Academic literature on the topic 'Classical mechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classical mechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Classical mechanics"

1

Debnath, Prasenjit. "A Classical Unification of Classical Mechanics with Quantum Mechanics: Why Photon Should Have an Intrinsic Mass." International Journal of Science and Research (IJSR) 7, no. 7 (2018): 318–21. https://doi.org/10.21275/art20183821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tu, Runsheng. "A New Theoretical System Combinating Classical Mechanics and Quantum Mechanics." Advances in Theoretical & Computational Physics 8, no. 2 (2025): 01–06. https://doi.org/10.33140/atcp.08.02.01.

Full text
Abstract:
Replacing the potential energy of electromagnetic interactions in the original Schrödinger equation with the potential energy of gravitational interactions can lead to the Schr ö dinger equation of gravitational potential energy. It is a product of the combination of classical mechanics and quantum mechanics, suitable for describing macroscopic and microscopic systems. A quantum chemistry method that combines classical mechanics and quantum mechanics can be established. Multiple computational examples have been provided for applying this method. The established basic particle structure configuration of wave elements can explain the source of electron spin magnetic moments. These three facts constitute a new quantum mechanics theoretical system — a localized realism quantum mechanics system that combines classical mechanics with quantum forces. This has a positive impact on promoting the development of material structure theory and quantum theory
APA, Harvard, Vancouver, ISO, and other styles
3

Matzner, Richard A., Lawrence C. Shepley, and John F. Donoghue. "Classical Mechanics." American Journal of Physics 60, no. 11 (1992): 1050. http://dx.doi.org/10.1119/1.16990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chow, Tai L., and David P. Jackson. "Classical Mechanics." American Journal of Physics 64, no. 2 (1996): 191. http://dx.doi.org/10.1119/1.18424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

M Arciosa, Ramil. "Understanding Classical Mechanics in Early Filipino Culture." International Journal of Science and Research (IJSR) 10, no. 11 (2021): 189–94. https://doi.org/10.21275/mr211023202713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

De-Ming, Ren. "Classical Mechanics and Quantum Mechanics." Communications in Theoretical Physics 41, no. 5 (2004): 685–88. http://dx.doi.org/10.1088/0253-6102/41/5/685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mills, Randell L. "Classical Quantum Mechanics." Physics Essays 16, no. 4 (2003): 433–98. http://dx.doi.org/10.4006/1.3025609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hawkins, Bruce, Randall S. Jones, Richard A. Morrow, Susan R. McKay, and Wolfgang Christian. "Classical Mechanics Simulations." Computers in Physics 10, no. 3 (1996): 259. http://dx.doi.org/10.1063/1.4822397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laskin, N. "Generalized classical mechanics." European Physical Journal Special Topics 222, no. 8 (2013): 1929–38. http://dx.doi.org/10.1140/epjst/e2013-01974-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Junker, G., and S. Matthiesen. "Supersymmetric classical mechanics." Journal of Physics A: Mathematical and General 27, no. 19 (1994): L751—L755. http://dx.doi.org/10.1088/0305-4470/27/19/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Classical mechanics"

1

Harker, Shaun Russell. "Classical mechanics with dissipative constraints." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/harker/HarkerS0809.pdf.

Full text
Abstract:
The aim of this thesis is to consider the mathematical treatment of mechanical systems in the presence of constraints which are energetically dissipative. Constraints may be energetically dissipative due to impacts and friction. In the frictionless setting, we generalize Hamilton's principle of stationary action, central to the Lagrangian formulation of classical mechanics, to reflect optimality conditions in constrained spaces. We show that this generalization leads to the standard measure-theoretic equations for shocks in the presence of unilateral constraints. Previously, these equations were simply postulated; we derive them from a fundamental variational principle. We also present results in the frictional setting. We survey the extensive literature on the subject, which focusses on existence results and numerical schemes known as time- stepping algorithms. We consider a novel model of friction (which is more dissipative than standard Coulomb friction) for which we can give better well-posedness results than what is currently available for the Coulomb theory. To this end, we study multi-valued maps, differential inclusions, and optimization theory. We construct a differential inclusion we call the feedback problem, for which the multi-valued map is the solution set of a convex program. We give existence and uniqueness results regarding this feedback problem. We cast the persistent contact evolution problem of our novel model of friction into the form of a feedback problem to derive an existence result.
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Leon Chih Wen. "Automated reasoning about classical mechanics." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35408.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.<br>Includes bibliographical references (p. 105-107).<br>by Leon Chih Wen Wong.<br>M.S.
APA, Harvard, Vancouver, ISO, and other styles
3

Römer, Sarah. "The Classical Limit of Bohmian Mechanics." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-113148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Breuer, Thomas. "Classical observables, measurement, and quantum mechanics." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borgan, Sharry. "Classical and quantum mechanics with chaos." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4968/.

Full text
Abstract:
This thesis is concerned with the study, classically and quantum mechanically, of the square billiard with particular attention to chaos in both cases. Classically, we show that the rotating square billiard has two regular limits with a mixture of order and chaos between, depending on an energy parameter, E. This parameter ranges from -2w(^2) to oo, where w is the angular rotation, corresponding to the two integrable limits. The rotating square billiard has simple enough geometry to permit us to elucidate that the mechanism for chaos with rotation or curved trajectories is not flyaway, as previously suggested, but rather the accumulation of angular dispersion from a rotating line. Furthermore, we find periodic cycles which have asymmetric trajectories, below the value of E at which phase space becomes disjointed. These trajectories exhibit both left and right hand curvatures due to the fine balance between Centrifugal and Coriolis forces. Quantum mechanically, we compare the spectral analysis results for the square billiard with three different theoretical distribution functions. A new feature in the study is the correspondence we find, by utilising the Berry-Robnik parameter q, between classical E and a quantum rotation parameter w. The parameter q gives the ratio of chaotic quantum phase volume which we can link to the ratio of chaotic phase volume found classically for varying values of E. We find good correspondence, in particular, the different values of q as w is varied reflect the births and subsequent destructions of the different periodic cycles. We also study wave packet dynamics, necessitating the adaptation of a one dimensional unitary integration method to the two dimensional square billiard. In concluding we suggest how this work may be used, with the aid of the chaotic phase volumes calculated, in future directions for research work.
APA, Harvard, Vancouver, ISO, and other styles
6

Baldock, Robert John Nicholas. "Classical statistical mechanics with nested sampling." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nielsen, Steven Ole. "Mixed quantum-classical dynamics and statistical mechanics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63602.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lami, Ludovico. "Non-classical correlations in quantum mechanics and beyond." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457968.

Full text
Abstract:
Aquesta tesis parteix d'una pregunta aparentment ingènua: Què passa si es separen dos sistemes físics que estaven en contacte? Un dels descobriments més rellevants del segle passat és que els sistemes que obeeixen les lleis de la mecànica quàntica, en comptes de les lleis clàssiques, romanen intrínsecament connectats fins i tot quan estan separats físicament. Aquest fenomen és conegut com entrellaçament o entanglement. Aquí, ens preguntem quelcom més profund: pertany l'entrellaçament exclusivament als sistemes quàntics o és comú a totes les teories no clàssiques? I, donat el cas, com es pot comparar l'entrellaçament quàntic amb l'entrella çament que pertany a d'altres teories? La primera part de la tesis tracta amb aquestes qüestions considerant la teoria quàntica com a part d'un grup més ampli de teories físiques anomenat general probabilistic theories (GPTs). El Capítol 1 repassa les motivacions que hi ha darrera el formalisme GPT, contextualitzant el Capítol 2, on plantegem les preguntes mencionades en conjectures formals adjuntant-ne la nostre contribució cap a una solució completa. Al Capítol 3, considerem l'entrellaçament a nivell de mesures i no d'estats, la qual cosa ens porta cap a la investigació d'una de les seves principals implicacions, data hiding. En aquest marc, determinem la màxima efi ciència de el data hiding que un sistema quàntic pot exhibir i també el màxim valor entre tots els GPTs, trobant que els primers escalen amb l'arrel quadrada dels darrers. En la segona part d'aquest manuscrit estudiem alguns problemes relacionats amb l'entrellaçament quàntic. Al Capítol 4, discutim la seva resistència al soroll blanc, modelitzat amb canals que actuen tant local com globalment. Aquests canals depenen d'un nombre limitat de paràmetres, això fa que siguem capaços de respondre totes les preguntes bàsiques relacionades amb les propietats de transformació de l'entrellaçament. El Capítol 5 presenta la nostre visió sobre l'entrellaçament gaussià, amb especial focus en el rol del anomenat `positive partial transposition cri- terion' en aquest context. Extensament, fent servir tècniques d'anàlisis de matrius com ara Schur complements i matrix means, presentem demostracions de resultats clàssics generalitzant-los i resolent algun dels problemes oberts existents en la matèria. La tercera part de la tesis es basa en formes més generals de correlacions no clàssiques en sistemes bipartits i de variable contínua. Al Capítol 6 investiguem el Gaussian steering i problemes relacionats en la seva quantificació, així com presentem un esquema general que permeti consistentment classificar correlacions de sistemes bipartits gaussians en `clàssiques' i `quàntiques'. Finalment, el Capítol 7 explora alguns dels problemes relacionats amb strong subadditivity en desigualtats de matrius que juga un paper clau en el nostre anàlisis de correlacions en estats gaussians bipartits. Entre d'altres coses, la teoria que desenvolupem ens serveix per concloure que una Rényi-2 versió gaussiana del difús squashed entanglement coincideix amb el corresponent entrellaçament de formació quan s'avalua en estats gaussians.<br>Esta tesis versa sobre una cuestión aparentemente naíf: ¿qué ocurre cuando se separan dos sistemas físicos que estaban juntos previamente? Uno de los mayores descubrimientos del siglo pasado es que los sistemas que obedecen leyes mecano-cuánticas, en lugar de clásicas, permanecen ligados inextricablemente incluso tras haber sido separados físicamente, un fenómeno conocido como entrelazamiento. Aquí nos preguntamos algo más profundo si cabe: ¿es el entrelazamiento una característica exclusiva de los sistemas cuánticos o es común a todas las teorías no-clásicas? Y, si es este el caso, ¿cuán fuerte es el entrelazamiento mecano-cuántico comparado con aquel exhibido por otras teorías? La primera parte de esta tesis trata estas cuestiones considerando la teoría cuántica como parte de un conjunto más amplio de teorías físicas, colectivamente llamadas teorías probabilísticas generales (TPG). En el Capítulo 2 revisamos la sólida motivación que subyace al formalismo TPG, preparando el terreno para el Capítulo 2, donde traducimos las anteriores cuestiones a conjeturas precisas, y donde presentamos nuestro progreso hacia una solución completa. En el Capítulo 3 consideramos el entrelazamiento a nivel de medidas en vez de estados, lo cual conduce a la investigación de una de sus implicaciones principales, la ocultación de información. En este contexto, determinamos el máximo poder de ocultación de información que puede exhibir un sistema mecano-cuántico, así como el mayor valor entre todas las TPG, hallando que el primero crece como la raíz cuadrada del segundo. En la segunda parte de este manuscrito exploramos algunos de los problemas relacionados con el entrelazamiento cuántico. En el Capítulo 4 discutimos su resistencia al ruido blanco modelado por canales que actúan bien local o bien globalmente. Debido al número limitado de parámetros de los que dependen estos canales, somos capaces de responder todas las preguntas básicas que conciernen a diversas propiedades de la transformación del entrelazamiento. En el siguiente Capítulo 5 presentamos nuestra perspectiva sobre el tema del entrelazamiento gaussiano, con un énfasis particular sobre el papel del célebre \criterio de la transposición parcial positiva" en este contexto. Empleando extensivamente herramientas del análisis matricial como los complementos de Schur y las medias matriciales, presentamos pruebas unificadas de resultados clásicos, extendiéndolos y cerrando algunos de los problemas abiertos en el campo. La tercera parte de esta tesis se ocupa de formas más generales de correlaciones no-clásicas en sistemas bipartitos de variable continua. En el Capítulo 6 estudiamos el \steering" gaussiano y problemas relacionados con su cuantificaci ón, y dise~namos un esquema general que permite clasificar consistentemente correlaciones de estados gaussianos bipartitos en \clásicas" y \cuánticas". Finalmente, en el Capítulo 7 exploramos algunos problemas vinculados a una desigualdad matricial de \subaditividad fuerte" que desempe~na un papel crucial en nuestro análisis de las correlaciones en los estados gaussianos bipartitos. Entre otras cosas, la teoría que desarrollamos nos permite concluir que una versión Rényi-2 gaussiana del escurridizo squashed entanglement coincide en estados gaussianos con el correspondiente entrelazamiento de formación<br>This thesis is concerned with a seemingly naive question: what happens when you separate two physical systems that were previously together? One of the greatest discovery of the last century is that systems that obey quantum me- chanical instead of classical laws remain inextricably linked even after they are physically separated, a phenomenon known as entanglement. This leads im- mediately to another, deep question: is entanglement an exclusive feature of quantum systems, or is it common to all non-classical theories? And if this is the case, how strong is quantum mechanical entanglement as compared to that exhibited by other theories? The first part of the thesis deals with these questions by considering quan- tum theory as part of a wider landscape of physical theories, collectively called general probabilistic theories (GPTs). Chapter 1 reviews the compelling motiva- tions behind the GPT formalism, preparing the ground for Chapter 2, where we translate the above questions into precise conjectures, and present our progress toward a full solution. In Chapter 3 we consider entanglement at the level of measurements instead of states, which leads us to the investigation of one of its main implications, data hiding. In this context, we determine the maximal data hiding strength that a quantum mechanical system can exhibit, and also the maximum value among all GPTs, finding that the former scales as the square root of the latter. In the second part of this manuscript we explore some problems connected with quantum entanglement. In Chapter 4 we discuss its resistance to white noise, as modelled by channels acting either locally or globally. Due to the limited number of parameters on which these channels depend, we are able to answer all the basic questions concerning various entanglement transformation properties. The following Chapter 5 presents our view on the topic of Gaussian entanglement, with particular emphasis on the role of the celebrated `positive partial transposition criterion' in this context. Extensively employing matrix analysis tools such as Schur complements and matrix means, we present unified proofs of classic results, further extending them and closing some open problems in the field along the way. The third part of this thesis concerns more general forms of non-classical correlations in bipartite continuous variable systems. In Chapter 6 we look into Gaussian steering and problems related to its quantification, moreover devising a general scheme that allows to consistently classify correlations of bipartite Gaussian states into `classical' and `quantum' ones. Finally, Chapter 7 explores some problems connected with a `strong subadditivity' matrix inequality that plays a crucial role in our analysis of correlations in bipartite Gaussian states. Among other things, the theory we develop allows us to conclude that a Rényi-2 Gaussian version of the elusive squashed entanglement coincides with the corre- sponding entanglement of formation when evaluated on Gaussian states.
APA, Harvard, Vancouver, ISO, and other styles
9

Hoyle, David Charles. "On the theory of simple classical fluids." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basak, Gancheva Inna. "Explicit integration of some integrable systems of classical mechanics." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/125114.

Full text
Abstract:
The main objective of the thesis is the analytical and geometrical study of several integrable finite-dimentional dynamical systems of classical mechanics, which are closely related, namely: - the classical generalization of the Euler top: the Zhukovski-Volterra (ZV) system describing the free motion of a gyrostat, i.e., a rigid body carrying a symmetric rotator whose axis is fixed in the body; - the Steklov-Lyapunov integrable case of the Kirchhoff equations describing the motion of a rigid body in an ideal incompressible liquid; - a nontrivial integrable generalization of the Steklov-Lyapunov system found by V.Rubanovskii: it describes the motion of a gyrostat in an ideal fluid in presence of a non-zero circulation. In our study we obtained explicit solution of the Zhukovski-Volterra ([2] and the Steklov-Lyapunov systems in terms of sigma- or theta-functions, and performed a bifurcation analysis of these systems, as well as of the Rubanovskii generalization. One should note that the solution of the ZV system was first given by V. Volterra, who, however, presented only its structure, but not the explicit formulas. The thesis gives a new alternative solution of this system by using an algebraic parametrization of the angular momentum. This allowed us to find poles and zeros of angular momentum in an algebraic way. The parametrization was also used to find an explicit solution for the Euler precession angle, and, as a consequence, to solve the Poisson equations describing the motion of the gyrostat in space. Similarly, by giving a geometric interpretation of the separating variables, and using the Weierstrass root functions, we reconstructed the thetafunctional solution of the Steklov-Lyapunov systems, which was first given by F. Kötter in 1899 without a derivation ([3]). In the study of bifurcations and singularities of the ZV system we used its bi-Hamiltonian structure ([1]. According the new method, the solution is critical, if there exist a parameter of corresponding family of Poisson brackets, for wich the rang of the brackets with this parameter drops. Applying new technics, based on the property of the system of being bi-Hamiltonian, we construct the bifurcation diagram of the ZV system. We also find the equilibrium points of the system, check the non-degeneracy condition for such points in the sense of the singularity theory of Hamiltonian systems, determine the types of equilibria points, and verify whether they are stable or not. We also describe the topological type of common levels of the first integrals of the ZV system. Similar problems have been discussed in many papers, but the goal of our work is to study the system and demonstrate the above techniques. It is a remarkable fact that using the bi-Hamiltonian property makes it possible to answer all the above questions practically without any difficult computations. The same method is applied to construct the bifurcation diagram for the Steklov-Lyapunov system, describe the zones of real motion, and analyze stability of critical periodic solutions. Then the bifurcation analysis is extended to the Rubanovskii generalizaton. Here the main difficulty is that the number of different types of the bifurcation diagram is quite high, so we only describe general properties of the bifurcation curves, do stability analysis for closed trajectories, and equilibria.<br>El objetivo principal de la tesis es el estudio analítico y geométrico de varios sistemas integrables dinámicos y finito-dimensionales de la mecánica clásica que están estrechamente vinculados, a saber: -La generalización clásica de Euler top: el sistema Zhukovski-Volterra (ZV) que describe el movimiento libre de un giróstato, es decir, un cuerpo rígido que lleva un rotor simétrico cuyo eje es fijo al cuerpo. - El caso del sistema integrable de Steklov-Lyapunov de las ecuaciones de Kirchhoff que describen el movimiento de un cuerpo rígido en un líquido incompresible ideal; - Una generalización no trivial del sistema integrable de Steklov-Lyapunov encontrado por V. Rubanovskii que describe el movimiento de un giróstato en un fluido ideal en presencia de una circulación distinta de cero. En nuestro estudio hemos obtenido una solución explícita de los sistemas de Zhukovski-Volterra [2] y de Steklov-Lyapunov en términos de funciones sigma- o theta y hemos realizado un análisis de la bifurcación de estos sistemas, así como de la generalización de Rubanovskii. Hay que señalar que la solución del sistema de ZV fue dado por primera vez por V. Volterra, que, sin embargo, presenta sólo su estructura, pero no las fórmulas explícitas. La tesis ofrece una nueva solución alternativa de este sistema mediante el uso de una parametrización algebraica del momento angular. Esto nos ha permitido encontrar polos y ceros del momento angular en forma algebraica. La parametrización también se utilizó para encontrar una solución explícita para el ángulo de precesión de Euler, y, en consecuencia, para resolver las ecuaciones de Poisson que describen el movimiento de un giróstato en el espacio. Del mismo modo, al dar una interpretación geométrica de las variables de separación, y utilizando las funciones de las raíces Weierstrass, hemos reconstruido la solución thetafunctional de los sistemas de Steklov-Lyapunov, que fue dado por primera vez por F. Kotter en 1899 sin una derivación ([3]). En el estudio de las bifurcaciones y las singularidades del sistema ZV hemos utilizado su estructura bi-Hamiltoniana ([1]). Según el nuevo método, la solución es crítica, si existe un parámetro de la familia correspondiente del paréntesis de Poisson, para que el rango de las paréntesis con este parámetro se disminuye. Aplicando las nuevas técnicas, basadas en la propiedad del sistema de ser bi-Hamiltoniana, construimos el diagrama de bifurcación del sistema ZV. También hemos encontrado los puntos de equilibrio del sistema, verificando la condición de no-degeneración de estos puntos, en el sentido de la teoría de singularidad de los sistemas hamiltonianos, determinando los tipos de puntos de equilibrio, y comprobando si son estables o no. También hemos descrito el tipo topológico de los niveles comunes de los primeros integrales del sistema de ZV. Problemas similares se han discutido en muchas obras, pero el objetivo de nuestro trabajo es estudiar el sistema y demostrar las técnicas anteriormente mencionadas. Es un hecho notable que el uso de la propiedad bi-Hamilton permite responder a todas las preguntas anteriores, prácticamente sin ningún cálculo difícil. El mismo método se aplica para construir el diagrama de bifurcación para el sistema de Steklov-Lyapunov, describir las zonas de movimiento real, y analizar la estabilidad de soluciones periódicas críticas. A continuación, el análisis de bifurcación se extiende a la generalización Rubanovskii. Aquí la principal dificultad consiste en que el número de diferentes tipos del diagrama de bifurcación es bastante alto, por lo que sólo se describen las propiedades generales de las curvas de bifurcación, y el análisis de estabilidad se hace para trayectorias cerradas, y equilibrios .
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Classical mechanics"

1

Benacquista, Matthew J., and Joseph D. Romano. Classical Mechanics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68780-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Awrejcewicz, Jan. Classical Mechanics. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3740-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Awrejcewicz, Jan. Classical Mechanics. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3791-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCall, Martin W. Classical Mechanics. John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470972502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greiner, Walter. Classical Mechanics. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03434-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulp, Christopher W., and Vasilis Pagonis. Classical Mechanics. CRC Press, 2020. http://dx.doi.org/10.1201/9781351024389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deriglazov, Alexei. Classical Mechanics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44147-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hentschke, Reinhard. Classical Mechanics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48710-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deriglazov, Alexei. Classical Mechanics. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14037-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Awrejcewicz, Jan, and Zbigniew Koruba. Classical Mechanics. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3978-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Classical mechanics"

1

Capecchi, Danilo. "Classical Mechanics." In Epistemology and Natural Philosophy in the 18th Century. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52852-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwichtenberg, Jakob. "Classical Mechanics." In Undergraduate Lecture Notes in Physics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19201-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gooch, Jan W. "Classical Mechanics." In Encyclopedic Dictionary of Polymers. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parthasarathy, Harish. "Classical Mechanics." In Developments in Mathematical and Conceptual Physics. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5058-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bongaarts, Peter. "Classical Mechanics." In Quantum Theory. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kusaka, Isamu. "Classical Mechanics." In Statistical Mechanics for Engineers. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13809-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Magnus, Wim, and Wim Schoenmaker. "Classical Mechanics." In Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56133-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sundermeyer, Kurt. "Classical Mechanics." In Symmetries in Fundamental Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06581-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olguín Díaz, Ernesto. "Classical Mechanics." In 3D Motion of Rigid Bodies. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04275-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lindner, Albrecht, and Dieter Strauch. "Classical Mechanics." In Undergraduate Lecture Notes in Physics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04360-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Classical mechanics"

1

Zhang, Xiao, Jingqi Wang, Kaiyun Zhu, Haiwang Li, Yanxin Zhai, and Tiantong Xu. "Classical Mechanics-based Kinematic Analysis of a Specific Microrobot." In 2024 6th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI). IEEE, 2024. https://doi.org/10.1109/ricai64321.2024.10911606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nieto-Chaupis, Huber. "Machine Learning as Mediator of Classical Electrodynamics and Quantum Mechanics." In 2024 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2024. https://doi.org/10.1109/apace62360.2024.10877319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nikolić, Hrvoje, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Classical Mechanics as Nonlinear Quantum Mechanics." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Urbański, Paweł. "An affine framework for analytical mechanics." In Classical and Quantum Integrability. Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc59-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grabowski, Janusz, and Giuseppe Marmo. "Binary operations in classical and quantum mechanics." In Classical and Quantum Integrability. Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc59-0-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kosyakov, B. P. "Subnuclear realm: classical in quantum and quantum in classical." In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cariñena, José F., and Arturo Ramos. "Applications of Lie systems in quantum mechanics and control theory." In Classical and Quantum Integrability. Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc59-0-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HELLIWELL, T. M., and D. A. KONKOWSKI. "CAN QUANTUM MECHANICS HEAL CLASSICAL SINGULARITIES?" In Proceedings of the MG11 Meeting on General Relativity. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812834300_0498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lucio, J. L. M., A. Cabo, and V. M. Villanueva. "Non-noether charges in classical mechanics." In The sixth Mexican workshop on particles and fields. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

El Naschie, M. S. "Deterministic Quantum Mechanics Versus Classical Mechanical Indeterminism and Nonlinear Dynamics." In FRONTIERS OF FUNDAMENTAL PHYSICS: Eighth International Symposium FFP8. AIP, 2007. http://dx.doi.org/10.1063/1.2736988.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Classical mechanics"

1

A. Konechny and S. G. Rajeev. Classical Mechanics on Grassmannian and Disc. GIQ, 2012. http://dx.doi.org/10.7546/giq-2-2001-181-207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Unseren, M. A., and F. M. Hoffman. Errata report on Herbert Goldstein's Classical Mechanics: Second edition. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/6712863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cox, James. Solid Mechanics Code Verification: Contrasting Classical and Manufactured Reference Solutions. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1475255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haque, Azizul, and Thomas F. George. Dynamics of Observed Reality: Abridged Version of Classical and Quantum Mechanics. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada198637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Sang-Bong. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10139084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saptsin, Vladimir, and Володимир Миколайович Соловйов. Relativistic quantum econophysics – new paradigms in complex systems modelling. [б.в.], 2009. http://dx.doi.org/10.31812/0564/1134.

Full text
Abstract:
This work deals with the new, relativistic direction in quantum econophysics, within the bounds of which a change of the classical paradigms in mathematical modelling of socio-economic system is offered. Classical physics proceeds from the hypothesis that immediate values of all the physical quantities, characterizing system’s state, exist and can be accurately measured in principle. Non-relativistic quantum mechanics does not reject the existence of the immediate values of the classical physical quantities, nevertheless not each of them can be simultaneously measured (the uncertainty principle). Relativistic quantum mechanics rejects the existence of the immediate values of any physical quantity in principle, and consequently the notion of the system state, including the notion of the wave function, which becomes rigorously nondefinable. The task of this work consists in econophysical analysis of the conceptual fundamentals and mathematical apparatus of the classical physics, relativity theory, non-relativistic and relativistic quantum mechanics, subject to the historical, psychological and philosophical aspects and modern state of the socio-economic modeling problem. We have shown that actually and, virtually, a long time ago, new paradigms of modeling were accepted in the quantum theory, within the bounds of which the notion of the physical quantity operator becomes the primary fundamental conception(operator is a mathematical image of the procedure, the action), description of the system dynamics becomes discrete and approximate in its essence, prediction of the future, even in the rough, is actually impossible when setting aside the aftereffect i.e. the memory. In consideration of the analysis conducted in the work we suggest new paradigms of the economical-mathematical modeling.
APA, Harvard, Vancouver, ISO, and other styles
7

Saptsin, V., Володимир Миколайович Соловйов, and I. Stratychuk. Quantum econophysics – problems and new conceptions. КНУТД, 2012. http://dx.doi.org/10.31812/0564/1185.

Full text
Abstract:
This article is dedicated to the econophysical analysis of conceptual fundamentals and mathematical apparatus of classical physics, relativity theory, non-relativistic and relativistic quantum mechanics. The historical and methodological aspects as well as the modern state of the problem of the socio-economic modeling are considered.
APA, Harvard, Vancouver, ISO, and other styles
8

Patel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/41042.

Full text
Abstract:
Bio-structures owe their remarkable mechanical properties to their hierarchical geometrical arrangement as well as heterogeneous material properties. This dissertation presents an integrated, interdisciplinary approach that employs computational mechanics combined with flow network analysis to gain fundamental insights into the failure mechanisms of high performance, light-weight, structured composites by examining the stress flow patterns formed in the nascent stages of loading for the rostrum of the paddlefish. The data required for the flow network analysis was generated from the finite element analysis of the rostrum. The flow network was weighted based on the parameter of interest, which is stress in the current study. The changing kinematics of the structural system was provided as input to the algorithm that computes the minimum-cut of the flow network. The proposed approach was verified using two classical problems three- and four-point bending of a simply-supported concrete beam. The current study also addresses the methodology used to prepare data in an appropriate format for a seamless transition from finite element binary database files to the abstract mathematical domain needed for the network flow analysis. A robust, platform-independent procedure was developed that efficiently handles the large datasets produced by the finite element simulations. Results from computational mechanics using Abaqus and complex network analysis are presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Pasupuleti, Murali Krishna. Quantum Cognition: Modeling Decision-Making with Quantum Theory. National Education Services, 2025. https://doi.org/10.62311/nesx/rrvi225.

Full text
Abstract:
Abstract Quantum cognition applies quantum probability theory and mathematical principles from quantum mechanics to model human decision-making, reasoning, and cognitive processes beyond the constraints of classical probability models. Traditional decision theories, such as expected utility theory and Bayesian inference, struggle to explain context-dependent reasoning, preference reversals, order effects, and cognitive biases observed in human behavior. By incorporating superposition, interference, and entanglement, quantum cognitive models offer a probabilistic framework that better accounts for uncertainty, ambiguity, and adaptive decision-making in complex environments. This research explores the foundations of quantum cognition, its empirical validation in behavioral experiments and neuroscience, and its applications in artificial intelligence (AI), behavioral economics, and decision sciences. Additionally, it examines how quantum-inspired AI models enhance predictive analytics, machine learning algorithms, and human-computer interaction. The study also addresses challenges related to mathematical complexity, cognitive interpretation, and the potential link between quantum mechanics and brain function, providing a comprehensive framework for the integration of quantum cognition into decision science and AI-driven cognitive computing. Keywords Quantum cognition, quantum probability, decision-making models, cognitive science, superposition in cognition, interference effects, entanglement in decision-making, probabilistic reasoning, preference reversals, cognitive biases, order effects, quantum-inspired AI, behavioral economics, neural quantum theory, artificial intelligence, cognitive neuroscience, human-computer interaction, quantum probability in psychology, quantum decision theory, uncertainty modeling, predictive analytics, quantum computing in cognition.
APA, Harvard, Vancouver, ISO, and other styles
10

B. HENSON and J. ROBINSON. CLASSICAL KINETIC MECHANISMS DESCRIBING HETEROGENEOUS OZONE DEPLETION. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/766221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography