um estudo de inferência clássico é desenvolvido para os modelos em questão sob dois casos especiais desta família de distribuições, a Normal e a t de Student, utilizando o algoritmo EM para obter as estimativas de máxima verossimilhança dos parâmetros dos modelos e desenvolvendo métodos de diagnóstico de influência global e local com base na metodologia proposta por Cook (1986) e Poom & Poon (1999). Sob o enfoque Bayesiano, o modelo de regressão para respostas censuradas é estudado sob alguns casos especiais da classe SMSN, como a Normal, a t de Student, a skew-Normal, a skew-t e a skew-Slash. Neste caso, o amostrador de Gibbs é a principal ferramenta utilizada para a inferência sobre os parâmetros do modelo. Apresentamos também alguns estudos de simulação para avaliar a metodologia desenvolvida que, por fim, é aplicada em dois conjuntos de dados reais. Os pacotes SMNCensReg, CensRegMod e BayesCR para o software R dão suporte computacional aos desenvolvimentos deste trabalho
Abstract: This work aims to present the linear regression model with censored response variable under the class of scale mixture of skew-normal distributions (SMSN), generalizing the well known Tobit model as providing a more robust alternative to the normal distribution. A study based on classic inference is developed to investigate these censored models under two special cases of this family of distributions, Normal and t-Student, using the EM algorithm for obtaining maximum likelihood estimates and developing methods of diagnostic based on global and local influence as suggested by Cook (1986) and Poom & Poon (1999). Under a Bayesian approach, the censored regression model was studied under some special cases of SMSN class, such as Normal, t-Student, skew-Normal, skew-t and skew-Slash. In these cases, the Gibbs sampler was the main tool used to make inference about the model parameters. We also present some simulation studies for evaluating the developed methodologies that, finally, are applied on two real data sets. The packages SMNCensReg, CensRegMod and BayesCR implemented for the software R give computational support to this work
Mestrado
Estatistica
Mestra em Estatística
Falon, Roger Jesus Tovar. "Modelos de regressão lineares mistos sob a classe de distribuições normal-potência." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15032018-132547/.
Full textIn this work some extensions of the alpha-power models are presented, assuming the context in which the observations are censored or limited. Initially we propose a new asymmetric model that extends the skew-t (Azzalini e Capitanio, 2003) and power-t (Zhao e Kim, 2016) models and includes the Students t-distribution as a particular case. This new model is able to adjust data with a high degree of asymmetry and cursose, even higher than the skew-t and power-t models. Then we extend the power-t model to situations in which the data present censorship, with a high degree of asymmetry and heavy tails. This model generalizes the Students t linear censored regression model t by Arellano-Valle et al. (2012) The work also introduces the power-normal linear mixed model for asymmetric data. Here statistical inference is performed from a classical perspective using the maximum likelihood method together with the Gauss-Hermite numerical integration method to approximate the integrals involved in the likelihood function. Later, the linear model with random intercepts for doubly censored data is studied. This model is developed under the assumption that errors and random effects follow power-normal and skew-normal distributions. For all the models studied, simulation studies were carried out to study their benefits and limitations. Finally, all proposed methods with real data are illustrated.
Book chapters on the topic "Class skew"
Percannella, Gennaro, Paolo Soda, and Mario Vento. "Mitotic HEp-2 Cells Recognition under Class Skew." In Image Analysis and Processing – ICIAP 2011, 353–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24088-1_37.
Full textSadeghkhani, Abdolnasser, and Syed Ejaz Ahmed. "Bayesian Predictive Densities as an Interpretation of a Class of Skew–Student t Distributions with Application to Medical Data." In Advances in Intelligent Systems and Computing, 416–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21248-3_31.
Full textPrati, Ronaldo C., Gustavo E. A. P. A. Batista, and Maria Carolina Monard. "Learning with Class Skews and Small Disjuncts." In Advances in Artificial Intelligence – SBIA 2004, 296–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28645-5_30.
Full textConference papers on the topic "Class skew"
Stager, M., P. Lukowicz, and G. Troster. "Dealing with Class Skew in Context Recognition." In 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06). IEEE, 2006. http://dx.doi.org/10.1109/icdcsw.2006.36.
Full textBergamin, Luzi. "Doubly skew: A new class of non-birefringent media." In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637095.
Full textShieh, W. B., L. W. Tsai, S. Azarm, and A. L. Tits. "A New Class of Six-Bar Mechanisms With Symmetrical Coupler Curves." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1491.
Full textSicilia, Rosa, Ermanno Cordelli, and Paolo Soda. "On Using Meta-Features to Learn Under Class Skew in Biomedical Domains." In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2020. http://dx.doi.org/10.1109/cbms49503.2020.00054.
Full textOuwayed, N., A. Belaïd, and F. Auger. "Cohen's class distributions for skew angle estimation in noisy ancient Arabic documents." In The Third Workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1568296.1568305.
Full textGupta, Tanmay, and Manoj Kumar. "Structural Response of Skew-Curved Concrete Box-Girder Bridges under Eccentric Vehicular Loading." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.1021.
Full textLin, Hong-Chin, Tsung-Chieh Lin, and KwangHae H. Yae. "The Skew-Symmetric Property of the Newton-Euler Formulation for Constrained Multibody Systems." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1476.
Full textBernard, J. M. L. "Properties of the solution and reciprocity theorem for a class of wedge problem at skew incidence." In International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's. IEEE, 1990. http://dx.doi.org/10.1109/aps.1990.115300.
Full textAkash, Pritom Saha, Md Eusha Kadir, Amin Ahsan Ali, and Mohammad Shoyaib. "Inter-node Hellinger Distance based Decision Tree." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/272.
Full textSavander, Brant R., Malcolm E. Willis, Karl A. Stambaugh, and Kelley A. Cox. "USCG Patrol Craft Hydrodynamic Fuel Efficiency Improvements." In SNAME 13th International Conference on Fast Sea Transportation. SNAME, 2015. http://dx.doi.org/10.5957/fast-2015-035.
Full text