Academic literature on the topic 'Classification of benign and malignant skin cancer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification of benign and malignant skin cancer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification of benign and malignant skin cancer"
MESSADI, M., A. BESSAID, and A. TALEB-AHMED. "NEW CHARACTERIZATION METHODOLOGY FOR SKIN TUMORS CLASSIFICATION." Journal of Mechanics in Medicine and Biology 10, no. 03 (September 2010): 467–77. http://dx.doi.org/10.1142/s0219519410003514.
Full textShawon, Mayinuzzaman, Kazi Fakhrul Abedin, Anik Majumder, Abir Mahmud, and Md Mahbub Chowdhury Mishu. "Identification of Risk of Occurring Skin Cancer (Melanoma) Using Convolutional Neural Network (CNN)." AIUB Journal of Science and Engineering (AJSE) 20, no. 2 (May 15, 2021): 47–51. http://dx.doi.org/10.53799/ajse.v20i2.140.
Full textGhazal, Taher M., Sajid Hussain, Muhammad Farhan Khan, Muhammad Adnan Khan, Raed A. T. Said, and Munir Ahmad. "Detection of Benign and Malignant Tumors in Skin Empowered with Transfer Learning." Computational Intelligence and Neuroscience 2022 (March 24, 2022): 1–9. http://dx.doi.org/10.1155/2022/4826892.
Full textKorfiati, Aigli, Giorgos Livanos, Christos Konstandinou, Sophia Georgiou, and George Sakellaropoulos. "SKIN LESION CLASSIFICATION FROM DERMOSCOPY AND CLINICAL IMAGES WITH A DEEP LEARNING APPROACH." International Journal of Advanced Research 9, no. 10 (October 31, 2021): 1294–300. http://dx.doi.org/10.21474/ijar01/13681.
Full textHasan, Mohammed Rakeibul, Mohammed Ishraaf Fatemi, Mohammad Monirujjaman Khan, Manjit Kaur, and Atef Zaguia. "Comparative Analysis of Skin Cancer (Benign vs. Malignant) Detection Using Convolutional Neural Networks." Journal of Healthcare Engineering 2021 (December 11, 2021): 1–17. http://dx.doi.org/10.1155/2021/5895156.
Full textJinnai, Shunichi, Naoya Yamazaki, Yuichiro Hirano, Yohei Sugawara, Yuichiro Ohe, and Ryuji Hamamoto. "The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning." Biomolecules 10, no. 8 (July 29, 2020): 1123. http://dx.doi.org/10.3390/biom10081123.
Full textSella Veluswami, Jansi Rani, M. Ezhil Prasanth, K. Harini, and U. Ajaykumar. "Melanoma Skin Cancer Recognition and Classification Using Deep Hybrid Learning." Journal of Medical Imaging and Health Informatics 11, no. 12 (December 1, 2021): 3110–16. http://dx.doi.org/10.1166/jmihi.2021.3898.
Full textLeon, Raquel, Beatriz Martinez-Vega, Himar Fabelo, Samuel Ortega, Veronica Melian, Irene Castaño, Gregorio Carretero, et al. "Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support." Journal of Clinical Medicine 9, no. 6 (June 1, 2020): 1662. http://dx.doi.org/10.3390/jcm9061662.
Full textUteng, Stig, Eduardo Quevedo, Gustavo M. Callico, Irene Castaño, Gregorio Carretero, Pablo Almeida, Aday Garcia, Javier A. Hernandez, and Fred Godtliebsen. "Curve-Based Classification Approach for Hyperspectral Dermatologic Data Processing." Sensors 21, no. 3 (January 20, 2021): 680. http://dx.doi.org/10.3390/s21030680.
Full textLuqman Hakim, Zamah Sari, and Handhajani Handhajani. "Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 5, no. 2 (April 29, 2021): 379–85. http://dx.doi.org/10.29207/resti.v5i2.3001.
Full textDissertations / Theses on the topic "Classification of benign and malignant skin cancer"
Segerström, Pierre, and Felix Boltshauser. "Ensemble Learning Applied to Classification of Malignant and Benign Breast Cancer." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302551.
Full textI denna rapport visar vi hur samlingsinlärning kan vara användbart för framtida diagnostisering av bröstcancer. Den valda samlingsinlärning-metoden var bagging", vilket tog användning av Support Vector Machine (SVM), Decision Tree (DT) och Naive Bayes (NB) för att klassificera mammogram som godartade eller elakartade. Resultaten som togs fram för bagging"jämfördes avslutligen med resultaten från respektive ovannämnd klassifierare. Generellt visade resultaten att fördelarna med samlingsinlärning var varierande, beroende på vissa faktorer. Påverkande aspekter var: vilken klassifierare som användes, vald metod för extraktion av inmatningsdata, men också vilka tumörtyper som användes för träning och evaluering av respektive klassifierare. Medans klassifikation med DT förbättrades signifikant med bagging", var skillnaderna försumbara med SVM och NB. Slutligen, skrapar denna studie enbart på ytan av kända samlingsinlärning-metoder, vilket indikerar att det kan finnas mycket utrymme för framtida forskning i området.
Books on the topic "Classification of benign and malignant skin cancer"
MacKie, Rona M. Skin cancer: An illustrated guide to the aetiology, clinical features, pathology and management of benign and malignant cutaneous tumours. London: M. Dunitz, 1989.
Find full textMacKie, Rona M. Skin cancer: An illustrated guide to the aetiology, clinical features, pathology and management of benign and malignant cutaneous tumors. London: Dunitz, 1989.
Find full textSkin Cancer: An Illustrated Guide to the Aetiology, Clinical Features, Pathology and Management of Benign and Malignant Cutaneous Tumours. 2nd ed. Taylor & Francis, 1996.
Find full textGilmore, Mary Ann. A VALIDATION STUDY FOR THE CLASSIFICATION OF THE LEVEL OF SEVERITY OF MALIGNANT SKIN LESIONS IN CANCER PATIENTS (SKIN CANCER). 1996.
Find full textSierakowski, Adam, and Roderick Dunn. Skin conditions. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757689.003.0008.
Full textLopez-Beltran, Antonio, Rodolfo Montironi, and Liang Cheng. Pathology of renal cancer and other tumours affecting the kidney. Edited by James W. F. Catto. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0085.
Full textGardiner, Matthew D., and Neil R. Borley. Plastic and reconstructive surgery. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199204755.003.0012.
Full textBook chapters on the topic "Classification of benign and malignant skin cancer"
Yilmaz, Ercument, and Maria Trocan. "Benign and Malignant Skin Lesion Classification Comparison for Three Deep-Learning Architectures." In Intelligent Information and Database Systems, 514–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41964-6_44.
Full textNapoleon, D., and I. Kalaiarasi. "Classification of Benign and Malignant Lung Cancer Nodule Using Artificial Neural Network." In Intelligent Computing and Innovation on Data Science, 403–11. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3153-5_43.
Full textNöhammer, G., F. Bajardi, C. Benedetto, H. Kresbach, W. Rojanapo, E. Schauenstein, and T. F. Slater. "Microphotometric Determination of Protein Thiols and Disulphides in Tissue Samples from the Human Uterine Cervix and the Skin Reveal a “Field Effect” in the Surroundings of Benign and Malignant Tumours." In Eicosanoids, Lipid Peroxidation and Cancer, 291–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73424-3_32.
Full textO’Toole, Edel. "Tumours of the skin." In Oxford Textbook of Medicine, edited by Roderick J. Hay, 5732–42. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0563.
Full textC, Geetha, Aparna Darapaneni, and Lakkamaneni Chandana Manaswini. "Intelligent Systems to Predict and Diagnose Benign and Malignant Skin Lesions." In Intelligent Systems and Computer Technology. IOS Press, 2020. http://dx.doi.org/10.3233/apc200150.
Full textBen Youssef, Youssef, Elhassane Abdelmounim, and Abdelaziz Belaguid. "Mammogram Classification Using Support Vector Machine." In Cognitive Analytics, 894–921. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2460-2.ch046.
Full textBen Youssef, Youssef, Elhassane Abdelmounim, and Abdelaziz Belaguid. "Mammogram Classification Using Support Vector Machine." In Advances in Wireless Technologies and Telecommunication, 587–614. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0773-4.ch019.
Full textFatima, Kiran, and Hammad Majeed. "Texture-Based Evolutionary Method for Cancer Classification in Histopathology." In Advances in Data Mining and Database Management, 55–69. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9767-6.ch004.
Full textFatima, Kiran, and Hammad Majeed. "Texture-Based Evolutionary Method for Cancer Classification in Histopathology." In Medical Imaging, 558–72. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0571-6.ch021.
Full textSharma, Neha, and Deepti Sharma. "An Overview of Pancreatic Neuroendocrine Tumors." In Challenges in Pancreatic Cancer. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96259.
Full textConference papers on the topic "Classification of benign and malignant skin cancer"
Alamdari, Nasim, Nicholas MacKinnon, Fartash Vasefi, Reza Fazel-Rezai, Minhal Alhashim, Alireza Akhbardeh, Daniel L. Farkas, and Kouhyar Tavakolian. "Effect of Lesion Segmentation in Melanoma Diagnosis for a Mobile Health Application." In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3522.
Full textHossain, Milon, Kh Sadik, Md Musfiqur Rahman, Fahad Ahmed, Md Nur Hossain Bhuiyan, and Mohammad Monirujjaman Khan. "Convolutional Neural Network Based Skin Cancer Detection (Malignant vs Benign)." In 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2021. http://dx.doi.org/10.1109/iemcon53756.2021.9623192.
Full textAra, Sharmin, Annesha Das, and Ashim Dey. "Malignant and Benign Breast Cancer Classification using Machine Learning Algorithms." In 2021 International Conference on Artificial Intelligence (ICAI). IEEE, 2021. http://dx.doi.org/10.1109/icai52203.2021.9445249.
Full textJiang, Zhiqiang, Weidong Xu, and Shujun Chen. "Classification of benign and malignant breast cancer based on DWI texture features." In the International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3135954.3135964.
Full textAnparasy, S. "Classification of Breast cancer tumors using Feature Selection and CNN." In ERU Symposium 2021. Engineering Research Unit (ERU), University of Moratuwa, 2021. http://dx.doi.org/10.31705/eru.2021.11.
Full textMahmoud, Mohamed Khalad Abu, Adel Al-Jumaily, Yashar Maali, and Khairul Anam. "Classification of Malignant Melanoma and Benign Nevi from Skin Lesions Based on Support Vector Machine." In 2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation (CIMSim). IEEE, 2013. http://dx.doi.org/10.1109/cimsim.2013.45.
Full textBabaghorbani, P., S. Parvaneh, AR Ghassemi, and K. Manshai. "Sonography Images for Breast Cancer Texture Classification in Diagnosis of Malignant or Benign Tumors." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516073.
Full textRajesh, A. "Classification of malignant melanoma and Benign Skin Lesion by using back propagation neural network and ABCD rule." In 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). IEEE, 2017. http://dx.doi.org/10.1109/iceice.2017.8191916.
Full textEshun, Robert B., A. K. M. Kamrul Islam, and Marwan U. Bikdash. "Identification of Significantly Expressed Gene Mutations for Automated Classification of Benign and Malignant Prostate Cancer." In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630460.
Full textShia, Weichung, and Darren Chen. "Abstract P1-02-10: Using deep residual networks for malignant and benign classification of two-dimensional Doppler breast ultrasound imaging." In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p1-02-10.
Full text