Journal articles on the topic 'Classical Brownian Motion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Classical Brownian Motion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tsekov, Roumen, and Georgi N. Vayssilov. "Quantum Brownian motion and classical diffusion." Chemical Physics Letters 195, no. 4 (1992): 423–26. http://dx.doi.org/10.1016/0009-2614(92)85628-n.
Full textOrd, G. N. "Schrödinger's Equation and Classical Brownian Motion." Fortschritte der Physik 46, no. 6-8 (1998): 889–96. http://dx.doi.org/10.1002/(sici)1521-3978(199811)46:6/8<889::aid-prop889>3.0.co;2-z.
Full textTsekov, Roumen. "Brownian Motion and Quantum Mechanics." Fluctuation and Noise Letters 19, no. 02 (2019): 2050017. http://dx.doi.org/10.1142/s0219477520500170.
Full textSantos, Willien O., Guilherme M. A. Almeida, and Andre M. C. Souza. "Noncommutative Brownian motion." International Journal of Modern Physics A 32, no. 23n24 (2017): 1750146. http://dx.doi.org/10.1142/s0217751x17501469.
Full textRajput, B. S. "Quantum equations from Brownian motion." Canadian Journal of Physics 89, no. 2 (2011): 185–91. http://dx.doi.org/10.1139/p10-111.
Full textAnders, J., C. R. J. Sait, and S. A. R. Horsley. "Quantum Brownian motion for magnets." New Journal of Physics 24, no. 3 (2022): 033020. http://dx.doi.org/10.1088/1367-2630/ac4ef2.
Full textAmbegaokar, Vinay. "Quantum Brownian Motion and its Classical Limit." Berichte der Bunsengesellschaft für physikalische Chemie 95, no. 3 (1991): 400–404. http://dx.doi.org/10.1002/bbpc.19910950331.
Full textKhalili Golmankhaneh, Ali, Saleh Ashrafi, Dumitru Baleanu, and Arran Fernandez. "Brownian Motion on Cantor Sets." International Journal of Nonlinear Sciences and Numerical Simulation 21, no. 3-4 (2020): 275–81. http://dx.doi.org/10.1515/ijnsns-2018-0384.
Full textPARK, MOONGYU, and JOHN H. CUSHMAN. "THE COMPLEXITY OF BROWNIAN PROCESSES RUN WITH NONLINEAR CLOCKS." Modern Physics Letters B 25, no. 01 (2011): 1–10. http://dx.doi.org/10.1142/s0217984911025481.
Full textUlrich, Michaël. "Construction of a free Lévy process as high-dimensional limit of a Brownian motion on the unitary group." Infinite Dimensional Analysis, Quantum Probability and Related Topics 18, no. 03 (2015): 1550018. http://dx.doi.org/10.1142/s0219025715500186.
Full textChen, Jin-Fu, Tian Qiu, and Hai-Tao Quan. "Quantum–Classical Correspondence Principle for Heat Distribution in Quantum Brownian Motion." Entropy 23, no. 12 (2021): 1602. http://dx.doi.org/10.3390/e23121602.
Full textAbundo, Mario, and Enrica Pirozzi. "On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes." Mathematics 7, no. 10 (2019): 991. http://dx.doi.org/10.3390/math7100991.
Full textRomadani, Arista, and Muhammad Farchani Rosyid. "Proses difusi relativistik melalui persamaan langevin dan fokker-planck." Jurnal Teknosains 11, no. 2 (2022): 101. http://dx.doi.org/10.22146/teknosains.63229.
Full textROGERS, ALICE. "SUPERSYMMETRY AND BROWNIAN MOTION ON SUPERMANIFOLDS." Infinite Dimensional Analysis, Quantum Probability and Related Topics 06, supp01 (2003): 83–102. http://dx.doi.org/10.1142/s0219025703001225.
Full textCohen, Doron. "Quantum Dissipation versus Classical Dissipation for Generalized Brownian Motion." Physical Review Letters 78, no. 15 (1997): 2878–81. http://dx.doi.org/10.1103/physrevlett.78.2878.
Full textAlicki, R., and M. Fannes. "Dilations of quantum dynamical semigroups with classical Brownian motion." Communications in Mathematical Physics 108, no. 3 (1987): 353–61. http://dx.doi.org/10.1007/bf01212314.
Full textTsekov, Roumen. "Brownian motion of a classical particle in quantum environment." Physics Letters A 382, no. 33 (2018): 2230–32. http://dx.doi.org/10.1016/j.physleta.2017.06.037.
Full textPatriarca, Marco, and Pasquale Sodano. "Classical and quantum Brownian motion in an electromagnetic field." Fortschritte der Physik 65, no. 6-8 (2016): 1600058. http://dx.doi.org/10.1002/prop.201600058.
Full textAlicki, R., and M. Fannes. "On dilating quantum dynamical semigroups with classical brownian motion." Letters in Mathematical Physics 11, no. 3 (1986): 259–62. http://dx.doi.org/10.1007/bf00400224.
Full textZHANG, HUAYUE, and LIHUA BAI. "DYNAMIC MEAN-VARIANCE OPTIMIZATION UNDER CLASSICAL RISK MODEL WITH FRACTIONAL BROWNIAN MOTION PERTURBATION." Infinite Dimensional Analysis, Quantum Probability and Related Topics 11, no. 04 (2008): 589–602. http://dx.doi.org/10.1142/s0219025708003221.
Full textKendall, Wilfrid S., and Mark Westcott. "One-dimensional classical scattering processes and the diffusion limit." Advances in Applied Probability 19, no. 1 (1987): 81–105. http://dx.doi.org/10.2307/1427374.
Full textKendall, Wilfrid S., and Mark Westcott. "One-dimensional classical scattering processes and the diffusion limit." Advances in Applied Probability 19, no. 01 (1987): 81–105. http://dx.doi.org/10.1017/s0001867800016396.
Full textChong, K. S., Richard Cowan, and Lars Holst. "The ruin problem and cover times of asymmetric random walks and Brownian motions." Advances in Applied Probability 32, no. 1 (2000): 177–92. http://dx.doi.org/10.1239/aap/1013540029.
Full textChong, K. S., Richard Cowan, and Lars Holst. "The ruin problem and cover times of asymmetric random walks and Brownian motions." Advances in Applied Probability 32, no. 01 (2000): 177–92. http://dx.doi.org/10.1017/s0001867800009836.
Full textBalcerek, Michał, and Krzysztof Burnecki. "Testing of Multifractional Brownian Motion." Entropy 22, no. 12 (2020): 1403. http://dx.doi.org/10.3390/e22121403.
Full textAhmed, N. U. "Generalized functionals of Brownian motion." Journal of Applied Mathematics and Stochastic Analysis 7, no. 3 (1994): 247–67. http://dx.doi.org/10.1155/s1048953394000250.
Full textZHOU, YULAN, and CAISHI WANG. "QUANTUM TANAKA FORMULA IN TERMS OF QUANTUM BROWNIAN MOTION." Bulletin of the Australian Mathematical Society 83, no. 3 (2011): 401–12. http://dx.doi.org/10.1017/s0004972710001954.
Full textHudson, Robin. "A short walk in quantum probability." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2118 (2018): 20170226. http://dx.doi.org/10.1098/rsta.2017.0226.
Full textKUSUOKA, SHIGEO, and SONG LIANG. "A CLASSICAL MECHANICAL MODEL OF BROWNIAN MOTION WITH PLURAL PARTICLES." Reviews in Mathematical Physics 22, no. 07 (2010): 733–838. http://dx.doi.org/10.1142/s0129055x10004077.
Full textDahlqvist, Antoine. "Integration formulas for Brownian motion on classical compact Lie groups." Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 53, no. 4 (2017): 1971–90. http://dx.doi.org/10.1214/16-aihp779.
Full textYosef, Arthur. "SOME CLASSICAL-NEW RESULTS ON THE SET-INDEXED BROWNIAN MOTION." Advances and Applications in Statistics 44, no. 1 (2015): 57–76. http://dx.doi.org/10.17654/adasjan2015_057_076.
Full textSharma, Niti Nipun. "Radiation model for nanoparticle: extension of classical Brownian motion concepts." Journal of Nanoparticle Research 10, no. 2 (2007): 333–40. http://dx.doi.org/10.1007/s11051-007-9256-0.
Full textSu, Li Hong, Yu Jie Sun, Jiao Qiang Zhang, et al. "A New Method for Temperature Measurement by the Nanometer Particles." Advanced Materials Research 47-50 (June 2008): 1088–92. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1088.
Full textLachal, Aimé. "A Class of Bridges of Iterated Integrals of Brownian Motion Related to Various Boundary Value Problems Involving the One-Dimensional Polyharmonic Operator." International Journal of Stochastic Analysis 2011 (December 13, 2011): 1–32. http://dx.doi.org/10.1155/2011/762486.
Full textBarlow, Martin T., and Richard F. Bass. "Brownian Motion and Harmonic Analysis on Sierpinski Carpets." Canadian Journal of Mathematics 51, no. 4 (1999): 673–744. http://dx.doi.org/10.4153/cjm-1999-031-4.
Full textde Lima, Levi Lopes. "Recurrence and transience for normally reflected Brownian motion in warped product manifolds." Stochastics and Dynamics 19, no. 02 (2019): 1950013. http://dx.doi.org/10.1142/s0219493719500138.
Full textSANDOVAL-VILLALBAZO, A., A. ARAGONÉS-MUÑOZ, and A. L. GARCÍA-PERCIANTE. "THE SIMPLE NONDEGENERATE RELATIVISTIC GAS: STATISTICAL PROPERTIES AND BROWNIAN MOTION." International Journal of Modern Physics B 24, no. 31 (2010): 6043–48. http://dx.doi.org/10.1142/s0217979210055226.
Full textHu, Hanlei, Zheng Yin, and Weipeng Yuan. "An Interval of No-Arbitrage Prices in Financial Markets with Volatility Uncertainty." Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/5769205.
Full textMAMONTOV, E., and M. WILLANDER. "THE NONZERO MINIMUM OF THE DIFFUSION PARAMETER AND THE UNCERTAINTY PRINCIPLE FOR A BROWNIAN PARTICLE." Modern Physics Letters B 16, no. 13 (2002): 467–71. http://dx.doi.org/10.1142/s0217984902004020.
Full textANGLIN, JAMES, and SALMAN HABIB. "CLASSICAL DYNAMICS FOR LINEAR SYSTEMS: THE CASE OF QUANTUM BROWNIAN MOTION." Modern Physics Letters A 11, no. 32n33 (1996): 2655–62. http://dx.doi.org/10.1142/s0217732396002654.
Full textBandyopadhyay, Malay, and A. M. Jayannavar. "Brownian motion of classical spins: Anomalous dissipation and generalized Langevin equation." International Journal of Modern Physics B 31, no. 27 (2017): 1750189. http://dx.doi.org/10.1142/s0217979217501892.
Full textZhang, Yuhong. "Path-integral formalism for classical Brownian motion in a general environment." Physical Review E 47, no. 5 (1993): 3745–48. http://dx.doi.org/10.1103/physreve.47.3745.
Full textZhang, H. Y., L. H. Bai, and A. M. Zhou. "Insurance control for classical risk model with fractional Brownian motion perturbation." Statistics & Probability Letters 79, no. 4 (2009): 473–80. http://dx.doi.org/10.1016/j.spl.2008.09.027.
Full textBoivin, Daniel, and Thi Thu Hien Lê. "Large deviations for Brownian motion in a random potential." ESAIM: Probability and Statistics 24 (2020): 374–98. http://dx.doi.org/10.1051/ps/2020007.
Full textKryukov, Alexey A. "Can the Schrödinger dynamics explain measurement?" Journal of Physics: Conference Series 2533, no. 1 (2023): 012023. http://dx.doi.org/10.1088/1742-6596/2533/1/012023.
Full textYan, Litan, Qinghua Zhang, and Bo Gao. "Hilbert transform of G-Brownian local time." Stochastics and Dynamics 14, no. 04 (2014): 1450006. http://dx.doi.org/10.1142/s0219493714500063.
Full textLv, Longjin, and Luna Wang. "Option Pricing Based on Modified Advection-Dispersion Equation: Stochastic Representation and Applications." Discrete Dynamics in Nature and Society 2020 (March 12, 2020): 1–8. http://dx.doi.org/10.1155/2020/7168571.
Full textLeduc, Guillaume. "The Randomized American Option as a Classical Solution to the Penalized Problem." Journal of Function Spaces 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/245436.
Full textFink, Holger, Claudia Klüppelberg, and Martina Zähle. "Conditional Distributions of Processes Related to Fractional Brownian Motion." Journal of Applied Probability 50, no. 1 (2013): 166–83. http://dx.doi.org/10.1239/jap/1363784431.
Full textFink, Holger, Claudia Klüppelberg, and Martina Zähle. "Conditional Distributions of Processes Related to Fractional Brownian Motion." Journal of Applied Probability 50, no. 01 (2013): 166–83. http://dx.doi.org/10.1017/s0021900200013188.
Full text