Academic literature on the topic 'Classification methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification methods"
Kubade, Harshad M. "The Overview of Bayes Classification Methods." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 2801–2. http://dx.doi.org/10.31142/ijtsrd15750.
Full textCrouch, R. J., and R. J. Blong. "Gully sidewall classification: methods and applications." Zeitschrift für Geomorphologie 33, no. 3 (October 5, 1989): 291–305. http://dx.doi.org/10.1127/zfg/33/1989/291.
Full textGhimire, Santosh. "On the Image Pixels Classification Methods." Journal of the Institute of Engineering 15, no. 2 (July 31, 2019): 202–9. http://dx.doi.org/10.3126/jie.v15i2.27667.
Full textRasheed, Nishana, and Shreeja R. "Image Classification Methods." International Journal of Engineering Trends and Technology 8, no. 8 (February 25, 2014): 461–64. http://dx.doi.org/10.14445/22315381/ijett-v8p279.
Full textPekhtasheva, Elena, Anatoly Neverov, Stefan Kubica, and Gennady Zaikov. "Classification of Biodamages, Evaluation and Protection Methods." Chemistry & Chemical Technology 6, no. 4 (December 20, 2012): 459–72. http://dx.doi.org/10.23939/chcht06.04.459.
Full textOthman, Osama M., and Christopher H. Bryant. "Pruning Classification Rules with Instance Reduction Methods." International Journal of Machine Learning and Computing 5, no. 3 (June 2015): 187–91. http://dx.doi.org/10.7763/ijmlc.2015.v5.505.
Full textBabaeva, Vasila. "Error Classification And Methods Of Their Correction." American Journal of Social Science and Education Innovations 02, no. 08 (August 29, 2020): 474–77. http://dx.doi.org/10.37547/tajssei/volume02issue08-76.
Full textPerepelitsa, V. A., I. V. Kozin, and S. V. Kurapov. "Methods of classification and algorithms of graph coloring." Researches in Mathematics 16 (February 7, 2021): 135. http://dx.doi.org/10.15421/240816.
Full textMarini, Federico. "Classification Methods in Chemometrics." Current Analytical Chemistry 6, no. 1 (January 1, 2010): 72–79. http://dx.doi.org/10.2174/157341110790069592.
Full textWATADA, Junzo. "Methods for Fuzzy Classification." Journal of Japan Society for Fuzzy Theory and Systems 4, no. 1 (1992): 61–73. http://dx.doi.org/10.3156/jfuzzy.4.1_61.
Full textDissertations / Theses on the topic "Classification methods"
Jamain, Adrien. "Meta-analysis of classification methods." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413686.
Full textChzhen, Evgenii. "Plug-in methods in classification." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2027/document.
Full textThis manuscript studies several problems of constrained classification. In this frameworks of classification our goal is to construct an algorithm which performs as good as the best classifier that obeys some desired property. Plug-in type classifiers are well suited to achieve this goal. Interestingly, it is shown that in several setups these classifiers can leverage unlabeled data, that is, they are constructed in a semi-supervised manner.Chapter 2 describes two particular settings of binary classification -- classification with F-score and classification of equal opportunity. For both problems semi-supervised procedures are proposed and their theoretical properties are established. In the case of the F-score, the proposed procedure is shown to be optimal in minimax sense over a standard non-parametric class of distributions. In the case of the classification of equal opportunity the proposed algorithm is shown to be consistent in terms of the misclassification risk and its asymptotic fairness is established. Moreover, for this problem, the proposed procedure outperforms state-of-the-art algorithms in the field.Chapter 3 describes the setup of confidence set multi-class classification. Again, a semi-supervised procedure is proposed and its nearly minimax optimality is established. It is additionally shown that no supervised algorithm can achieve a so-called fast rate of convergence. In contrast, the proposed semi-supervised procedure can achieve fast rates provided that the size of the unlabeled data is sufficiently large.Chapter 4 describes a setup of multi-label classification where one aims at minimizing false negative error subject to almost sure type constraints. In this part two specific constraints are considered -- sparse predictions and predictions with the control over false negative errors. For the former, a supervised algorithm is provided and it is shown that this algorithm can achieve fast rates of convergence. For the later, it is shown that extra assumptions are necessary in order to obtain theoretical guarantees in this case
Gimati, Yousef M. T. "Bootstrapping techniques to improve classification methods." Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401072.
Full textKobayashi, Izumi. "Randomized ensemble methods for classification trees." Diss., Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02sep%5FKobayashi.pdf.
Full textDissertation supervisor: Samuel E. Buttrey. Includes bibliographical references (p. 117-119). Also available online.
Baker, Jonathan Peter. "Methods of Music Classification and Transcription." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3330.
Full textClibbon, Alex P. "Methods of classification of the cardiotocogram." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:550bb5ea-bee8-4eb8-95e2-f16c54d7cd68.
Full textFelldin, Markus. "Machine Learning Methods for Fault Classification." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183132.
Full textDetta examensarbete, utfört på Ericsson AB, ämnar att undersöka huruvida maskininlärningstekniker kan användas för att klassificera dumpfiler för mer effektiv problemidentifiering. Projektet fokuserar på övervakad inlärning och då speciellt Bayesiansk klassificering. Arbetet visar att ett program som utnyttjar Bayesiansk klassificering kan uppnå en noggrannhet väl över slumpen. Arbetet indikerar att maskininlärningstekniker mycket väl kan komma att bli användbara alternativ till mänsklig klassificering av dumpfiler i en nära framtid.
Beghtol, Clare. "James Duff Brown's Subject Classification and Evaluation Methods for Classification Systems." dLIST, 2004. http://hdl.handle.net/10150/106250.
Full textRavindran, Sourabh. "Physiologically Motivated Methods For Audio Pattern Classification." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14066.
Full textKim, Heeyoung. "Statistical methods for function estimation and classification." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44806.
Full textBooks on the topic "Classification methods"
Doumpos, Michael. Multicriteria decision aid classification methods. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textHoleňa, Martin, Petr Pulc, and Martin Kopp. Classification Methods for Internet Applications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36962-0.
Full textConstantin, Zopounidis, ed. Multicriteria decision aid classification methods. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textM, Mather Paul, ed. Classification methods for remotely sensed data. 2nd ed. Boca Raton, FL: CRC Press, 2009.
Find full textAlfaro, Esteban, Matías Gámez, and Noelia García, eds. Ensemble Classification Methods with Applicationsin R. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119421566.
Full textKiers, Henk A. L., Jean-Paul Rasson, Patrick J. F. Groenen, and Martin Schader, eds. Data Analysis, Classification, and Related Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59789-3.
Full textHayashi, Chikio, Keiji Yajima, Hans-Hermann Bock, Noboru Ohsumi, Yutaka Tanaka, and Yasumasa Baba, eds. Data Science, Classification, and Related Methods. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-65950-1.
Full text1929-, Agrawal S. P., ed. Book numbers: Some Indian methods. New Delhi: Concept Pub. Co., 1990.
Find full textParticle size analysis: Classification and sedimentation methods. London: Chapman & Hall, 1994.
Find full textBook chapters on the topic "Classification methods"
Das, Sibanjan. "Classification Methods." In Data Science Using Oracle Data Miner and Oracle R Enterprise, 189–237. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2614-8_6.
Full textDougherty, Geoff. "Nonmetric Methods." In Pattern Recognition and Classification, 27–41. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5323-9_3.
Full textGood, Phillip I. "Classification and Discrimination." In Resampling Methods, 164–86. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4757-3049-4_10.
Full textCanela, Miguel Ángel, Inés Alegre, and Alberto Ibarra. "Classification Models." In Quantitative Methods for Management, 75–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17554-2_8.
Full textRizzi, Alfredo. "Statistical Methods for Cryptography." In Data Analysis and Classification, 13–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03739-9_2.
Full textAbe, Shigeo. "Training Methods." In Support Vector Machines for Pattern Classification, 227–303. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-098-4_5.
Full textMasters, Timothy. "Gating Methods." In Assessing and Improving Prediction and Classification, 393–416. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3336-8_8.
Full textAbe, Shigeo. "Kernel-Based Methods Kernel@Kernel-based method." In Support Vector Machines for Pattern Classification, 305–29. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-098-4_6.
Full textKiasaleh, Kamran. "Signal Decomposition Methods." In Biological Signals Classification and Analysis, 277–376. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-54879-6_5.
Full textRuczinski, Ingo, Charles Kooperberg, and Michael LeBlanc. "Logic Regression — Methods and Software." In Nonlinear Estimation and Classification, 333–43. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21579-2_21.
Full textConference papers on the topic "Classification methods"
Horte, T., R. Skjong, P. Friis-Hansen, A. P. Teixeira, and F. Viejo de Francisco. "Probabilistic Methods Applied To Structural Design And Rule Development." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.07.
Full textSuch, Ondrej, Santiago Barreda, Martin Klimo, Peter Tarabek, and Andrea Tinajova. "Comparing Classification Methods in Isolated Vowel Classification." In 2018 World Symposium on Digital Intelligence for Systems and Machines (DISA). IEEE, 2018. http://dx.doi.org/10.1109/disa.2018.8490601.
Full textGilmer, John, and Jianhua Chen. "Unsupervised semantic classification methods." In 2011 IEEE International Conference on Granular Computing (GrC-2011). IEEE, 2011. http://dx.doi.org/10.1109/grc.2011.6122595.
Full textSchlichenmaier, Martin, Piotr Kielanowski, Anatol Odzijewicz, Martin Schlichenmaier, and Theodore Voronov. "Classification of central extensions of Lax operator algebras." In GEOMETRIC METHODS IN PHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.3043863.
Full textDessauer, Michael P., and Sumeet Dua. "Discriminative features and classification methods for accurate classification." In SPIE Defense, Security, and Sensing, edited by Teresa H. O'Donnell, Misty Blowers, and Kevin L. Priddy. SPIE, 2010. http://dx.doi.org/10.1117/12.853267.
Full textPan, Yuzhu. "Research on Leaf Classification under Different Classification Methods." In 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2021. http://dx.doi.org/10.1109/icpics52425.2021.9524160.
Full textVondra, Jan, Piotr Kielanowski, Anatol Odzijewicz, Martin Schlichenmaier, and Theodore Voronov. "Classification of principal connections on W[sup r]PE." In GEOMETRIC METHODS IN PHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.3043858.
Full text"RECONSTRUCTING IVUS IMAGES FOR AN ACCURATE TISSUE CLASSIFICATION." In Computer Vision Methods in Medicine. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002061001130119.
Full textRuta, Dymitr, Bogdan Gabrys, George Maroulis, and Theodore E. Simos. "Reducing Spatial Data Complexity for Classification Models." In Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2827047.
Full textNakano, Felipe kenji, Saulo Martiello Mastelini, Sylvio Barbon, and Ricardo Cerri. "Stacking Methods for Hierarchical Classification." In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2017. http://dx.doi.org/10.1109/icmla.2017.0-145.
Full textReports on the topic "Classification methods"
Latifovic, R., J. Cihlar, and J. Beaubien. Clustering Methods for Unsupervised Classification. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/219517.
Full textEom, K., M. Wellman, N. Srour, D. Hillis, and R. Chellappa. Acoustic Target Classification Using Multiscale Methods. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada358579.
Full textStamp, Jason Edwin, and Philip LaRoche Campbell. A classification scheme for risk assessment methods. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/925643.
Full textFirth, Robert, Bill Wood, Rich Pethia, Lauren Roberts, and Vicky Mosley. A Classification Scheme for Software Development Methods. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada200606.
Full textRyan, F. M., D. N. Anderson, K. K. Anderson, D. N. Hagedorn, K. T. Higbee, N. E. Miller, T. Redgate, and A. C. Rohay. Statistical classification methods applied to seismic discrimination. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/257361.
Full textIrizarry, Alfredo V. Optimal Methods for Classification of Digitally Modulated Signals. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada583399.
Full textIagnemma, Karl. Investigation of Terrain Analysis and Classification Methods for Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada577237.
Full textGrother, P. J. Comparison of FFT fingerprint filtering methods for neural network classification. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5493.
Full textHedyehzadeh, Mohammadreza, Shadi Yoosefian, Dezfuli Nezhad, and Naser Safdarian. Evaluation of Conventional Machine Learning Methods for Brain Tumour Type Classification. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, June 2020. http://dx.doi.org/10.7546/crabs.2020.06.14.
Full textIrizarry, Alfredo V. Average Likelihood Methods of Classification of Code Division Multiple Access (CDMA). Fort Belvoir, VA: Defense Technical Information Center, May 2016. http://dx.doi.org/10.21236/ad1009582.
Full text