Academic literature on the topic 'Classification and discrimination; cluster analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification and discrimination; cluster analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification and discrimination; cluster analysis"
Okuyama, Shuji, and Toshiyuki Mitsui. "Discrimination of Marihuana Using Cluster Analysis." Journal of Chemical Software 2, no. 4 (1995): 220–27. http://dx.doi.org/10.2477/jchemsoft.2.220.
Full textRazak, Abdul, and Nirmala C. R. "A computing model for trend analysis in stock data stream classification." Indonesian Journal of Electrical Engineering and Computer Science 19, no. 3 (September 1, 2020): 1602. http://dx.doi.org/10.11591/ijeecs.v19.i3.pp1602-1609.
Full textGoncharenko, I. V. "DRSA: a non-hierarchical clustering algorithm using k-NN graph and its application in vegetation classification." Vegetation of Russia, no. 27 (2015): 125–38. http://dx.doi.org/10.31111/vegrus/2015.27.125.
Full textYamamuro, Tadashi, Kenji Kuwayama, Kenji Tsujikawa, Tatsuyuki Kanamori, Yuko T. Iwata, and Hiroyuki Inoue. "Study of cannabis discrimination by hierarchical cluster analysis." Japanese Journal of Forensic Science and Technology 21, no. 2 (2016): 109–24. http://dx.doi.org/10.3408/jafst.709.
Full textZHANG, JieJin, Hao WU, Liang ZHAO, YueYue LI, GuiChen ZHOU, ZhenYu ZHU, and GuoQing ZHANG. "Discrimination of Moutan Cortex by principal component analysis and cluster analysis." Pharmaceutical Care and Research 13, no. 6 (December 30, 2013): 449–51. http://dx.doi.org/10.5428/pcar20130617.
Full textSteinhorst, R. Kirk, and Roy E. Williams. "Discrimination of Groundwater Sources Using Cluster Analysis, MANOVA, Canonical Analysis and Discriminant Analysis." Water Resources Research 21, no. 8 (August 1985): 1149–56. http://dx.doi.org/10.1029/wr021i008p01149.
Full textPlichta, Anna. "Methods of Classification of the Genera and Species of Bacteria Using Decision Tree." Journal of Telecommunications and Information Technology 4, no. 2019 (December 30, 2019): 74–82. http://dx.doi.org/10.26636/jtit.2019.137419.
Full textLin, Gwo-Fong, and Chun-Ming Wang. "Performing cluster analysis and discrimination analysis of hydrological factors in one step." Advances in Water Resources 29, no. 11 (November 2006): 1573–85. http://dx.doi.org/10.1016/j.advwatres.2005.11.008.
Full textGonzalez-Escalona, Narjol, Ruth Timme, Brian H. Raphael, Donald Zink, and Shashi K. Sharma. "Whole-Genome Single-Nucleotide-Polymorphism Analysis for Discrimination of Clostridium botulinum Group I Strains." Applied and Environmental Microbiology 80, no. 7 (January 24, 2014): 2125–32. http://dx.doi.org/10.1128/aem.03934-13.
Full textCrawford, I., S. Ruske, D. O. Topping, and M. W. Gallagher. "Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol." Atmospheric Measurement Techniques Discussions 8, no. 7 (July 16, 2015): 7303–33. http://dx.doi.org/10.5194/amtd-8-7303-2015.
Full textDissertations / Theses on the topic "Classification and discrimination; cluster analysis"
Dannenberg, Matthew. "Pattern Recognition in High-Dimensional Data." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/76.
Full textCaetano, Luis Augusto Martins. "Impacto da intensidade de pastejo na produtividade da soja em integração com bovinos de corte." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/164063.
Full textGrazing intensity can be considered essential to the potential productivity of crops in integrated crop-livestock systems (ICLS). In this study, we aimed to understand how differents grazing intensity defines the subsequent productivity of soybeans in ICLS. The work forms part of a long-term experimental protocol dating from 2001 in Rio Grande do Sul state, Brazil. Treatments were defined during the pasture phase, arranged in a completely randomized block design with three replicates under different grazing intensities by steers on Italian ryegrass and black oat mixed pastures: intense grazing (G10), moderate grazing (G20), moderate-light grazing (G30), light grazing (P40), and an ungrazed control (UG). Soybean was planted after exit of the animals and data were collected during the 2015/16 season. The integration of animals did not affect soybean productivity (P=0.0570). Cluster and discrimination analyses were used to study variation in productivity. The cluster hierarchy returned three groups of productivity values: high (HC), intermediate (IC), and low (LC), based on their similarities. Chemical attributes were not limiting to productivity. Pasture residue played a central role in the determination of potential productivity (P<0.001). The greatest plant population was found in the LC (P<0.001), while more pods per plant were found in the HC and IC (P<0.001). This result is explained by the phenotypic plasticity of soybean, which allows it to compensate for lower plant population by modifying plant stand architecture. The cluster analysis revealed that G10 did not present high productivity values, as opposed to UG, which did not contain low productivity values. Nearly half of the values observed in G40 were more productive, while G20 and G30 tended to produce greater homogeneity in the distribution among clusters. A discrimination analysis defined the parameters that explain the greatest part of the variation among clusters. Using a stepwise function, we found five variables (pasture residue, phosphorus, final plant height at R8, nodes per branch, and pods per area) that explained most of the variation. The model to predict soybean productivity, using the explanatory field variables selected by the discrimination analysis, demonstrated accuracy in the prediction of spatial productivity in ICLS with different grazing intensities under no-till.
Lilliehöök, Hampus. "Extraction of word senses from bilingual resources using graph-based semantic mirroring." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-91880.
Full textI det här arbetet utvinner vi semantisk information som existerar implicit i tvåspråkig data. Vi samlar indata genom att upprepa proceduren semantisk spegling. Datan representeras som vektorer i en stor vektorrymd. Vi bygger sedan en resurs med synonymkluster genom att applicera K-means-algoritmen på vektorerna. Vi granskar resultatet för hand med hjälp av ordböcker, och mot WordNet, och diskuterar möjligheter och tillämpningar för metoden.
Nievas, Lio Estefanía. "Aplicando máquinas de soporte vectorial al análisis de pérdidas no técnicas de energía eléctrica." Bachelor's thesis, 2016. http://hdl.handle.net/11086/3946.
Full textLas pérdidas no técnicas en la distribución de energía eléctrica generan grandes gastos a las empresas encargadas de prestar el servicio de energía eléctrica y son extremadamente difíciles de detectar. En este proyecto se usa una técnica de aprendizaje automático (más conocida como Machine Learning) basada en máquinas de soporte vectorial (SVM, siglas en inglés de Support Vector Machine) para poder clasificar, de la manera más confiable posible, a los usuarios de la red en dos grupos diferenciados: los que cometen fraude y los que no. El entrenamiento se realiza a partir de una base de datos ya clasificada y tomando en cuenta el consumo de los usuarios a lo largo de un período de tiempo. Tales datos, en este proyecto, serán de usuarios de la ciudad de Córdoba. En nuestro trabajo implementaremos un algoritmo que construya el clasificador y luego analizaremos su confiabilidad clasificando a consumidores de la ciudad que han sido sometidos a una auditoría. Luego de obtener un clasificador confiable el mismo servirá para detectar posibles fraudes de los usuarios.
Chun-Ming, Wang. "Integration of cluster analysis and discrimination analysis using self-organizing map." 2006. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2112200521430300.
Full textChou, Shih-Cheng, and 丘世健. "The Cross-Validation of Cluster and Discrimination Analysis And the Study of Bayesian Decision Rule - Businesses Groups Case." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/24510461932664438329.
Full textRichards, Larissa Christine. "Chemometric analysis of full scan direct mass spectrometry data for the discrimination and source apportionment of atmospheric volatile organic compounds measured from a moving vehicle." Thesis, 2021. http://hdl.handle.net/1828/13333.
Full textGraduate
2022-08-17
Agnelli, Juan Pablo. "Estimación de parámetros y clasificación de datos : aplicaciones biomédicas." Doctoral thesis, 2011. http://hdl.handle.net/11086/158.
Full textEn esta tesis se proponen principalmente dos tipos de aplicaciones biomédicas para las cuales hemos empleado diferentes herramientas matemáticas y por lo cual el trabajo está dividido en dos partes. En la primera parte nos hemos abocado a la detección de tumores. El objetivo aquí fue estimar la localización, tamaño y parámetros térmicos asociados a un tumor utilizando como información perfiles de temperaturas medidos sobre la superficie corporal. En la segunda parte del trabajo, el objetivo fue desarrollar un algoritmo capaz de extraer, de una gran base de datos, información que reside de manera implícita en estos. Dicha información es previamente desconocida y puede resultar útil para describir el proceso o fenómeno que está bajo análisis o estudio. En particular, aquí se aplicó para la clasificación de distintos tipos de tumores usando como base de datos niveles de expresión genética.
In this thesis we propose two main areas of study, so the work is divided into two parts. The first one is related with tumor location and estimation of parameters related with tumor regions and the second part is concerned with the development of an algorithm for tumor classification from gene expression levels. In the first situation the goal is to estimate position, size and thermal parameters of a tumor using temperature profiles that have been measured on the top boundary of the domain using a thermography camera. From the mathematical point of view the study of these problems imply to pose and analyze inverse problems and also to develop numerical methods to solve it. In a first stage, we use partial differential equations to model heat transfer in living tissue, more precisely we consider the stationary Pennes equation with mixed boundary conditions. For this elliptical equation we have proved existence and uniqueness of the solution and to solve this direct problem a finite difference scheme of second order is considered. Then, to solve the inverse problems these problems were reformulated as optimization problems and to solve these new problems two different methodologies will be presented. The first one, is based on the use of the Patter Search algorithm. This is a direct search algorithm, so it does not make use of derivatives and therefore is very easy to implement. The second methodology that we present makes use of the information provided by the derivative of the function to minimize with respect to the different variables to be estimated. To calculate this derivative we consider some sensitivity analysis tools. In the second part of the work, the goal is to build an algorithm capable to extract, from a large database, useful information that resides implicitly. This information is previously unknown and may be useful to describe the process or phenomenon that is under analysis or study. In particular, here we are interested in classify different types of tumors using gene expression levels. The proposed methodology is based on three main ingredients: 1)the blurring of distinctions between training and testing populations, through the soft assignment of the latter to classes, in an expectation-maximization framework, 2) a procedure for density estimation through a descent flow, that transforms the original distribution into an isotropic Gaussian distribution and 3) a measure of the clustering capability of a set of variables, which leads to an effective procedure for variable selection. The methodology is particularly useful in situations where there are relatively few observations for a phenomenon that is described by a large amount of variables, and no a priori knowledge that strongly links a small subset of these variables to the classification sought. According to the results obtained the methodologies proposed in the first part of this work can be considered as a potential tool to locate tumor regions, like nodular melanomas, as well as to estimate parameters associated with them that could be useful and important to study the tumor evolution after a treatment procedure. The same conclusion applies to the methodology developed in the second part in order to diagnose, prevent and treat different diseases based on gene expression levels.
Juan Pablo Agnelli.
Estimación de parámetros asociados a tumores -- Modelo matemático -- Problemas inversos -- Introducción al análisis de sensibilidad -- Clasificación y agrupamiento de datos -- Estimación de densidades -- Elección de varialbes y evaluación del agrupamiento -- Ejemplos clínicos : clasificación de tumores.
Book chapters on the topic "Classification and discrimination; cluster analysis"
Iam-On, Natthakan, and Tossapon Boongoen. "Soft Subspace Clustering for Cancer Microarray Data Analysis." In Global Trends in Intelligent Computing Research and Development, 131–45. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4936-1.ch006.
Full textConference papers on the topic "Classification and discrimination; cluster analysis"
Georgieva, Olga, Sergey Milanov, and Petia Georgieva. "Cluster analysis for EEG biosignal discrimination." In 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA). IEEE, 2013. http://dx.doi.org/10.1109/inista.2013.6577646.
Full textShi, You-ming, Cui-qiong Yan, Dong-yu Li, and Gang Liu. "Discrimination of Amanita Mushrooms Using Fourier Transform Infrared Difference Spectroscopy and Cluster Analysis." In 2011 Symposium on Photonics and Optoelectronics (SOPO 2011). IEEE, 2011. http://dx.doi.org/10.1109/sopo.2011.5780668.
Full textLi, Ning, Yan Wang, and Kexin Xu. "Fast discrimination of danshen from different geographical areas by NIR spectroscopy and advanced cluster analysis method." In Fourth International Conference on Photonics and Imaging in Biology and Medicine, edited by Kexin Xu, Qingming Luo, Da Xing, Alexander V. Priezzhev, and Valery V. Tuchin. SPIE, 2006. http://dx.doi.org/10.1117/12.710981.
Full textBotacin, Marcus, André Grégio, and Paulo De Geus. "Malware Variants Identification in Practice." In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação, 2019. http://dx.doi.org/10.5753/sbseg.2019.13960.
Full textShaaban, Noha, Fukuzo Masuda, and Hidetsugu Morota. "A New Waveform Signal Processing Method Based on Adaptive Clustering-Genetic Algorithms." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89866.
Full text