Dissertations / Theses on the topic 'Classification des Systèmes de Recommandation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Classification des Systèmes de Recommandation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Poirier, Damien. "Des textes communautaires à la recommandation." Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00597422.
Full textKleanthi, Lakiotaki. "An integrated recommender system based on multi-criteria decision analysis and data analysis methods : Methodology, implementation and evaluation." Paris 9, 2010. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2010PA090053.
Full textBouzayane, Sarra. "Méthode de classification multicritère, incrémentale et périodique appliquée à la recommandation pour l'aide au transfert des savoirs dans les MOOCs." Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0029/document.
Full textThe thesis deals with the problem of knowledge transfer in mediated environments in the era of massive data. We propose a Multicriteria Approach for the Incremental Periodic Prediction (MAI2P) of the decision class to which an action is likely to belong. The MAI2P method is based on three phases. The first consists of three steps : the construction of a family of criteria for the characterization of actions ; the construction of a representative set of “Reference actions” for each of the decision classes ; and the construction of a decision table. The second phase is based on the DRSA-Incremental algorithm that we propose for the inference and the updating of the set of decision rules following the sequential increment of the “Reference actions” set. The third phase is meant to classify the “Potential Actions” in one of the predefined decision classes using the set of inferred decision rules. The MAI2P method is validated especially in the context of the Massive Open Online Courses (MOOCs), which are e-courses characterized by a huge amount of data exchanged between a massive number of learners. It allows the weekly prediction of the three decision classes : Cl1 of the “At risk learners”, those who intend to give up the MOOC; Cl2 of the “Struggling learners”, those who have pedagogical difficulties but have no plan to abandon it ; and Cl3 of the “Leader learners”, those who can support the other two classes of learners by providing them with all the information they need. The prediction is based on data from all the previous weeks of the MOOC in order to predict the learner profile for the following week. A recommender system KTI-MOOC (Recommender system for Knowledge Transfer Improvement within a MOOC) is developed to recommend to each “At risk learner” or “Struggling learner” a personalized list of “Leader learners”. This system is based on the demographic filtering technique and aims to promote the individual appropriation, of the exchanged information, for each learner
Laghmari, Khalil. "Classification multi-labels graduée : découverte des relations entre les labels, et adaptation à la reconnaissance des odeurs et au contexte big data des systèmes de recommandation." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS032/document.
Full textIn graded multi-label classification (GMLC), each instance is associated to a set of labels with graded membership degrees. For example, the same odorous molecule may be associated to a strong 'musky' odor, a moderate 'animal' odor, and a weak 'grassy' odor. The goal is to learn a model to predict the graded set of labels associated to an instance from its descriptive variables. For example, predict the graduated set of odors from the molecular weight, the number of double bonds, and the structure of the molecule. Another interesting area of the GMLC is recommendation systems. In fact, users' assessments of items (products, services, books, films, etc.) are first collected in the form of GML data (using the one-to-five star rating). These data are then used to recommend to each user items that are most likely to interest him. In this thesis, an in-depth theoretical study of the GMLC allows to highlight the limits of existing approaches, and to introduce a set of new approaches bringing improvements evaluated experimentally on real data. The main point of the new proposed approaches is the exploitation of relations between labels. For example, a molecule with a strong 'musky' odor often has a weak or moderate 'animal' odor. This thesis also proposes new approaches adapted to the case of odorous molecules and to the case of large volumes of data collected in the context of recommendation systems
Bothorel, Cécile. "Système multi-agents pour l'auto-organisation de communautés d'intérêts dynamiques et distribuées." Toulouse 3, 1999. http://www.theses.fr/1999TOU30222.
Full textAznag, Mustapha. "Modélisation thématique probabiliste des services web." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4028.
Full textThe works on web services management use generally the techniques of information retrieval, data mining and the linguistic analysis. Alternately, we attend the emergence of the probabilistic topic models originally developed and utilized for topics extraction and documents modeling. The contribution of this thesis meets the topics modeling and the web services management. The principal objective of this thesis is to study and propose probabilistic algorithms to model the thematic structure of web services. First, we consider an unsupervised approach to meet different tasks such as web services clustering and discovery. Then we combine the topics modeling with the formal concept analysis to propose a novel method for web services hierarchical clustering. This method allows a novel interactive discovery approach based on the specialization and generalization operators of retrieved results. Finally, we propose a semi-supervised method for automatic web service annotation (automatic tagging). We concretized our proposals by developing an on-line web services search engine called WS-Portal where we incorporate our research works to facilitate web service discovery task. Our WS-Portal contains 7063 providers, 115 sub-classes of category and 22236 web services crawled from the Internet. In WS- Portal, several technologies, i.e., web services clustering, tags recommendation, services rating and monitoring are employed to improve the effectiveness of web services discovery. We also integrate various parameters such as availability and reputation of web services and more generally the quality of service to improve their ranking and therefore the relevance of the search result
Benkoussas, Chahinez. "Approches non supervisées pour la recommandation de lectures et la mise en relation automatique de contenus au sein d'une bibliothèque numérique." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4379/document.
Full textThis thesis deals with the field of information retrieval and the recommendation of reading. It has for objects:— The creation of new approach of document retrieval and recommendation using techniques of combination of results, aggregation of social data and reformulation of queries;— The creation of an approach of recommendation using methods of information retrieval and graph theories.Two collections of documents were used. First one is a collection which is provided by CLEF (Social Book Search - SBS) and the second from the platforms of electronic sources in Humanities and Social Sciences OpenEdition.org (Revues.org). The modelling of the documents of every collection is based on two types of relations:— For the first collection (SBS), documents are connected with similarity calculated by Amazon which is based on several factors (purchases of the users, the comments, the votes, products bought together, etc.);— For the second collection (OpenEdition), documents are connected with relations of citations, extracted from bibliographical references.We show that the proposed approaches bring in most of the cases gain in the performances of research and recommendation. The manuscript is structured in two parts. The first part "state of the art" includes a general introduction, a state of the art of informationretrieval and recommender systems. The second part "contributions" includes a chapter on the detection of reviews of books in Revues.org; a chapter on the methods of IR used on complex queries written in natural language and last chapter which handles the proposed approach of recommendation which is based on graph
Joshi, Bikash. "Algorithmes d'apprentissage pour les grandes masses de données : Application à la classification multi-classes et à l'optimisation distribuée asynchrone." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM046/document.
Full textThis thesis focuses on developing scalable algorithms for large scale machine learning. In this work, we present two perspectives to handle large data. First, we consider the problem of large-scale multiclass classification. We introduce the task of multiclass classification and the challenge of classifying with a large number of classes. To alleviate these challenges, we propose an algorithm which reduces the original multiclass problem to an equivalent binary one. Based on this reduction technique, we introduce a scalable method to tackle the multiclass classification problem for very large number of classes and perform detailed theoretical and empirical analyses.In the second part, we discuss the problem of distributed machine learning. In this domain, we introduce an asynchronous framework for performing distributed optimization. We present application of the proposed asynchronous framework on two popular domains: matrix factorization for large-scale recommender systems and large-scale binary classification. In the case of matrix factorization, we perform Stochastic Gradient Descent (SGD) in an asynchronous distributed manner. Whereas, in the case of large-scale binary classification we use a variant of SGD which uses variance reduction technique, SVRG as our optimization algorithm
Meyer, Frank. "Systèmes de recommandation dans des contextes industriels." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767159.
Full textAlchiekh, Haydar Charif. "Les systèmes de recommandation à base de confiance." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0203/document.
Full textRecommender systems (RS) exploit users' behaviour to recommend to them items they would appreciate. Users Behavioral divergence on the web results in a problem of performance fluctuations to (RS). This problem is observed in the approach of collaborative filtering (CF), which exploites the ratings attributed by users to items, and in the trust-based approach (TRS), which exploites the trust relations between the users. We propose a hybrid approach that increases the number of users receiving recommendation, without significant loss of accuracy. Thereafter, we identify several behavioral characteristics that define a user profile. Then we classify users according to their common behavior, and observe the performance of the approaches by class. Thereafter, we focus on the TRS. The concept of trust has been discussed in several disciplines. There is no real consensus on its definition. However, all agree on its positive effect. Subjective logic (LS) provides a flexible platform for modeling trust. We use it to propose and compare three trust models, which aims to predict whether a user source can trust a target user. Trust may be based on the personal experience of the source (local model), or on a system of mouth (collective model), or the reputation of the target (global model). We compare these three models in terms of accuracy, complexity, and robustness against malicious attacks
Lemdani, Roza. "Système hybride d'adaptation dans les systèmes de recommandation." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC050/document.
Full textRecommender systems are tools used to present users with items that might interest them. Such systems use algorithms that rely on the domain application. These algorithms are then executed for each user in order to find the most relevant recommendations for him, without taking into account his specific needs.In this thesis, we define a hybrid recommender system which combines several recommendation algorithms in order to obtain more accurate recommendations. Moreover, the defined approach relies on the structure of the input ontology, which makes the framework reusable, adaptable and domain-independent (music, research papers, films, etc.).We also had an interest in detecting in which kind of recommendations a user responds better in order to adapt the recommendation process to each user category and obtain more targeted recommendations. Finally, our approach can explain each recommendation, which increases the user confidence in the system by proving him that the recommendations are adapted to him. We also allow the user to correct the explanations in order to help the system to get a better understanding of him and avoid non accurate recommendations in the future.Our recommender system has been experimented online with real users and offline by performing a cross-validation on the MovieLens dataset. The results of the experimentation are very satisfying so far
Sidana, Sumit. "Systèmes de recommandation pour la publicité en ligne." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM061/document.
Full textThis thesis is dedicated to the study of Recommendation Systems for implicit feedback (clicks) mostly using Learning-to-rank and neural network based approaches. In this line, we derive a novel Neural-Network model that jointly learns a new representation of users and items in an embedded space as well as the preference relation of users over the pairs of items and give theoretical analysis. In addition we contribute to the creation of two novel, publicly available, collections for recommendations that record the behavior of customers of European Leaders in eCommerce advertising, Kelkoofootnote{url{https://www.kelkoo.com/}} and Purchfootnote{label{purch}url{http://www.purch.com/}}. Both datasets gather implicit feedback, in form of clicks, of users, along with a rich set of contextual features regarding both customers and offers. Purch's dataset, is affected by popularity bias. Therefore, we propose a simple yet effective strategy on how to overcome the popularity bias introduced while designing an efficient and scalable recommendation algorithm by introducing diversity based on an appropriate representation of items. Further, this collection contains contextual information about offers in form of text. We make use of this textual information in novel time-aware topic models and show the use of topics as contextual information in Factorization Machines that improves performance. In this vein and in conjunction with a detailed description of the datasets, we show the performance of six state-of-the-art recommender models.Keywords. Recommendation Systems, Data Sets, Learning-to-Rank, Neural Network, Popularity Bias, Diverse Recommendations, Contextual information, Topic Model
Louëdec, Jonathan. "Stratégies de bandit pour les systèmes de recommandation." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30257/document.
Full textCurrent recommender systems need to recommend items that are relevant to users (exploitation), but they must also be able to continuously obtain new information about items and users (exploration). This is the exploration / exploitation dilemma. Such an environment is part of what is called "reinforcement learning". In the statistical literature, bandit strategies are known to provide solutions to this dilemma. The contributions of this multidisciplinary thesis the adaptation of these strategies to deal with some problems of the recommendation systems, such as the recommendation of several items simultaneously, taking into account the aging of the popularity of an items or the recommendation in real time
Griesner, Jean-Benoit. "Systèmes de recommandation de POI à large échelle." Electronic Thesis or Diss., Paris, ENST, 2018. http://www.theses.fr/2018ENST0037.
Full textThe task of points-of-interest (POI) recommendations has become an essential feature in location-based social networks. However it remains a challenging problem because of specific constraints of these networks. In this thesis I investigate new approaches to solve the personalized POI recommendation problem. Three main contributions are proposed in this work. The first contribution is a new matrix factorization model that integrates geographical and temporal influences. This model is based on a specific processing of geographical data. The second contribution is an innovative solution against the implicit feedback problem. This problem corresponds to the difficulty to distinguish among unvisited POI the actual "unknown" from the "negative" ones. Finally the third contribution of this thesis is a new method to generate recommendations with large-scale datasets. In this approach I propose to combine a new geographical clustering algorithm with users’ implicit social influences in order to define local and global mobility scales
Nana, jipmo Coriane. "Intégration du web social dans les systèmes de recommandation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC082/document.
Full textThe social Web grows more and more and gives through the web, access to a wide variety of resources, like sharing sites such as del.icio.us, exchange messages as Twitter, or social networks with the professional purpose such as LinkedIn, or more generally for social purposes, such as Facebook and LiveJournal. The same individual can be registered and active on different social networks (potentially having different purposes), in which it publishes various information, which are constantly growing, such as its name, locality, communities, various activities. The information (textual), given the international dimension of the Web, is inherently multilingual and intrinsically ambiguous, since it is published in natural language in a free vocabulary by individuals from different origin. They are also important, specially for applications seeking to know their users in order to better understand their needs, activities and interests. The objective of our research is to exploit using essentially the Wikpédia encyclopedia, the textual resources extracted from the different social networks of the same individual in order to construct his characterizing profile, which can be exploited in particular by applications seeking to understand their users, such as recommendation systems. In particular, we conducted a study to characterize the personality traits of users. Many experiments, analyzes and evaluations were carried out on real data collected from different social networks
Salah, Aghiles. "Von Mises-Fisher based (co-)clustering for high-dimensional sparse data : application to text and collaborative filtering data." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB093/document.
Full textCluster analysis or clustering, which aims to group together similar objects, is undoubtedly a very powerful unsupervised learning technique. With the growing amount of available data, clustering is increasingly gaining in importance in various areas of data science for several reasons such as automatic summarization, dimensionality reduction, visualization, outlier detection, speed up research engines, organization of huge data sets, etc. Existing clustering approaches are, however, severely challenged by the high dimensionality and extreme sparsity of the data sets arising in some current areas of interest, such as Collaborative Filtering (CF) and text mining. Such data often consists of thousands of features and more than 95% of zero entries. In addition to being high dimensional and sparse, the data sets encountered in the aforementioned domains are also directional in nature. In fact, several previous studies have empirically demonstrated that directional measures—that measure the distance between objects relative to the angle between them—, such as the cosine similarity, are substantially superior to other measures such as Euclidean distortions, for clustering text documents or assessing the similarities between users/items in CF. This suggests that in such context only the direction of a data vector (e.g., text document) is relevant, not its magnitude. It is worth noting that the cosine similarity is exactly the scalar product between unit length data vectors, i.e., L 2 normalized vectors. Thus, from a probabilistic perspective using the cosine similarity is equivalent to assuming that the data are directional data distributed on the surface of a unit-hypersphere. Despite the substantial empirical evidence that certain high dimensional sparse data sets, such as those encountered in the above domains, are better modeled as directional data, most existing models in text mining and CF are based on popular assumptions such as Gaussian, Multinomial or Bernoulli which are inadequate for L 2 normalized data. In this thesis, we focus on the two challenging tasks of text document clustering and item recommendation, which are still attracting a lot of attention in the domains of text mining and CF, respectively. In order to address the above limitations, we propose a suite of new models and algorithms which rely on the von Mises-Fisher (vMF) assumption that arises naturally for directional data lying on a unit-hypersphere
Pradel, Bruno. "Evaluation des systèmes de recommandation à partir d'historiques de données." Paris 6, 2013. http://www.theses.fr/2013PA066263.
Full textThis thesis presents various experimental protocols leading to abetter offline estimation of errors in recommender systems. As a first contribution, results form a case study of a recommendersystem based on purchased data will be presented. Recommending itemsis a complex task that has been mainly studied considering solelyratings data. In this study, we put the stress on predicting thepurchase a customer will make rather than the rating he will assign toan item. While ratings data are not available for many industries andpurchases data widely used, very few studies considered purchasesdata. In that setting, we compare the performances of variouscollaborative filtering models from the litterature. We notably showthat some changes the training and testing phases, and theintroduction of contextual information lead to major changes of therelative perfomances of algorithms. The following contributions will focus on the study of ratings data. Asecond contribution will present our participation to the Challenge onContext-Aware Movie Recommendation. This challenge provides two majorchanges in the standard ratings prediction protocol: models areevaluated conisdering ratings metrics and tested on two specificsperiod of the year: Christmas and Oscars. We provides personnalizedrecommendation modeling the short-term evolution of the popularitiesof movies. Finally, we study the impact of the observation process of ratings onranking evaluation metrics. Users choose the items they want to rateand, as a result, ratings on items are not observed at random. First,some items receive a lot more ratings than others and secondly, highratings are more likely to be oberved than poor ones because usersmainly rate the items they likes. We propose a formal analysis ofthese effects on evaluation metrics and experiments on the Yahoo!Musicdataset, gathering standard and randomly collected ratings. We showthat considering missing ratings as negative during training phaseleads to good performances on the TopK task, but these performancescan be misleading favoring methods modeling the popularities of itemsmore than the real tastes of users
Al-Ghossein, Marie. "Context-aware recommender systems for real-world applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT008/document.
Full textRecommender systems have proven to be valuable tools to help users overcome the information overload, and significant advances have been made in the field over the last two decades. In particular, contextual information has been leveraged to model the dynamics occurring within users and items. Context is a complex notion and its traditional definition, which is adopted in most recommender systems, fails to cope with several issues occurring in real-world applications. In this thesis, we address the problems of partially observable and unobservable contexts in two particular applications, hotel recommendation and online recommendation, challenging several aspects of the traditional definition of context, including accessibility, relevance, acquisition, and modeling.The first part of the thesis investigates the problem of hotel recommendation which suffers from the continuous cold-start issue, limiting the performance of classical approaches for recommendation. Traveling is not a frequent activity and users tend to have multifaceted behaviors depending on their specific situation. Following an analysis of the user behavior in this domain, we propose novel recommendation approaches integrating partially observable context affecting users and we show how it contributes in improving the recommendation quality.The second part of the thesis addresses the problem of online adaptive recommendation in streaming environments where data is continuously generated. Users and items may depend on some unobservable context and can evolve in different ways and at different rates. We propose to perform online recommendation by actively detecting drifts and updating models accordingly in real-time. We design novel methods adapting to changes occurring in user preferences, item perceptions, and item descriptions, and show the importance of online adaptive recommendation to ensure a good performance over time
Gras, Benjamin. "Les oubliés de la recommandation sociale." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0017/document.
Full textA recommender system aims at providing relevant resources to a user, named the active user. To allow this recommendation, the system exploits the information it has collected about the active user or about resources. The collaborative filtering (CF) is a widely used recommandation approach. The data exploited by CF are the preferences expressed by users on resources. CF is based on the assumption that preferences are consistent between users, allowing a user's preferences to be inferred from the preferences of other users. In a CF-based recommender system, at least one user community has to share the preferences of the active user to provide him with high quality recommendations. Let us define a specific preference as a preference that is not shared by any group of user. A user with several specific preferences will likely be poorly served by a classic CF approach. This is the problem of Grey Sheep Users (GSU). In this thesis, I focus on three separate questions. 1) What is a specific preference? I give an answer by proposing associated hypotheses that I validate experimentally. 2) How to identify GSU in preference data? This identification is important to anticipate the low quality recommendations that will be provided to these users. I propose numerical indicators to identify GSU in a social recommendation dataset. These indicators outperform those of the state of the art and allow to isolate users whose quality of recommendations is very low. 3) How can I model GSU to improve the quality of the recommendations they receive? I propose new recommendation approaches to allow GSU to benefit from the opinions of other users
Ben, Ticha Sonia. "Recommandation personnalisée hybride." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0168/document.
Full textFace to the ongoing rapid expansion of the Internet, user requires help to access to items that may interest her or him. A personalized recommender system filters relevant items from huge catalogue to particular user by observing his or her behavior. The approach based on observing user behavior from his interactions with the website is called usage analysis. Collaborative Filtering and Content-Based filtering are the most widely used techniques in personalized recommender system. Collaborative filtering uses only data from usage analysis to build user profile, while content-based filtering relies in addition on semantic information of items. Hybrid approach is another important technique, which combines collaborative and content-based methods to provide recommendations. The aim of this thesis is to present a new hybridization approach that takes into account the semantic information of items to enhance collaborative recommendations. Several approaches have been proposed for learning a new user profile inferring preferences for semantic information describing items. For each proposed approach, we address the sparsity and the scalability problems. We prove also, empirically, an improvement in recommendations accuracy against collaborative filtering and content-based filtering
Gutowski, Nicolas. "Recommandation contextuelle de services : application à la recommandation d'évènements culturels dans la ville intelligente." Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0030.
Full textNowadays, Multi-Armed Bandit algorithms for context-aware recommendation systems are extensively studied. In order to meet challenges underlying this field of research, our works and contributions have been organised according to three research directions : 1) recommendation systems ; 2) Multi-Armed Bandit (MAB) and Contextual Multi-Armed Bandit algorithms (CMAB) ; 3) context.The first part of our contributions focuses on MAB and CMAB algorithms for recommendation. It particularly addresses diversification of recommendations for improving individual accuracy. The second part is focused on contextacquisition, on context reasoning for cultural events recommendation systems for Smart Cities, and on dynamic context enrichment for CMAB algorithms
Labbé, Vincent. "Modélisation et apprentissage des préférences appliqués à la recommandation dans les systèmes d'impression." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00814267.
Full textShu, Wu. "Contributions à la détection des anomalies et au développement des systèmes de recommandation." Thèse, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6563.
Full textMoreno, Barbosa Andrés Dario. "Passage à l’échelle des systèmes de recommandation avec respect de la vie privée." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4128/document.
Full textThe main objective of this thesis is to propose a recommendation method that keeps in mind the privacy of users as well as the scalability of the system. To achieve this goal, an hybrid technique using content-based and collaborative filtering paradigms is used in order to attain an accurate model for recommendation, under the strain of mechanisms designed to keep user privacy, particularly designed to reduce the user exposure risk. The thesis contributions are threefold : First, a Collaborative Filtering model is defined by using client-side agent that interacts with public information about items kept on the recommender system side. Later, this model is extended into an hybrid approach for recommendation that includes a content-based strategy for content recommendation. Using a knowledge model based on keywords that describe the item domain, the hybrid approach increases the predictive performance of the models without much computational effort on the cold-start setting. Finally, some strategies to improve the recommender system's provided privacy are introduced: Random noise generation is used to limit the possible inferences an attacker can make when continually observing the interaction between the client-side agent and the server, and a blacklisted strategy is used to refrain the server from learning interactions that the user considers violate her privacy. The use of the hybrid model mitigates the negative impact these strategies cause on the predictive performance of the recommendations
Désoyer, Adèle. "Appariement de contenus textuels dans le domaine de la presse en ligne : développement et adaptation d'un système de recherche d'information." Thesis, Paris 10, 2017. http://www.theses.fr/2017PA100119/document.
Full textThe goal of this thesis, conducted within an industrial framework, is to pair textual media content. Specifically, the aim is to pair on-line news articles to relevant videos for which we have a textual description. The main issue is then a matter of textual analysis, no image or spoken language analysis was undertaken in the present study. The question that arises is how to compare these particular objects, the texts, and also what criteria to use in order to estimate their degree of similarity. We consider that one of these criteria is the topic similarity of their content, in other words, the fact that two documents have to deal with the same topic to form a relevant pair. This problem fall within the field of information retrieval (ir) which is the main strategy called upon in this research. Furthermore, when dealing with news content, the time dimension is of prime importance. To address this aspect, the field of topic detection and tracking (tdt) will also be explored.The pairing system developed in this thesis distinguishes different steps which complement one another. In the first step, the system uses natural language processing (nlp) methods to index both articles and videos, in order to overcome the traditionnal bag-of-words representation of texts. In the second step, two scores are calculated for an article-video pair: the first one reflects their topical similarity and is based on a vector space model; the second one expresses their proximity in time, based on an empirical function. At the end of the algorithm, a classification model learned from manually annotated document pairs is used to rank the results.Evaluation of the system's performances raised some further questions in this doctoral research. The constraints imposed both by the data and the specific need of the partner company led us to adapt the evaluation protocol traditionnal used in ir, namely the cranfield paradigm. We therefore propose an alternative solution for evaluating the system that takes all our constraints into account
Moin, Afshin. "Les techniques de recommandation et de visualisation pour les données à une grande échelle." Rennes 1, 2012. https://tel.archives-ouvertes.fr/tel-00724121.
Full textNous avons assisté au développement rapide de la technologie de l'information au cours de la dernière décennie. D'une part, la capacité du traitement et du stockage des appareils numériques est en constante augmentation grâce aux progrès des méthodes de construction. D'autre part, l'interaction entre ces dispositifs puissants a été rendue possible grâce à la technologie de réseautage. Une conséquence naturelle de ces progrès, est que le volume des données générées dans différentes applications a grandi à un rythme sans précédent. Désormais, nous sommes confrontés à de nouveaux défis pour traiter et représenter efficacement la masse énorme de données à notre disposition. Cette thèse est centrée autour des deux axes de recommandation du contenu pertinent et de sa visualisation correcte. Le rôle des systèmes de recommandation est d'aider les utilisateurs dans le processus de prise de décision pour trouver des articles avec un contenu pertinent et une qualité satisfaisante au sein du vaste ensemble des possibilités existant dans le Web. D'autre part, la représentation correcte des données traitées est un élément central à la fois pour accroître l’utilité des données pour l'utilisateur final et pour la conception des outils d'analyse efficaces. Dans cet exposé, les principales approches des systèmes de recommandation ainsi que les techniques les plus importantes de la visualisation des données sous forme de graphes sont discutées. En outre, il est montré comment quelques-unes des mêmes techniques appliquées aux systèmes de recommandation peuvent être modifiées pour tenir compte des exigences de visualisation
Lisena, Pasquale. "Knowledge-based music recommendation : models, algorithms and exploratory search." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS614.
Full textRepresenting the information about music is a complex activity that involves different sub-tasks. This thesis manuscript mostly focuses on classical music, researching how to represent and exploit its information. The main goal is the investigation of strategies of knowledge representation and discovery applied to classical music, involving subjects such as Knowledge-Base population, metadata prediction, and recommender systems. We propose a complete workflow for the management of music metadata using Semantic Web technologies. We introduce a specialised ontology and a set of controlled vocabularies for the different concepts specific to music. Then, we present an approach for converting data, in order to go beyond the librarian practice currently in use, relying on mapping rules and interlinking with controlled vocabularies. Finally, we show how these data can be exploited. In particular, we study approaches based on embeddings computed on structured metadata, titles, and symbolic music for ranking and recommending music. Several demo applications have been realised for testing the previous approaches and resources
Dini, Oana. "A Framework for Adaptive Mechanisms for Trusted Services." Besançon, 2010. http://www.theses.fr/2010BESA2022.
Full textLa quantité d’informations et de services disponibles sur l’Internet est si importante qu’il est très difficile de choisir ceux qui répondent bien à nos exigences. Dans cette thèse, l’auteure présente un algorithme pour le calcul de la réputation de services en proposant un modèle amélioré du comportement des utilisateurs. Cette technique se révèle bien adaptée pour bâtir des modèles de comportement. De plus elle a travaillé sur les aspects concernant les similarités de services afin d’obtenir des réponses appropriées aux demandes des services pour améliorer la qualité de l’expérience. Dans ce cadre, un algorithme évaluant la proximité des services a été développé. A partir de cet algorithme, une version adaptative avec des intervalles variables pour les paramètres de services également a été proposée. Ces algorithmes ont été testé et validés sur des classes de services
Szczerbak, Michal Krzysztof. "Colloborative Situation Awareness." Télécom Bretagne, 2013. http://www.telecom-bretagne.eu/publications/publication.php?idpublication=13949.
Full textSituation awareness and collective intelligence are two technologies used in smart systems. The former renders those systems able to reason upon their abstract knowledge of what is going on. The latter enables them learning and deriving new information from a composition of experiences of their users. In this dissertation we present a doctoral research on an attempt to combine the two in order to obtain, in a collaborative fashion, situation-based rules that the whole community of entities would benefit of sharing. We introduce the KRAMER recommendation system, which we designed and implemented as a solution to the problem of not having decision support tools both situation-aware and collaborative. The system is independent from any domain of application in particular, in other words generic, and we apply its prototype implementation to context-enriched social communication scenario
Akermi, Imen. "A hybrid model for context-aware proactive recommendation." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30101/document.
Full textJust-In-Time recommender systems involve all systems able to provide recommendations tailored to the preferences and needs of users in order to help them access useful and interesting resources within a large data space. The user does not need to formulate a query, this latter is implicit and corresponds to the resources that match the user's interests at the right time. Our work falls within this framework and focuses on developing a proactive context-aware recommendation approach for mobile devices that covers many domains. It aims at recommending relevant items that match users' personal interests at the right time without waiting for the users to initiate any interaction. Indeed, the development of mobile devices equipped with persistent data connections, geolocation, cameras and wireless capabilities allows current context-aware recommender systems (CARS) to be highly contextualized and proactive. We also take into consideration to which degree the recommendation might disturb the user. It is about balancing the process of recommendation against intrusive interruptions. As a matter of fact, there are different factors and situations that make the user less open to recommendations. As we are working within the context of mobile devices, we consider that mobile applications functionalities such as the camera, the keyboard, the agenda, etc., are good representatives of the user's interaction with his device since they somehow stand for most of the activities that a user could use in a mobile device in a daily basis such as texting messages, chatting, tweeting, browsing or taking selfies and pictures
Fomba, Soumana. "Décision multicritère : un système de recommandation pour le choix de l'opérateur d'agrégation." Thesis, Toulouse 1, 2018. http://www.theses.fr/2018TOU10009/document.
Full textRecommendation systems are becoming more popular. This PhD focusses on MultiCriteriaDecision Analysis (MCDA). For MCDA, it exists multiplication lot of aggregation methods. This diversity of aggregation methods and decision-making situations means that there is no super method applicable in all decision-making situations. The question then is how to choose an appropriate aggregation operator for a given decision problem? In this thesis, we try to have some answers to this question, on the one hand by studying the decision support systems, on the other hand by analyzing different aggregation operators present in the literature. This allowed us to set up a recommendation system implementing several aggregation operators. During an aggregation procedure, the user has the possibility of choosing an aggregation operator from among the available operators. It can also be offered an aggregation operator by the system. The aggregation operator most appropriate to the decision-maker's decision problem is chosen according to several parameters
Picot-Clémente, Romain. "Une architecture générique de Systèmes de recommandation de combinaison d'items : application au domaine du tourisme." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00688994.
Full textFrainay, Clément. "Système de recommandation basé sur les réseaux pour l'interprétation de résultats de métabolomique." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30297/document.
Full textMetabolomics allows large-scale studies of the metabolic profile of an individual, which is representative of its physiological state. Metabolic markers characterising a given condition can be obtained through the comparison of those profiles. Therefore, metabolomics reveals a great potential for the diagnosis as well as the comprehension of mechanisms behind metabolic dysregulations, and to a certain extent the identification of therapeutic targets. However, in order to raise new hypotheses, those applications need to put metabolomics results in the light of global metabolism knowledge. This contextualisation of the results can rely on metabolic networks, which gather all biochemical transformations that can be performed by an organism. The major bottleneck preventing this interpretation stems from the fact that, currently, no single metabolomic approach allows monitoring all metabolites, thus leading to a partial representation of the metabolome. Furthermore, in the context of human health related experiments, metabolomics is usually performed on bio-fluid samples. Consequently, those approaches focus on the footprints left by impacted mechanisms rather than the mechanisms themselves. This thesis proposes a new approach to overcome those limitations, through the suggestion of relevant metabolites, which could fill the gaps in a metabolomics signature. This method is inspired by recommender systems used for several on-line activities, and more specifically the recommendation of users to follow on social networks. This approach has been used for the interpretation of the metabolic signature of the hepatic encephalopathy. It allows highlighting some relevant metabolites, closely related to the disease according to the literature, and led to a better comprehension of the impaired mechanisms and as a result the proposition of new hypothetical scenario. It also improved and enriched the original signature by guiding deeper investigation of the raw data, leading to the addition of missed compounds. Models and data characterisation, alongside technical developments presented in this thesis, can also offer generic frameworks and guidelines for metabolic networks topological analysis
Guàrdia, Sebaoun Elie. "Accès personnalisé à l'information : prise en compte de la dynamique utilisateur." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066519/document.
Full textThe main goal of this thesis resides in using rich and efficient profiling to improve the adequation between the retrieved information and the user's expectations. We focus on exploiting as much feedback as we can (being clicks, ratings or written reviews) as well as context. In the meantime, the tremendous growth of ubiquitous computing forces us to rethink the role of information access platforms. Therefore, we took interest not solely in performances but also in accompanying users through their access to the information. Through this thesis, we focus on users dynamics modeling. Not only it improves the system performances but it also brings some kind of explicativity to the recommendation. Thus, we propose to accompany the user through his experience accessing information instead of constraining him to a given set of items the systems finds fitting
Werner, David. "Indexation et recommandation d'informations : vers une qualification précise des items par une approche ontologique, fondée sur une modélisation métier du domaine : application à la recommandation d'articles économiques." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS078/document.
Full textEffective management of large amounts of information has become a challenge increasinglyimportant for information systems. Everyday, new information sources emerge on the web. Someonecan easily find what he wants if (s)he seeks an article, a video or a specific artist. However,it becomes quite difficult, even impossible, to have an exploratory approach to discover newcontent. Recommender systems are software tools that aim to assist humans to deal withinformation overload. The work presented in this Phd thesis proposes an architecture for efficientrecommendation of news. In this document, we propose an architecture for efficient recommendationof news articles. Our ontological approach relies on a model for precise characterization of itemsbased on a controlled vocabulary. The ontology contains a formal vocabulary modeling a view on thedomain knowledge. Carried out in collaboration with the company Actualis SARL, this work has ledto the marketing of a new highly competitive product, FristECO Pro’fil
Militaru, Dorin. "Technologies Internet, systèmes de recommandations et agents intelligents." Paris, ENSAM, 2004. http://www.theses.fr/2004ENAM0036.
Full textThe spread of information technologies (IT) and the growth of the electronic commerce modified the way in which the companies function, forcing them to adopt flexible structures and to produce more efficiently. This research is interested in the part played by new technologies in the setting-up of recommendation systems and information search systems which tend on many markets to control the commercial trades. More precisely, our main objective is to contribute to a better understanding of the recommendation systems by comparing physical economy and electronic commerce. This thesis can contribute to the comprehension of the changes generated in this field by the use of the electronic commerce and to the development of “intelligent” substitutes to the processes currently used. By doing this, we contribute to the emergence of a new face of electronic commerce on Internet by identifying a series of psychological and economic variables which play an important part in the manner in which the economic agents, in particular the companies, act and react. Our main objectives throughout this thesis are to answer to the following questions: Which is the part played by the recommendation systems in the formation of preferences and which is the efficiency of this type of systems? Do the specific characteristics of Internet as an economic environment modify the answers to the previous question? Are the competitiveness factors of the companies on the “new economy” different from those of the traditional economy? Which are the opportunities associated with the electronic commerce, in particular through the “shopbots” which tend to become a “hard” part of the recommender systems?
Séguéla, Julie. "Fouille de données textuelles et systèmes de recommandation appliqués aux offres d'emploi diffusées sur le web." Thesis, Paris, CNAM, 2012. http://www.theses.fr/2012CNAM0801/document.
Full textLast years, e-recruitment expansion has led to the multiplication of web channels dedicated to job postings. In an economic context where cost control is fundamental, assessment and comparison of recruitment channel performances have become necessary. The purpose of this work is to develop a decision-making tool intended to guide recruiters while they are posting a job on the Internet. This tool provides to recruiters the expected performance on job boards for a given job offer. First, we identify the potential predictors of a recruiting campaign performance. Then, we apply text mining techniques to the job offer texts in order to structure postings and to extract information relevant to improve their description in a predictive model. The job offer performance predictive algorithm is based on a hybrid recommender system, suitable to the cold-start problem. The hybrid system, based on a supervised similarity measure, outperforms standard multivariate models. Our experiments are led on a real dataset, coming from a job posting database
Guivarch, Valérian. "Prise en compte de la dynamique du contexte pour les systèmes ambiants par systèmes multi-agents adaptatifs." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2461/.
Full textThe ambient systems are composed by many heteregeneous devices, distributed in the environment, and interacting dynamically. So, the person is a central concern of these systems that have to adapt themselves to the users' context. Thos kind of systems are called/named context aware system. However, the strong dynamic of ambient systems makes impossible to design a priori all adaptation rules needed. The learning of the behaviour to give to an ambient system depending of its context, independantly of any a priori knowledge -knowledge about the behaviour he has to learn, about the used data, or about the users preferences- is the challenge to which this thesis tries to answer. The main contribution of this work is the design of the adaptive multi agent system Amadeus. Its objective is to learn a pertinent behaviour for an ambient system based on the observation of the reccuring actions performed by users, and then to determine in which contexts theses actions are performed in order to perform them on behalf of the user. The learning performed by Amadeus is based on the AMAS approach (Adaptive Multi-Agent System), and is local to each device. It consists in distributing and integrating the Amadeus agents to each device of the ambient system, these agents being able to determine locally and cooperatively the good behaviour to assign to the associated device depending of the users actions
Elisabeth, Erol. "Fouille de données spatio-temporelles, résumés de données et apprentissage automatique : application au système de recommandations touristique, données médicales et détection des transactions atypiques dans le domaine financier." Thesis, Antilles, 2021. http://www.theses.fr/2021ANTI0607.
Full textData mining is one of the components of Customer Relationship Management (CRM), widely deployed in companies. It is the process of extracting interesting, non-trivial, implicit, unknown and potentially useful knowledge from data. This process relies on algorithms from various scientific disciplines (statistics, artificial intelligence, databases) to build models from data stored in data warehouses.The objective of determining models, established from clusters in the service of improving knowledge of the customer in the generic sense, the prediction of his behavior and the optimization of the proposed offer. Since these models are intended to be used by users who are specialists in the field of data, researchers in health economics and management sciences or professionals in the sector studied, this research work emphasizes the usability of data mining environments.This thesis is concerned with spatio-temporal data mining. It particularly highlights an original approach to data processing with the aim of enriching practical knowledge in the field.This work includes an application component in four chapters which corresponds to four systems developed:- A model for setting up a recommendation system based on the collection of GPS positioning data,- A data summary tool optimized for the speed of responses to requests for the medicalization of information systems program (PMSI),- A machine learning tool for the fight against money laundering in the financial system,- A model for the prediction of activity in VSEs which are weather-dependent (tourism, transport, leisure, commerce, etc.). The problem here is to identify classification algorithms and neural networks for data analysis aimed at adapting the company's strategy to economic changes
Tran, Nguyen Minh-Thu. "Abstraction et règles d'association pour l'amélioration des systèmes de recommandation à partir de données de préférences binaires." Paris 13, 2011. http://www.theses.fr/2011PA132016.
Full textIn recent years, recommendation systems have been extensively explored in order to help the user facing the increasing information on Internet. Those systems are used in e-commerce (Amazon, eBay, Netflix. . . ), entertainment, online news, etc. In the domain of e-commerce, the available data is often difficult to exploit to build robust recommendations : binary data, long tail of the distribution of preferences and everlasting adding or removing of items. In fact, most recommender systems focus on the most popular items because the new items or those of the "long tail" are associated with little or no preference. To improve the performance of these systems, we propose to search for association rules between abstracted items. First, the abstraction of the items can lead to a considerable reduction of the long tail effect. Second, the extraction of abstract association rules can be used to identify items to be recommended. . Two algorithms are introduced : AbsTopk, based on the rules in the space of abstract and ACReco combining items in the space of abstract and concrete items by pair. These algorithms were evaluated quantitatively (relevance) and qualitatively (novelty and diversity) on a real database of an online e-commerce site. The empirical results presented show the interest of the proposed approach
Bonnin, Geoffray. "Vers des systèmes de recommandation robustes pour la navigation Web : inspiration de la modélisation statistique du langage." Phd thesis, Université Nancy II, 2010. http://tel.archives-ouvertes.fr/tel-00581331.
Full textMartin, Arnaud. "Évolution de profils multi-attributs, par apprentissage automatique et adaptatif dans un système de recommandation pour l'aide à la décision." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1753/.
Full textConsidering user profiles and their evolutions, for decision support is currently in the community of DSS (Decision Support Systems) an important issue. Indeed, the inclusion of context in the decision is currently emerging for DSS. Indeed the system offers advice to users based on their profile, which represents their preferences through a list of valued criteria. The main constraints come from the fact that the system need to continuously bring relevant information. It therefore requires changing user profiles thanks to their actions. So, the system must not only "understand" what the user likes, but also why. The users' assistance will evolve over time and therefore with the user. Thus the user has at his disposal a kind of personal assistant. The objective of this work is to provide assistance to the user's activity according to his profile. The objective is to develop an algorithm based on automatic techniques, in order to change the profile of a user based on his actions. The assistance provided to the user by the system will evolves according to the evolution of its profile. The problem addressed to the user is a problem of decision making. For this problem, assistance is provided to the user, and it is a refinement of potential solutions. This refining is done through the establishment of scalable scheduling solutions that are presented to the user depending on his / her profile. The realization of such a system requires the articulation of the three main areas of research which are the Multi-Criteria Decision Support, the Disaggregation and Aggregation of preferences, and Machine Learning. The fields of Decision Support and Multi Disaggregation and Aggregation preference can also be assembled as Multi-Criteria Aggregation Process (PAMC). Some methods of Multicriteria Decision Support are set up here and use profile data to provide the best possible support to the user. The decomposition is used to characterize an object to provide data to the learning algorithm required for its operation. Aggregation serves to score an object according to the user profile in order to rank the selected items. Machine Learning is used to change user profiles in order to always have a profile representing as closely as possible the preferences of users. Indeed user preferences change over the time, it is necessary to address these changes in order to adapt the answers to the user. The contributions of this thesis are firstly, the definition, construction and evolution of a user profile (evolutionary profiling) based on explicit and implicit user's actions. This evolutionary profiling is implemented within a recommender system usable without learning base, synchronously and completely incremental, and that allows users to quickly change their preferences and even to be inconsistent (bounded rationality). This system, which complements an Information System Research, aims to establish a total order on a list of items proposed to the user (ranking) and in accordance with his preferences. These also include the definition of techniques used to make parts of solutions to technological challenges as the disintegration of criteria and the inclusion of a variable number of criteria in the process of interactive decision support, and this without firstly defining coherent family of criteria on which the decision is based. Several application frameworks have been developed to evaluate the system and compare it to other systems, but also to test its performance with real user data in an offline mode, and in an online mode using directly the system
Vo, Quang-Tri. "Déterminant du comportement de recommandation d'un site web." Thesis, Paris 9, 2013. http://www.theses.fr/2013PA090050/document.
Full textDespite of the increasing importance and the high frequency of the action of recommending websites, marketing has not specified reasons for which a person recommends a website more than others, and the determinants of this behavior. Based on an interdisciplinary literature including Marketing, Information Systems and Knowledge Management, this thesis presents a model of website recommending behaviors. The proposed model has been validated on a sample of 776 Vietnamese web users. The results highlight the impact of utilitarian and hedonistic benefits of the website for interlocutors on the transmitter’s decision and behavior
L'huillier, Amaury. "Modéliser la diversité au cours du temps pour comprendre le contexte de l'utilisateur dans les systèmes de recommandation." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0182/document.
Full textRecommender Systems (RS) have become essential tools to deal with an endless increasing amount of data available on the Internet. Their goal is to provide items that may interest users before they have to find them by themselves. After being exclusively focused on the precision of users' interests prediction task, RS had to evolve by taking into account other criteria like human factors involved in the decision-making process while computing recommendations, so as to improve their quality and usefulness of recommendations. Nevertheless, the way some human factors, such as context and diversity needs, are managed remains open to criticism. While context-aware recommendations relies on exploiting data that are collected without any consideration for users' privacy, diversity has been coming down to a dimension which has to be maximized. However recent studies demonstrate that diversity corresponds to a need which evolves dynamically over time. In addition, the optimal amount of diversity to provide in the recommendations depends on the on-going task of users (i.e their contexts). Thereby, we argue that analyzing the evolution of diversity over time would be a promising way to define a user's context, under the condition that context is now defined by item attributes. Indeed, we support the idea that a sudden variation of diversity can reflect a change of user's context which requires to adapt the recommendation strategy. We present in this manuscript the first approach to model the evolution of diversity over time and a new kind of context, called ``implicit contexts'', that are respectful of privacy (in opposition to explicit contexts). We confirm the benefits of implicit contexts compared to explicit contexts from several points of view. As a first step, using two large music streaming datasets we demonstrate that explicit and implicit context changes are highly correlated. As a second step, a user study involving many participants allowed us to demonstrate the links between the explicit contexts and the characteristics of the items consulted in the meantime. Based on these observations and the advantages offered by our models, we also present several approaches to provide privacy-preserving context-aware recommendations and to take into account user's needs
Berti-Équille, Laure. "La qualité des données et leur recommandation : modèle conceptuel, formalisation et application a la veille technologique." Toulon, 1999. http://www.theses.fr/1999TOUL0008.
Full textTechnological Watch activities are focused on information qualification and validation by human expertise. As a matter of facf, none of these systems can provide (nor assist) a critical and qualitative analysis of data they store and manage- Most of information systems store data (1) whose source is usually unique, not known or not identified/authenticated (2) whose quality is unequal and/or ignored. In practice, several data may describe the same entity in the real world with contradictory values and their relative quality may be comparatively evaluated. Many techniques for data cleansing and editing exist for detecting some errors in database but it is determinant to know which data have bad quality and to use the benefit of a qualitative expert judgment on data, which is complementary to quantitative and statistical data analysis. My contribution is to provide a multi-source perspective to data quality, to introduce and to define the concepts of multi-source database (MSDB) and multi-source data quality (MSDQ). My approach was to analyze the wide panorama of research in the literature whose problematic have some analogies with technological watch problematic. The main objective of my work was to design and to provide a storage environment for managing textual information sources, (more or less contradictory) data that are extracted from the textual content and their quality mcta-data. My work was centered on proposing : the methodology to guide step-by-step a project for data quality in a multi-source information context, the conceptual modeling of a multi-source database (MSDB) for managing data sources, multi-source data and their quality meta-data and proposing mechanisms for multi-criteria data recommendation ; the formalization of the QMSD data model (Quality of Multi-Source Data) which describes multi-source data, their quality meta-data and the set of operations for manipulating them ; the development of the sQuaL prototype for implementing and validating my propositions. In the long term, the perspectives are to develop a specific dccisional information system extending classical functionalities for (1) managing multi-source data (2) taking into account their quality meta-data and (3) proposing data-quality-based recommendation as query results. The ambition is to develop the concept of "introspective information system" ; that is to say, an information system thai is active and reactive concerning the quality of its own data
Delecroix, Fabien. "Dialoguer pour décider : recommandation experte proactive et prise de décision multi-agents équitable." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10011/document.
Full textIf decision making can be a pure individual process, it can involve several actors and present social aspects. In this thesis, I consider two types of social decision process : supported decision making and collective decision making. Concerning supported decision making, two actors have distinct roles : the decision maker and the assistant. Here, the decision maker is a human agent and the assistant a software one. In many applications, the dialogical abilities of the assistant are deceptive and the dialogue lacks of consistency. To tackle this problem, we design a proactive dialogical agent aiming for the credibility in conversation and the relevance of recommandations : our agent leads the conversation in asking relevant questions to collect the preferences of the decision maker and use them in recommending the alternatives that fit the most. We apply our approach on the e-commerce field. The second contribution concerns collective decision. The objective is to define a process that lead to a fair agreement, even if participants have incomplete preferences. For this purpose, I define the fair agreements by applying the leximax criterion on the rank of alternatives. Then, I propose a negotiation protocol to reach such agreements and the strategy is taken into account to evaluate it. Finally, the protocol is applied to the search of a meeting point in a maze
Diaby, Mamadou. "Méthodes pour la recommandation d’offres d’emploi dans les réseaux sociaux." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD012/document.
Full textWe are entering a new era of data mining in which the main challenge is the storing andprocessing of massive data : this is leading to a new promising research and industry field called Big data. Data are currently a new raw material coveted by businesses of all sizes and all sectors. They allow organizations to analyze, understand, model and explain phenomen a such as the behavior of their users or customers. Some companies like Google, Facebook,LinkedIn and Twitter are using user data to determine their preferences in order to make targeted advertisements to increase their revenues.This thesis has been carried out in collaboration between the laboratory L2TI andWork4, a French-American startup that offers Facebook recruitment solutions. Its main objective was the development of systems recommending relevant jobs to social network users ; the developed systems have been used to advertise job positions on social networks. After studying the literature about recommender systems, information retrieval, data mining and machine learning, we modeled social users using data they posted on their profiles, those of their social relationships together with the bag-of-words and ontology-based models. We measure the interests of users for jobs using both heuristics and models based on machine learning. The development of efficient job recommender systems involved to tackle the problem of categorization and summarization of user profiles and job descriptions. After developing job recommender systems on social networks, we developed a set of systems called Work4 Oracle that predict the audience (number of clicks) of job advertisements posted on Facebook, LinkedIn or Twitter. The analysis of the results of Work4 Oracle allows us to find and quantify factors impacting the popularity of job ads posted on social networks, these results have been compared to those of the literature of Human Resource Management. All our proposed systems deal with privacy preservation by only using the data that social network users explicitly allowed to access to ; they also deal with noisy and missing data of social network users and have been validated on real-world data provided by Work4
Boutet, Antoine. "Décentralisation des systèmes de personnalisation." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00861370.
Full textServajean, Maximilien. "Recommandation diversifiée et distribuée pour les données scientifiques." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20216/document.
Full textIn many fields, novel technologies employed in information acquisition and measurement (e.g. phenotyping automated greenhouses) are at the basis of a phenomenal creation of data. In particular, we focus on two real use cases: plants observations in botany and phenotyping data in biology. Our contributions can be, however, generalized to Web data. In addition to their huge volume, data are also distributed. Indeed, each user stores their data in many heterogeneous sites (e.g. personal computers, servers, cloud); yet he wants to be able to share them. In both use cases, collaborative solutions, including distributed search and recommendation techniques, could benefit to the user.Thus, the global objective of this work is to define a set of techniques enabling sharing and discovery of data in heterogeneous distributed environment, through the use of search and recommendation approaches.For this purpose, search and recommendation allow users to be presented sets of results, or recommendations, that are both relevant to the queries submitted by the users and with respect to their profiles. Diversification techniques allow users to receive results with better novelty while avoiding redundant and repetitive content. By introducing a distance between each result presented to the user, diversity enables to return a broader set of relevant items.However, few works exploit profile diversity, which takes into account the users that share each item. In this work, we show that in some scenarios, considering profile diversity enables a consequent increase in results quality: surveys show that in more than 75% of the cases, users would prefer profile diversity to content diversity.Additionally, in order to address the problems related to data distribution among heterogeneous sites, two approaches are possible. First, P2P networks aim at establishing links between peers (nodes of the network): creating in this way an overlay network, where peers directly connected to a given peer p are known as his neighbors. This overlay is used to process queries submitted by each peer. However, in state of the art solutions, the redundancy of the peers in the various neighborhoods limits the capacity of the system to retrieve relevant items on the network, given the queries submitted by the users. In this work, we show that introducing diversity in the computation of the neighborhood, by increasing the coverage, enables a huge gain in terms of quality. By taking into account diversity, each peer in a given neighborhood has indeed, a higher probability to return different results given a keywords query compared to the other peers in the neighborhood. Whenever a query is submitted by a peer, our approach can retrieve up to three times more relevant items than state of the art solutions.The second category of approaches is called multi-site. Generally, in state of the art multi-sites solutions, the sites are homogeneous and consist in big data centers. In our context, we propose an approach enabling sharing among heterogeneous sites, such as small research teams servers, personal computers or big sites in the cloud. A prototype regrouping all contributions have been developed, with two versions addressing each of the use cases considered in this thesis
Tounsi, Dhouib Molka. "Ingénierie des connaissances dans le domaine du sourcing pour la recommandation de prestataires." Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4024.
Full textThis CIFRE doctoral thesis is part of a collaborative research project between the I3S laboratory of the University of Côte d'Azur and the Silex company, and addresses the field of recommendation systems. Silex is a start-up that develops a Software-as-a-Service sourcing tool that allows companies to provide a description of their professional activities, their offers and/or the services they are looking for in natural language (currently French).In this context, the objective of this thesis is to propose a decision support system by exploiting the semantic knowledge that are extracted from the textual descriptions of requests for services and providers, in order to recommend relevant providers for a service request.The contributions of this thesis are the following. First, we proposed a vocabulary for the sourcing field by reusing and integrating existing vocabularies, in order to semantically annotate the textual descriptions of providers and requests for services. Second, we proposed an automatic alignment method to establish the correspondence between different concepts of the considered vocabularies. This approach is based on rules exploiting embedding space and measurements on groups of labels to discover the relationships between concepts. Third, we proposed an algorithm for extracting named entities from the textual descriptions of service requests and providers, and an algorithm for semantic annotation of these descriptions, based on the linking of the extracted entities with the concepts of the defined vocabulary.Fourth, we proposed a provider recommendation algorithm that exploits these knowledges extracted.Finally, we studied the contribution of using ontological knowledge to improve our decision support system for the sourcing domain in order to recommend relevant providers for a service request.The contributions of this thesis are the following. First, we proposed a vocabulary for the sourcing field in order to semantically annotate the textual descriptions of providers and requests for services. This vocabulary was built by reusing and integrating existing vocabularies. Second, we proposed an automatic alignment method to establish the correspondence between different concepts of the considered vocabularies. This approach is based on rules exploiting embedding space and measurements on groups of labels to discover the relationships between concepts. Third, we proposed an algorithm for extracting named entities from the textual descriptions of service requests and providers, and an algorithm for semantic annotation of these descriptions, based on the linking of the extracted entities with the concepts of the defined vocabulary.Fourth, we proposed a provider recommendation algorithm that exploits these knowledge extracted.Finally, we studied the contribution of using ontological knowledge to improve our decision support system for the sourcing domain